
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-05-18

Testability of SPP Three-Level Logic

Networks in Static Fault Models

Valentina Ciriani,

Department of Information Technologies

University of Milano

26013 Crema (CR), Italy

ciriani@dti.unimi.it

Anna Bernasconi,

Department of Computer Science

University of Pisa

56100 Pisa, Italy

annab@di.unipi.it

Rolf Drechsler

Institute of Computer Science

University of Bremen

28359 Bremen, Germany

drechsle@informatik.uni-bremen.de

July 14, 2005

ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Testability of SPP Three-Level Logic Networks in Static Fault

Models ∗

Valentina Ciriani,

Department of Information Technologies

University of Milano

26013 Crema (CR), Italy

ciriani@dti.unimi.it

Anna Bernasconi,

Department of Computer Science

University of Pisa

56100 Pisa, Italy

annab@di.unipi.it

Rolf Drechsler

Institute of Computer Science

University of Bremen

28359 Bremen, Germany

drechsle@informatik.uni-bremen.de

July 14, 2005

Abstract

Recently introduced, three-level logic Sum of Pseudoproducts (SPP) forms allow the representation

of Boolean functions with much shorter expressions than standard two-level Sum of Products (SOP)

forms, or other three-level logic forms.

In this paper the testability of circuits derived from SPPs is analyzed. We study testability under

static Fault Models (FMs), i.e. the Stuck-At Fault Model (SAFM) and the Cellular Fault Model (CFM).

For SPP networks several minimal forms can be considered. While full testability can be proved in the

SAFM for some forms, SPP networks in the CFM are shown to contain redundancies. Finally, we propose

a method for transforming non-testable networks into testable ones. Experimental results are given to

demonstrate the efficiency of the approach.

1 Introduction

An important aspect of logic synthesis is the problem of deriving high-quality design from the initial spec-
ifications. A given Boolean function may be realized by a large variety of circuits, very different in terms
of structure. In this framework the selection of a logic network, out of all possible known models (SOP [9],
Reed Muller [22], EXSOP [10, 12], OR-AND-OR [11], SPP [5, 19], ESPP [18]), is critical and depends on
multiple factors. Moreover it is very difficult to define a theoretical model that captures the problem in its
generality. Thus the objective is to synthesize a circuit that optimizes a cost function involving different
factors. In particular we are interested in several features like, e.g., (i) the size of the algebraic expression,
in order to estimate the area occupied by the logic gates; (ii) the number of levels in the network, in order
to estimate the delay of the longest path through the gates; (iii) the implementability of the network in the

∗Parts of this paper have been published in IFIP 12-th VLSI-SOC (2003) [7].

1

current technologies; (iv) the existence of efficient minimization algorithms; (v) the testability properties of
the network; (vi) the power consuming of the network.

The standard synthesis is performed with Sum of Products (SOP) minimization procedures, leading
to two-level circuits. More-than-two level minimization is much harder, but the size of the circuits can
significantly decrease. In many cases three-level logic is a good trade-off among circuit speed, circuit size,
and the time needed for the minimization procedure [21]. Algorithms for exact minimization have worst case
exponential complexity, hence the time to attain minimal forms may become huge for increasing size of the
input.

In this paper we focus on a special three-level network called Sum of k-Pseudoproducts (k-SPP) and on
the more general Sum of Pseudoproducts (SPP). This choice is motivated by the fact that SPP networks
often satisfy the above-mentioned properties, as observed below.

SPP expressions, introduced in [19], can be seen as a direct generalization of SOP expressions using
EXOR gates. An SPP form consists of the OR of pseudoproducts, where a pseudoproduct is the AND of
EXOR factors (i.e., EXOR of literals). In the recent paper [18] a modified version of SPP networks, called
ESPP and consisting of an EXOR of pseudoproducts, has been proposed.

Among three-level networks, SPP forms are particularly compact [4, 5]. However SPP forms have two
major disadvantages: (i) they require large computational effort for the minimization; (ii) they have been
originally defined for EXOR gates with unbounded fan-in, but in most technologies, EXOR gates with many
inputs are slow, expensive and often not easily implementable [25]. Therefore, in recent studies [4, 5, 6],
k-SPP forms with a fixed maximum number of literals (k) in the EXOR factors have been introduced.

Experimental results [4, 5, 6] show that the size of the k-SPP minimal forms is not significantly larger
than the one for unbounded fan-in, but the computational effort drastically decreases, especially when k = 2.
Thus, 2-SPP forms are reasonable upper bounds of the exact SPP forms, and are a good trade-off between
the compactness of SPP forms and the efficiency of SOP minimization. Furthermore 2-SPP forms require
a reduced number of different EXOR gates and are more practicable for the current technology. Moreover,
preliminary results on multipliers indicate that SPP networks are also low power consuming [8].

Beside the synthesis aspect, testability is a major aspect of the design process. For this, aspects of
testability should be considered from the very beginning [26]. For several two-level forms detailed studies on
testability have been performed. But, to the best of our knowledge, for three-level networks testability has
not been considered so far.

In this paper the testability of SPP forms is studied from a theoretical and practical point of view. We
study testability of SPP forms under two static fault models, i.e. the Stuck-At Fault Model (SAFM) and the
Cellular Fault Model (CFM).

The classical stuck-at fault model (SAFM) is well-known and used throughout the industry for many
years [3, 1] and still represents the state-of-the-art. In SAFM it is assumed that a defect causes a basic
cell input or output to be fixed to either 0 or 1. Thus, all failures with this effect will be detected by
tests for stuck-at faults. The strongest cell-based fault model that controls the correct static behavior of
a combinational circuit is the CFM, which tries to completely verify the function computed by each basic
cell in the circuit [15]. The investigations with respect to CFM and SAFM as well are usually based on the
single fault assumption, i.e. one assumes that there is at most one fault (according to the considered fault
model) in the circuit. Under the stuck-at fault model it is proved that general SPP networks, minimized
with respect to the number of literals, are free of redundancies by construction. Whereas it can be shown by
counter-examples that SPPs, minimized with respect to the number of pseudoproducts, are not fully testable.
The same results hold for the specific class of 2-SPPs. Then, the circuits are studied with respect to the more
general CFM. In this fault model SPP forms are shown to contain redundancies, and a characterization of
the faulty networks is provided. Experimental results for the SAFM are given to demonstrate the efficiency
of the approach.

2

Furthermore, the non-fully testable networks have been studied in order to improve their testability. In
particular, 2-SPP networks minimal with respect to the number of 2-pseudoproducts can be transformed
into minimal 2-SPP forms that are fully-testable.

The paper is structured as follows: In Section 2 notation and definitions are given. The static fault
models are introduced and basics on SPP networks are reviewed. The testability results for the SAFM and
the CFM are presented in Section 3. In Section 4 we analyze the (negative) results on testability, and show
how it is possible to improve the testability of 2-SPP and SPP networks in the SAFM e in the CFM. Finally,
in Section 5 details on the experimental setup and the practical results are given.

2 Preliminaries

2.1 Fault Models

Let C be any combinational logic circuit over a fixed library. We recall the definitions of the two classical
static fault models: the cellular fault model and the stuck-at fault model.

2.1.1 Cellular Fault Model (CFM)

In CFM [15] it is assumed that a fault modifies the behavior of exactly one node v in a given circuit C and
that the modified behavior is still combinational. Since this fault can be detected by observing the incorrect
output values of v for one suitable input combination, it suffices to test for faults of the following kind:

Definition 1 A cellular fault in C is a tuple (v, I,X/Y), where v is the faulty node (= fault location), I is
an input to v for which v does not behave correctly, and X (Y) is the output of the correct (faulty) node on
input I.

2.1.2 Stuck-at Fault Model (SAFM)

A fault in the SAFM [3] causes exactly one input or output pin of a node in C to have a fixed constant value
(0 or 1) independently of the values applied to the primary inputs of the circuit. In the following we simply
speak of stuck-at-i (s-a-i) faults.

2.1.3 Definition and Notation for SAFM and CFM

We finish the discussion of CFM and SAFM with some general definitions and remarks on the relation
between the two fault models. For this, let C be a circuit and FM a fault model as defined above.

Definition 2 An input t to C is a test for a fault F in FM iff the primary output values of C on applying
t in the presence of F are different from the output values of C in the fault free case.

Example 1 Consider the circuit in Figure 1. A s-a-0 fault at the output of the gate (x1 ⊕ x2) can be tested
by setting inputs x1, x3, and x4 to 1 and x2 to 0. With the s-a-0 fault at the output of the gate (x1 ⊕ x2)
the network returns 0, while it should return 1.

Now suppose that the upper EXOR gate is faulty in the CFM and outputs x2 instead of (x1 ⊕ x2). Even
this fault can be tested by setting x1, x3, and x4 to 1 and x2 to 0.

The goal of any test pattern generation process is a complete test set for the circuit under test in the
considered fault model FM, i.e. a test set that contains a test for each testable fault. It easily follows from
the definitions that, given a circuit C, a complete test set in CFM is also complete in SAFM. Thus, the
cellular fault model is stronger than the stuck-at fault model.

3

The construction of complete test sets requires the determination of the faults which are not testable (=
redundant), even though it is easy to see that in general the detection of redundancies is a coNP-complete
problem. Redundancies have further unpleasant properties: they may invalidate tests for testable faults and
often correspond to locations of the circuit where area is wasted [3]. For this, synthesis procedures which
result in non-redundant circuits are desirable. A node v in C is called fully testable, if there does not exist
a redundant fault with fault location v. If all nodes in C are fully testable, then C is called fully testable.

2.2 2-SPP Networks

In this section we recall some basic definitions from [4, 5, 6].
In a Boolean space {0, 1}n described by n variables x1, x2, . . ., xn, a 2-EXOR factor is an EXOR with

at most 2 variables, one of which possibly complemented (an EXOR with just one literal corresponds to the
literal itself). Given two Boolean variables x1, x2, all the possible 2-EXOR factors are essentially x1, x1, x2,
x2, (x1 ⊕ x2), and (x1 ⊕ x2) (in fact, x1 ⊕ x2 = x1 ⊕ x2, and x1 ⊕ x2 = x1 ⊕ x2).

Definition 3 A 2-pseudoproduct is a product of 2-EXOR factors; and a 2-SPP form is a sum of 2-
pseudoproducts.

For example, x2x3x4 + x1(x3 ⊕ x4) + (x1 ⊕ x2)(x1 ⊕ x3)x4 is a 2-SPP form. A 2-pseudoproduct P of
a Boolean function f is prime iff no other 2-pseudoproduct P ′ of f exists such that P ⊆ P ′. Observe
that, unlike products, P ′ is not always obtained from P by deleting one or more factors. For example, the
2-pseudoproduct P = (x1⊕x2)(x1⊕x3)(x1⊕x4) is contained, among others, not only in (x1⊕x3)(x1⊕x4),
but also in (x2 ⊕ x3)(x1 ⊕ x4) and (x2 ⊕ x3)(x2 ⊕ x4).

Definition 4 A subset of {0, 1}n whose characteristic function can be represented as a 2-pseudoproduct is
a 2-pseudocube.

2-pseudocubes generalize the concept of cubes. A SOP form is a particular 2-SPP form where each EXOR
factor contains only one literal.

In the space {0, 1}n the number of different 2-EXOR factors with exactly 2 literals is 2 ·
(
n
2

)
= n(n− 1).

Thus in the worst case, 2-SPP forms require a quadratic number of different 2-EXOR gates.
The 2-SPP synthesis problem can be stated as: given a set of points in the Boolean space {0, 1}n, find its

minimal cover composed of 2-pseudocubes, where a minimal cover is represented by a sum of 2-pseudoproducts
with a minimal number of literals or with a minimal number of 2-pseudoproducts.

Example 2 For the function f represented by the Karnaugh map in Figure 1, the following 2-SPP cover
is a minimal expression with respect to 2-pseudoproducts: (x1 ⊕ x2)x3x4 + x1(x3 ⊕ x4). The 2-SPP circuit
representation is on the right side of the figure. On the other hand, a 2-SPP form minimal with respect to the
number of literals is x2x3x4 +x1(x3⊕x4). Finally, a minimal SOP form of such function is x2x3x4 +x1x3x4

+ x1x3x4.

We can observe that a 2-pseudoproduct corresponds to a system of linear equations, and a 2-pseudocube
corresponds to the set of solutions of such a system.

Example 3 The 2-pseudoproduct

x2 · (x1 ⊕ x3) · (x3 ⊕ x5) · x6 · (x7 ⊕ x8)

4

x3

x4

00

01

11

10

 00 01 11 10

11 0

0

0 00

0

0

1 0 1 0

0

x1 x2

x3 x4

x1

x4

x3

0

1

x1

x2

Figure 1: Karnaugh map of function f with a 2-SPP cover (x1⊕x2)x3x4 + x1(x3⊕x4), minimal with respect to the

number of 2-pseudoproducts, and the corresponding 2-SPP circuit representation.

in {0, 1}9 corresponds to the system

x2 = 1
x1 ⊕ x3 = 1
x3 ⊕ x5 = 1

x6 = 1
x7 ⊕ x8 = 1

=



x2 = 1
x1 ⊕ x3 = 1
x3 ⊕ x5 = 0

x6 = 0
x7 ⊕ x8 = 1

When the 2-pseudocube is actually a cube, the system has only one variable in each equation.
A 2-pseudocube can be represented with different 2-pseudoproducts corresponding to different linear

systems. For example, the three 2-pseudoproducts x1 ·x1 ·(x2⊕x3)·(x2⊕x4), x1 ·(x2⊕x3)·(x2⊕x4)·(x3⊕x4),
and x1 · (x2 ⊕ x3) · (x2 ⊕ x4) represent the same set of points (i.e., 2-pseudocube): {1011, 1100}. Of course
the most convenient representation is the third one. The corresponding linear systems are:

x1 = 1
x1 = 1

x2 ⊕ x3 = 1
x2 ⊕ x4 = 1

=


x1 = 1

x2 ⊕ x3 = 1
x2 ⊕ x4 = 1
x3 ⊕ x4 = 0

=


x1 = 1

x2 ⊕ x3 = 1
x2 ⊕ x4 = 1

Observe that only the third system has maximum rank, i.e. its equations are linearly independent,
and indeed it corresponds to the smaller 2-pseudoproduct. Therefore minimal 2-SPP forms are sums of
2-pseudoproducts whose systems have maximum rank.

In [6] a 2-SPP minimization algorithm is proposed. As in the Quine-McCluskey approach the generation
of prime 2-pseudoproducts is performed in steps by successive unions of 2-pseudoproducts. A minimal 2-SPP
form is generated by choosing a minimal subset of prime 2-pseudoproducts that covers the original function
(this is the classical set-covering step of Quine-McCluskey optimization).

The Sum of Pseudoproducts (or SPP) forms are a direct generalization of 2-SPP expressions, where the
EXOR factors can have an unbounded number of literals. SPP networks were introduced in [19] and studied
in [2, 4, 5, 8, 17]. An SPP form consists of an OR of pseudoproducts, where a pseudoproduct is the AND
of EXOR factors. As a limit case each EXOR factor reduces to a single literal, then SOP and SPP forms
coincide. For example the function x2(x1 ⊕ x3 ⊕ x4 ⊕ x5)(x1 ⊕ x6) + x2(x1 ⊕ x3 ⊕ x4) is an SPP form, but
it is not a 2-SPP from.

An EXOR factor is a single literal, or a string of different literals connected by EXORs. By some known
properties of EXOR gates we represent always EXOR factors with at most one complemented variable
(conventionally, the variable of higher index). For example x1 ⊕ x2 ⊕ x4 ⊕ x5 = x1 ⊕ x2 ⊕ x4 ⊕ x5 and
x1 ⊕ x2 ⊕ x3 ⊕ x5 = x1 ⊕ x2 ⊕ x3 ⊕ x5.

5

A product P of EXOR factors is a pseudoproduct of the Boolean function f if P ⊆ f . A pseudoproduct
P of f is prime if no other pseudoproduct P ′ of f exists such that P ⊆ P ′. A pseudoproduct is the
characteristic function of a set of points denoted pseudocube. Similarly to the 2-SPP minimization problem,
the SPP minimization problem can be stated as follows: “Given a Boolean function f , the SPP minimization
problem is the problem of finding a sum of pseudoproducts with minimum number of factors or literals that
is a characteristic function for f”.

In summary, in the SPP framework pseudocubes and pseudoproducts play the same role of 2-pseudocubes
and 2-pseudoproducts in the 2-SPP synthesis.

Usually SPP and 2-SPP networks are considered three-level-logic networks, in fact these forms have three
levels of logic gates (EXOR, AND, OR). In some technologies (e.g., CMOS) EXOR gates are expensive, and
are reduced to an OR of AND gates, e.g., x ⊕ y = xy + xy. Therefore, in this case, we use a cost function
where a k-input EXOR gate costs 4(k − 1), and k-input OR/AND gates cost k. This cost corresponds to
the CMOS cost described in [13]. On the other hand, if we consider FPGA [20] technologies, EXORs with
a bounded number of literals are directly implemented. In [13] a different cost function is proposed for the
FPGA realization of the networks, where the cost of k-input EXOR gates is, in general, the same of k-input
AND/OR gates.

3 Testability

In this section we study the testability of 2-SPP and SPP networks under the SAFM and the more general
CFM.

3.1 Testability in the SAFM

As observed in Section 2.2, there exist two different notions of cost function for the minimization of 2-SPP
(SPP) forms:

1. The cost function is the total number of 2-pseudoproducts (pseudoproducts) in the form.

2. The cost function is the total number of literals in the form.

In both cases, the minimal forms are prime and irredundant. The full testability of 2-SPP and SPP forms
is guaranteed only in the second case, as proved below, while forms minimized with respect to the number
of pseudoproducts may contain redundancies.

3.1.1 2-SPP Networks

We first consider 2-SPP forms minimal w.r.t. the number of 2-pseudoproducts.

Theorem 1 2-SPP forms minimal with respect to the number of 2-pseudoproducts are not fully testable.

Proof. We provide a counter-example. Consider the function f = {0101, 0111, 1001, 1010, 1101, 1110}.
There are three prime 2-pseudoproducts for f : (x1 ⊕ x2)(x3 ⊕ x4), x2(x3 ⊕ x4), and x1(x3 ⊕ x4). The
sum of any couple of them provides a 2-SPP form, prime and irredundant, minimal w.r.t. the number of
2-pseudoproducts.

Let us choose the form f = (x1 ⊕ x2)(x3 ⊕ x4)+ x2(x3 ⊕ x4). Suppose that there is a s-a-0 at the input
x2 of the gate (x1 ⊕ x2). In this case the output of the 2-pseudoproduct (x1 ⊕ x2)(x3 ⊕ x4) is identical to
the output of x1(x3 ⊕ x4). Therefore the faulty network is equivalent to x1(x3 ⊕ x4) + x2(x3 ⊕ x4), that is
exactly the original function f .

6

We now consider 2-SPP forms minimal w.r.t. the number of literals. We first need a preliminary result.
Recall that 2-SPP networks are composed of three levels of logic: a level of 2-EXORs whose inputs are the
variables; a level of ANDs whose inputs are the outputs of the EXOR layer; and an OR of the outputs of
the AND layer.

Lemma 1 All possible values can be applied to the inputs of the AND layer of a minimal 2-SPP network.

Proof. Recall that a 2-pseudoproduct can be seen as a linear system. In a minimal 2-SPP form each
2-pseudoproduct contains a number of 2-EXOR factors equal to the rank of its system. In other words the
equations in the corresponding system are linearly independent. This means that the outputs of the EXOR
gates are independent, i.e., the inputs to the AND layer have all the possible values.

We can now prove the full testability of minimal 2-SPP networks.

Theorem 2 2-SPP forms minimal with respect to the number of literals are fully testable.

Proof. Since 2-SPP forms are prime and irredundant, the proof of the full testability for AND and OR
gates is the same as for SOP forms. In fact, as proved in Lemma 1, the inputs to the AND gates are directly
controllable, i.e., all possible values can be applied. Then we are left only with the case of a s-a-fault at
inputs of EXOR gates. We prove by contradiction that any fault can be tested.

Let (xi ⊕ xj) · p + s be a representation of f in 2-SPP form minimal w.r.t the number of literals, where
p is a 2-pseudoproduct and s is the rest of the form.

Let us consider the case xi ≡ 0, i.e., s-a-0 in xi. Then the network computes the faulty function
fF = xj · p + s. By contradiction suppose that fF ≡ f , then

xj · p + s ≡ (xi ⊕ xj) · p + s

xjxi · p + xjxi · p + s ≡ xjxi · p + xjxi · p + s

xjxi · p + s ≡ xjxi · p + s .

Since the 2-pseudocubes represented by the 2-pseudoproducts xjxi ·p and xjxi ·p have an empty intersection,
the last equality implies that they must be both covered by s, and this implies that s covers xi ·p. Therefore
f contains (xi ⊕ xj) · p and xi · p. We now observe that

xi · p + (xi ⊕ xj) · p = xi · p + xj · p .

In fact we have

xi · p + (xi ⊕ xj) · p = xjxi · p + xjxi · p + xjxi · p
= xjxi · p + xjxi · p + xjxi · p + xjxi · p
= xi · p + xj · p .

Therefore we reach a contradiction to the minimality w.r.t. the number of literals of the 2-SPP form for f .
The minimal 2-SPP form for f would be xj · p + s instead of (xi ⊕ xj) · p + s.

The case of negated variables is identical. An analogous proof holds for a s-a-1 fault.

3.1.2 SPP Networks

SPP networks have an unbounded number of literals in the EXOR gates. If we consider forms minimal
w.r.t. the number of pseudoproducts, then we have the same result as for 2-SPP networks, since the counter-
example given in the proof of Theorem 1 still holds.

Consider now SPP forms minimal w.r.t. the number of literals. The result is analogous to the one for
2-SPP forms:

7

Theorem 3 SPP forms minimal with respect to the number of literals are fully testable.

Proof. Following the proof for 2-SPP forms we now have to prove the testability of general EXOR gates.
Let (xi ⊕ h) · p + s be a representation of f in SPP form minimal w.r.t the number of literals, where h is an
EXOR factor, not including xi, p is a pseudoproduct and s is the rest of the minimal SPP form.

Let us consider the case xi ≡ 0, i.e. s-a-0 in xi. Then the network computes the faulty function fF =
h · p + s. By contradiction suppose that fF ≡ f , then

h · p + s ≡ (xi ⊕ h) · p + s

hxi · p + hxi · p + s ≡ hxi · p + hxi · p + s

hxi · p + s ≡ hxi · p + s .

Since the pseudocubes represented by the pseudoproducts hxi · p and hxi · p have an empty intersection, the
last equality implies that they must be both covered by s, and this implies that s covers xi · p. Therefore f

contains (xi ⊕ h) · p and xi · p. We now observe that

xi · p + (xi ⊕ h) · p = xi · p + h · p .

In fact we have

xi · p + (xi ⊕ h) · p = hxi · p + hxi · p + hxi · p
= hxi · p + hxi · p + hxi · p + hxi · p
= xi · p + h · p .

Therefore we reach a contradiction to the minimality w.r.t. the number of literals of the SPP form for f .
Indeed a minimal form for f would be h · p + s instead of (xi ⊕ h) · p + s. An analogous proof holds for the
s-a-1 fault.

However, in practice the SPP networks are defined once a variable ordering is fixed. In this case the
above theorem, which refers to SPP forms minimal with respect to any possible variable ordering, does not
hold any more. Moreover, as shown below, the SPP forms minimal w.r.t. a fixed variable ordering are no
longer fully testable.

Let us consider minimal SPP forms depending on a variable ordering (for more details on SPP networks,
see [4, 5, 19]). For example, consider the Boolean function f = {0011, 0100, 1000, 1111}, and the variable
ordering o = x1 < x2 < x3 < x4. The function f is indeed a pseudocube, and its minimal SPP network,
w.r.t. the variable ordering o, is (x1 ⊕ x2 ⊕ x3)(x1 ⊕ x2 ⊕ x4). Meanwhile if we choose the variable ordering
x3 < x1 < x2 < x4, then a minimal SPP form is (x3 ⊕ x1 ⊕ x2)(x3 ⊕ x4), which contains less literals than
the former form. In the case of 2-SPP networks, the number of literals in a minimal form is independent of
the variable ordering (see [6] for more details); for this reason the testability theorem holds in any case.

If we fix an ordering, then the proof of testability given above cannot be applied anymore, as the following
counter-example shows: Consider the function f = {00011, 00100, 00110, 01001, 01011, 01110, 10001, 10011,

10110, 11011, 11100, 11110}. Once the variable ordering o = x1 < x2 < x3 < x4 is fixed, there are eleven
prime pseudoproducts for f . A minimal form for f in the variable ordering o is:

f = (x1 ⊕ x2 ⊕ x3 ⊕ x4)(x3 ⊕ x5) + x4(x3 ⊕ x5) .

Suppose that there is a s-a-0 at the input x4 of the gate (x1 ⊕ x2 ⊕ x3 ⊕ x4). In this case the faulty function
is:

fF = (x1 ⊕ x2 ⊕ x3)(x3 ⊕ x5) + x4(x3 ⊕ x5) .

It is easy to verify that f ≡ fF , but the pseudoproduct pF = (x1⊕x2⊕x3)(x3⊕x5) is not represented in the
order o. Therefore it is not in the set of eleven prime pseudoproducts used to form the minimal expression.

8

In this case the fault cannot be detected because f is indeed in minimal form w.r.t. the variable ordering o

and f ≡ fF . Of course, if we do not fix a variable ordering then

(x1 ⊕ x2 ⊕ x3 ⊕ x4)(x3 ⊕ x5) + x4(x3 ⊕ x5)

is not a minimal form for f .
In summary, we can formally state the following

Theorem 4 SPP forms minimal with respect to the number of literals in a fixed variable ordering are not
fully testable.

3.2 Testability in the CFM

As we have seen in Section 2.1, the CFM is a generalization of the SAFM. In this section we investigate the
testability of 2-SPP networks when cellular faults are considered. Since 2-SPP networks consist of a SOP
network with an additional level of EXORs, we first review some results concerning testability of the SOP
networks.

3.2.1 SOP Networks

We consider separately all gates in a SOP network, i.e. NOT, AND and OR.

NOT gates These gates are always testable:

Lemma 2 A cellular fault at a NOT gate just before the AND layer is always testable.

Proof. A faulty NOT gate can compute one of 3 different functions; two of them are constant functions
and the testability follows from the stuck-at fault result.

We are left with the case in which the gate instead of complementing its input variable, outputs the
variable itself.

Let xi be the input variable of the faulty NOT gate, and let f = xi · p + s be a minimal SOP form for
f , where p is a product and s is the rest of the SOP form. The gate that should compute xi computes
xi and the resulting faulty function is fF = xi · p + s.

Note that if two functions are equivalent, OR-ing these functions gives the same function again. If the
fault is not testable, then f ≡ fF and their OR gives f . Let us compute f + fF :

f + fF = xi · p + xi · p + s = p + s 6≡ f ,

since f is in minimal form.

AND gates AND gates are not always testable in the CFM, although they are always testable in the
SAFM.

Lemma 3 Let f = x1x2 · · ·xk + s be a minimal SOP form, where s is a sum of products. The faulty
AND gate computes a function g(x1, x2, . . . , xk) and g 6≡ x1x2 · · ·xk. We have:

1. If a minimal SOP form for g contains x1x2 · · ·xk as a prime implicant, i.e. the faulty function is
fF = x1x2 · · ·xk + s′ + s, then the function is testable iff s does not cover s′.

2. Otherwise f is testable.

9

Proof.

1. (⇒) We show that if s covers s′, then f is not testable. Observe that if s covers s′, we have
s + s′ = s, therefore

fF = x1x2 · · ·xk + s′ + s = x1x2 · · ·xk + s = f .

(⇐) We show that if s′ is not covered by s, then f is testable. Note that if s does not cover
s′, then there exists a subcube c in the variables x1, . . . , xk such that s′ covers c, s does
not cover c, and c does not cover x1x2 · · ·xk because of the minimality of the SOP form
g = x1x2 · · ·xk + s′. Therefore there exists a point of c where fF takes the value 1, while f

is false.

2. Let fF = s′ + s, where s′ covers x1x2 · · ·xk, but x1x2 · · ·xk is not a prime implicant of s′. By
contradiction, if f ≡ fF , we have that s′ \ {x1x2 · · ·xk} is covered by s. Since x1x2 · · ·xk is
covered by s′, there must exist a cube q, prime for s′, such that s covers q \ {x1x2 · · ·xk}. But
then x1x2 · · ·xk cannot be in a minimal SOP form for f since it is not prime.

OR gate OR gates are not always testable. For an intuition of this fact, consider a minimal SOP form
of a function f . Since the SOP form is minimal, the number of products that cover a single point is
usually small. This implies that rarely many products are simultaneously equal to 1. In other words,
the input set of the final OR gate in the network is frequently a proper subset of {0, 1}k, where k is
the number of products in input to the OR. If the OR gate is faulty only on the inputs that do not
occur in its input set, the gate is not testable.

For example, consider the function f = x1x2 + x1x2. For this function we can never have x1x2 =
x1x2 = 1. Therefore the input 11 does not occur at the OR gate. If the gate is faulty and computes
an EXOR instead of an OR, we cannot observe the fault. Indeed the behavior of the gates OR and
EXOR differs only on the input 11.

We summarize the result on SOP testability in the cellular fault model in the following

Theorem 5 SOP networks are not fully testable in the CFM.

3.2.2 2-SPP Networks

We now study the testability of 2-SPP forms, and consider only forms minimal with respect to the number
of literals.

Recall that the EXOR level of a 2-SPP network is followed by a SOP. This SOP receives as inputs all
possible 0 and 1 combinations. Since we have already studied the testability of the SOP forms, it is now
sufficient to consider the EXOR gates only.

EXOR gates We show below that EXOR gates are not always testable.

A faulty 2-EXOR gate can compute one out of 15 different functions, which can be classified w.r.t. testa-
bility in 6 classes (4 testable and 2 possibly non-testable).

Let f = (xi ⊕ xj) · p + s, where p is a 2-pseudoproduct and s is a 2-SPP form. The gate that should
compute xi ⊕ xj computes another function g over xi and xj , and fF = g · p + s.

Testable classes

1. g is a constant function: The testability follows from the result for stuck-at faults.

10

2. g = xixj or g = xixj : The testability follows from the fact that a redundancy would imply that
(xi ⊕ xj) · p is covered by s, in contradiction to the minimality of the SPP for f .

3. g = xi⊕xj , or g = xi +xj , or g = xi +xj : The testability follows from the fact that a redundancy
would imply that (xi ⊕ xj) · p is covered by s, and therefore p would be an implicant of f , in
contradiction to the primality of (xi ⊕ xj) · p.

4. g = xi, or g = xj , or g = xi or g = xj : The testability follows from the fact that a redundancy
would imply that s covers xjp, xip, xjp, xip, respectively, in contradiction to the minimality of
the SPP for f .

Non-testable classes

5. g = xixj or g = xixj : The fault g = xixj (resp. g = xixj) is testable iff xixj · p (resp. xixj · p) is
not covered by s.

6. g = xi + xj or g = xi + xj : The fault g = xi + xj (resp. g = xi + xj) is testable iff xixj · p
(resp. xixj · p) is not covered by s.

We now give a formal proof for the above statements.

Lemma 4 The faulty 2-EXOR gates in classes 1, 2, 3, 4 are testable, and the faulty 2-EXOR gates
in classes 5 and 6 can be non-testable.

Proof. We show the testability or non-testability of faulty gates in each of the above classes.

1. g is a constant function, then the testability follows from the result for stuck-at faults.

2. Let us consider the case g = xixj . By contradiction suppose that f ≡ fF , then

xixj · p + s ≡ (xi ⊕ xj) · p + s

xixj · p + s ≡ xixj · p + xixj · p + s .

Since xixj · p and xixj · p have an empty intersection, as well as xixj · p and xixj · p, s must cover
xixj · p + xixj · p = (xi ⊕ xj) · p, in contradiction to the minimality of the SPP form of f .

An analogous proof holds for the case g = xixj .

3. Let us consider the case g = xi + xj . By contradiction suppose that f ≡ fF , then

xi · p + xj · p + s ≡ (xi ⊕ xj) · p + s

xixj · p + xixj · p + xixj · p + s ≡ xixj · p + xixj · p + s

xixj · p + xixj · p + s ≡ xixj · p + s .

Since xixj · p and xixj · p are disjoint, as well as xixj · p and xixj · p, xixj · p + xixj · p must be
covered by s, and this implies that s covers (xi ⊕ xj) · p. We know that a minimal SPP form for
f contains (xi ⊕ xj) · p, therefore p = (xi ⊕ xj) · p + (xi ⊕ xj) · p is a 2-pseudoproduct of f , in
contradiction to the primality of the 2-pseudoproduct (xi ⊕ xj) · p.

Analogous proofs hold for the cases g = xi + xj and g = xi ⊕ xj .

4. Let us consider the case g = xi. By contradiction suppose that f ≡ fF , then

xi · p + s ≡ (xi ⊕ xj) · p + s

xixj · p + xixj · p + s ≡ xixj · p + xixj · p + s

xixj · p + s ≡ xixj · p + s .

11

Since xixj · p and xixj · p are disjoint, s must cover the 2-pseudoproducts xixj · p and xixj · p, and
this implies that s covers xj · p. Therefore f contains (xi ⊕ xj) · p and xj · p. We now show that
xj · p + (xi ⊕ xj) · p = xi · p + xj · p. In fact we have

xj · p + (xi ⊕ xj) · p = xixj · p + xixj · p + xixj · p = xj · p + xi · p .

Therefore we reach a contradiction to the minimality (w.r.t. the number of literals) of the 2-SPP
form for f .

Analogous proofs hold for all the other cases.

5. Let us consider the case g = xixj . The function f is non-testable if and only if f ≡ fF . Therefore
we have that xixj · p + s ≡ xixj · p + xixj · p + s, which is equivalent to s ≡ xixj · p + s. This
finally means that xixj · p is covered by s.

An analogous proof holds for the case g = xixj .

6. Let us consider the case g = xi+xj . The function f is non-testable if and only if f ≡ fF . Therefore
we have that xi ·p+xj ·p+s ≡ xixj ·p+xixj ·p+s, which is equivalent to xixj+xixj ·p+xixj ·p+s ≡
xixj · p + xixj · p + s and then to xixj · p + s ≡ s. This finally means that xixj · p is covered by s.

An analogous proof holds for the case g = xi + xj .

We summarize the results on 2-SPP testability in the cellular fault model in the following

Theorem 6 2-SPP networks are not fully testable in the CFM.

4 Improving the Testability of 2-SPP and SPP Networks

We have seen in the previous sections that 2-SPP networks minimal with respect to the number of 2-
pseudoproducts, and in general SPP networks, are not fully testable in the SAFM. Moreover, 2-SPP and
SPP networks, minimal with respect to the number of literals, are not testable in the CFM. We now exploit
these results in order to understand the reasons why certain networks may contain redundancies, and to
consequently improve their testability. As we will see, it is possible to identify some structural properties of
the covers that guarantee their full testability in the SAFM, and the testability of the EXOR gates in the
CFM. In summary, in this section we will show how to transform non-testable-EXOR gates into testable
gates.

4.1 SAF Model

4.1.1 2-SPP Networks Minimal w.r.t. the Number of 2-Pseudoproducts

We show how to transform a minimal 2-SPP network into an equivalent fully testable network, still minimal
with respect to the number of 2-pseudoproducts.

Let f be a Boolean function and C be a 2-SPP covering for f , minimal with respect to the number of
2-pseudoproducts. Our main idea is that of changing C in such a way that the deletion of any literal in an
EXOR factor (operation equivalent to a s-a-0 or a s-a-1 at inputs to an EXOR gate) changes the function.

For any 2-pseudoproduct (xi ⊕ xj)p, where xi and xj are literals, and p is a 2-pseudoproduct, consider
the function g representing the cover C \ {(xi ⊕ xj)p}. Now suppose that the function g covers xip. Then
we can substitute (xi ⊕ xj)p with xjp in C, without changing the covered function f . In fact, as we have
already observed in the proof of Theorem 2, xip + (xi ⊕ xj)p = xip + xjp.

12

x1 x2

x3 x4

00

01

11

10

00 01 11 10

1 0

1

1 1

1 1

1

0 0

0

0

00

0

0

x1 x2

x3 x4

00

01

11

10

00 01 11 10

1 0

1

1 1

1 1

1

0 0

0

0

00

0

0

Figure 2: On the left: the Karnaugh map of a function f with a 2-SPP cover (x1 ⊕ x4)x3 + x1x4 + (x1 ⊕ x2)x3x4,

minimal with respect to the number of 2-pseudoproducts, but non-fully testable. On the right: the Karnaugh map

of the same function with the corresponding 2-SPP cover (x1 ⊕ x4)x3 + x1x4 + x2x3x4, still minimal with respect to

the number of 2-pseudoproducts, but fully testable.

Suppose that we have removed all the non-testable EXORs from xip. The new 2-pseudoproduct xip

could not be fully testable since it could be not prime (primality is essential to prove the testability of AND
gates.) We can replace xip with a 2-pseudoproduct q obtained from xip removing the maximal number of
factors keeping q in f . It is easy to verify that the EXOR and AND gates of q are now fully testable.

Otherwise, if the function g does not cover xip, we can check whether it covers one of the following
2-pseudoproducts: xjp, xip, or xjp, and we can modify the cover C replacing (xi ⊕ xj)p with (the maximal
2-pseudoproduct obtained deleting factors from) xip, or xjp, or xip, respectively, without changing f , as it
can be easily verified.

Observe that the overall number of 2-pseudoproducts in C do not change after such operation. Indeed
we replace, if necessary, a 2-pseudoproduct with just another one.

Repeating such operation for any 2-pseudoproduct, we can transform the cover C into an equivalent cover
C ′, which contains the same number of 2-pseudoproducts and satisfies the following property:

∀ (xi ⊕ xj)p ∈ C ′ ⇒ xip 6⊆ g and xjp 6⊆ g and xip 6⊆ g and xjp 6⊆ g , (1)

where xi and xj are literals, p is a 2-pseudoproduct, and g is the function representing the cover C ′ \ {(xi ⊕
xj)p}.

Note that a 2-SPP cover minimal with respect to the number of literals always satisfies Property 1.
Indeed, the new cover C ′ has a smaller number of literals than C.

Example 4 Consider the function f represented in the Karnaugh map in Figure 2 and the cover C repre-
sented on the left side: C = (x1 ⊕ x4)x3 + x1x4 + (x1 ⊕ x2)x3x4. First, let us consider the 2-pseudoproduct
(x1 ⊕ x4)x3. According to the previous observations, it is fully testable since it satisfies Property 1.

Consider now the 2-pseudoproduct (x1 ⊕ x2)x3x4, we can observe that it is not fully-testable. In fact,
x1x3x4 is covered by C \ {(x1 ⊕ x2)x3x4} = (x1 ⊕ x4)x3 + x1x4, in particular by the product x1x4, thus
Property 1 is not satisfied. In other words a s-a-0 of x2 in (x1⊕ x2)x3x4 would produce a non-testable fault.

We can now replace the 2-pseudocube (x1⊕x2)x3x4 with x2x3x4 (corresponding to the points 0111, 1111),
as represented in the cover on the right side of the figure. It is easy to verify that x2x3x4 cannot be further
reduced into x3x4, or x2x4, or x2x3. Therefore the new cover (x1 ⊕ x4)x3 + x1x4 + x2x3x4 is minimal with
respect to the number of 2-pseudoproducts, and it is fully testable.

We finally prove that the new cover is fully testable.

Lemma 5 Let f be a Boolean function, and C a 2-SPP cover for f satisfying Property 1. Then C is fully
testable.

13

Proof. We prove by contradiction that any fault in an EXOR gate of C can be tested. Let (xi ⊕ xj)p be
a 2-pseudoproduct in C and s be the rest of the cover in 2-SPP form, i.e., C = (xi ⊕ xj)p + s. We must
consider four cases: a s-a-0 in xi, a s-a-1 in xi, a s-a-0 in xj , and a s-a-1 in xj .

Let us consider the case xi ≡ 0, i.e., s-a-0 in xi. Then the network computes the faulty function
fF = xj · p + s. By contradiction suppose that fF ≡ f , then

xjp + s ≡ (xi ⊕ xj)p + s

xixjp + xixjp + s ≡ xixjp + xixjp + s

xixjp + s ≡ xixjp + s .

Since the two 2-pseudoproducts xixjp and xixjp have an empty intersection, the last equality implies that
s must cover both of them, which in turn implies that s covers xip, in contradiction with the fact that C

satisfies Property 1.
Let us consider the case xi ≡ 1, i.e., s-a-1 in xi. Then the network computes the faulty function

fF = xjp + s. By contradiction suppose that fF ≡ f , then

xjp + s ≡ (xi ⊕ xj)p + s

xixjp + xixjp + s ≡ xixjp + xixjp + s

xixjp + s ≡ xixjp + s .

Since the two 2-pseudoproducts xixjp and xixjp have an empty intersection, the last equality implies that
s must cover both of them, which in turn implies that s covers xip, in contradiction with the fact that C

satisfies Property 1.
The remaining two cases are analogous.

In summary, we can formally state the following

Theorem 7 2-SPP forms minimal with respect to the number of 2-pseudoproducts can always be transformed
into fully testable 2-SPP forms, still minimal with respect to the number of 2-pseudoproducts.

4.1.2 SPP Networks

The technique described in the previous paragraph can be generalized in order to make general SPP networks
fully testable. The idea is still that of making the network sensitive to the deletion of literals in its EXOR
factors.

Let f be a Boolean function, C be an SPP covering for f , minimal with respect to the number of
pseudoproducts, and (xi ⊕ h)p be a pseudoproduct in C, where xi is a literal, h an EXOR factor not
including xi, and p a pseudoproduct. Consider the function g representing the cover C \ {(xi ⊕ h)p}. If g

covers xip (or xip), we replace (xi⊕h)p with (the maximal 2-pseudoproduct obtained deleting factors from)
hp (or hp) in C, without changing the covered function, nor the number of pseudoproducts in the cover.

Repeating the same operation for any other literals in h, for any other EXOR factor in p, and finally for
any other pseudoproduct in the cover, we can transform C into an equivalent cover C ′, which contains the
same number of pseudoproducts and satisfies the following property:

∀ ep ∈ C ′, ∀ xi ∈ e ⇒ xip 6⊆ g and xip 6⊆ g , (2)

where xi is a literal, e is an EXOR factor, and g is the function representing the cover C ′ \ {ep}.
Generalizing the proof of Lemma 5 to this context, it is easy to verify that an SPP cover satisfying

Property 2 is fully testable.
In summary, we can formally state the following

14

Theorem 8 SPP forms minimal with respect to the number of pseudoproducts can always be transformed
into fully testable SPP forms, still minimal with respect to the number of pseudoproducts.

Note that while the minimality is hard to check, the properties guaranteeing the testability of the network
(Properties 1 and 2) can be easily verified.

As a final remark, we can observe that Property 2 can also be exploited in order to make testable SPP
expressions minimal with respect to the number of literals in a fixed variable ordering. Indeed, given such
an SPP expression, we can fix all possible redundancies by changing its pseudoproducts in order to derive a
new expression satisfying Property 2. Observe that the overall size of the new expression, measured by the
number of literals, decreases; anyway this new expression is not represented in the fixed ordering anymore.
This is not a problem since we fix the order of the variables only for decreasing the computational time of
our algorithms.

4.2 CF Model

2-SPP networks minimal with respect to the number of literals, and more in general SPP networks, are not
fully testable in the CFM. This is a consequence of the non-testability of SOP networks in this model, and
of the non-testability of the EXOR gates.

Following the approach described for the SAFM, we describe here how the faulty EXOR gates in a 2-SPP
network can be made testable.

Let f = (xi ⊕ xj) · p + s, where p is a 2-pseudoproduct and s is a 2-SPP form. As we have seen in
Section 3.2.2, if the EXOR gate is faulty, and computes xixj , xixj , xi + xj , or xi + xj , then the fault may
not be testable. More precisely, the fault is not testable if and only if xixj · p, xixj · p, xixj · p, xixj · p,
respectively, are covered by s.

Thus the idea is that of changing the cover C of a function is such a way that the new cover, C ′, satisfies
the following property:

∀ (xi ⊕ xj)p ∈ C ′ ⇒ xixjp, xixjp, xixjp, xixjp 6⊆ g , (3)

where xi and xj are literals, p is a 2-pseudoproduct, and g is the function representing the cover C ′ \ {(xi ⊕
xj)p}.

Note that Property 3 implies Property 1. It is not difficult to verify that the 2-SPP cover C can be
transformed into a 2-SPP cover C ′ satisfying Property 3 in the following way:

• if g covers xixjp, we replace (xi ⊕ xj)p with (the maximal 2-pseudoproduct obtained deleting factors
from) xixjp;

• if g covers xixjp, we replace (xi ⊕ xj)p with (the maximal 2-pseudoproduct obtained deleting factors
from) xixjp;

• if g covers xixjp, we replace (xi ⊕ xj)p with (the maximal 2-pseudoproducts obtained deleting factors
from) xip and xjp;

• if g covers xixjp, we replace (xi ⊕ xj)p with (the maximal 2-pseudoproducts obtained deleting factors
from) xip and xjp.

Observe that in the first two cases the number of 2-pseudoproducts does not change, and the cost in literals
decreases if the 2-pseudoproducts that replace (xi⊕xj)p are reduced in order to maintain the AND-testability;
while in the last two cases, the number of 2-pseudoproducts increases.

15

Table 1: Costs for benchmark functions in 2-SPP, SOP and SPP forms and minimization times

2-SPP SOP SPP
name µ #E time µ′ µ/µ′ time µ′′ #E µ/µ′′ time

9sym 168 18 242.67 588 0.29 5.32 188 30 0.89 147.58
addm4 694 34 50.96 1407 0.49 0.87 * * * *
adr4 105 5 6.69 415 0.25 0.10 118 10 0.89 88.22
clip 402 26 1662.27 769 0.52 0.38 * * * *
dist 471 26 924.10 879 0.54 0.14 636 50 0.74 8196.00
f51m 232 19 64.00 402 0.58 0.23 243 23 0.95 443.00
life 180 16 120.40 756 0.24 0.03 180 16 1.00 262.00
m4 735 28 890.94 1214 0.61 0.67 835 48 0.88 9929.40
max512 620 35 341.24 1032 0.60 0.53 * * * *
mlp4 500 25 339.51 869 0.58 1.62 524 32 0.95 1423.74
newcond 161 11 1485.01 239 0.67 0.01 * * * *
radd 105 5 15.20 415 0.25 0.08 118 10 0.89 144.00
rd53 64 6 0.10 175 0.37 0.01 66 7 0.97 0.20
rd73 212 11 24.10 903 0.23 0.03 187 15 1.13 114.00
root 281 21 272.32 376 0.75 0.08 366 31 0.77 1597.70
squar5 101 6 0.42 120 0.84 0.01 112 8 0.90 0.64
xor5 24 2 0.05 96 0.25 0.01 18 1 1.33 0.02
z4 91 6 5.30 311 0.29 0.04 100 10 0.91 6.75

5 Experimental Results

In this section experimental results for the SAFM are reported. The methods described above have been
implemented in C. The experiments have been run on a Pentium III 450MHz CPU with 128 MByte of
main memory. The three-level forms have been optimized using the tools described in [6] and the generated
networks have been written as BLIF files. The correctness of the synthesis process and the testability analysis
have been studied using SIS [23]. The benchmarks are taken from LGSynth93 [27].

To give an impression on the cost savings in comparison to SOPs in a first series of experiments the quality
of SPP forms (optimized by different criteria) is compared to two-level approaches. We count the number
of literals and gates (AND and EXOR) of an expression. In the multi-level context the cost function is the
total number of literals in all gates (see [13, 16]). The problem is that in many technologies EXOR and OR
(or AND) gates have different costs. In [16] the authors consider a 2-input EXOR gate as x⊕y = x ·y +x ·y.
Thus the cost in literals of a 2-input EXOR gate is 4, while the cost of the 2-input OR and AND gates
is 2. This is also proportional to the number of transistors used in the CMOS technology mapping (i.e., 4
transistors for AND/OR gates and 8 transistors for the EXOR gate). More in general, by the associative
property of the EXOR operator, we can always see a k-input EXOR gate as the composition of (k − 1)
2-input EXOR gates. Therefore, we can use a function µ where a k-input EXOR gate costs 4(k − 1), and
k-input OR/AND gates cost k. This cost function corresponds to the CMOS cost described in [13].

The costs and the run times for the minimization algorithms are reported in Table 1. We compare
the costs of minimal 2-SPP, SOP and SPP forms (2-SPP and SPP networks are minimized with respect
to the number of literals in the expressions). In the first column the name of the benchmark is given. In
the next column the costs are given for 2-SPP, SOP and SPP forms. Here, µ is the cost for the 2-SPP

16

Table 2: Number of redundancies

name original 2-SPP SOP SPP

9sym 0 0 0 0
addm4 24 0 0 *
adr4 24 0 0 0
clip 0 0 0 *
dist 0 0 0 0
f51m 56 0 0 0
life 0 0 0 0
m4 22 0 0 3
max512 4 0 0 *
mlp4 24 0 0 2
newcond 0 0 0 *
radd 0 0 0 0
rd53 0 0 0 0
rd73 0 0 0 0
root 0 0 0 1
squar5 12 0 0 1
xor5 0 0 0 0
z4 12 0 0 0

network, while µ′ is the cost for the SOP network. The cost for the SPP network is µ′′. #E is the number
of different EXOR gates in 2-SPP and SPP forms. The run times are given in column time The star *
indicates that the SPP algorithm did not terminate after 172800 seconds (corresponding to 2 CPU days).
The minimization algorithms are designed for exact synthesis of 2-SPP and SPP forms. Indeed the set of
prime 2-pseudoproducts (pseudoproducts) is exactly computed. Since we used some heuristics [14, 24] in
solving the set-covering problem, the numbers of literals in the expressions in Table 1 are upper bounds for
the minimal solutions. We note that 2-SPP and SPP forms are much more compact than the corresponding
SOP expressions, 2-SPP minimization is also faster than SPP minimization with the exceptions of 9sym and
xor5. This is due to the fact that the SPP minimization algorithm takes advantage of some regularities of
functions (see [2]), which cannot be exploited by the 2-SPP synthesis.

For all forms, the number of redundancies under the SAFM is given in Table 2. If SOPs are minimized,
i.e. they are prime and irredundant, the corresponding networks are also fully testable. But compared to
2-SPP forms they are significantly larger in size (see above). As predicted by the theoretical results in
Section 3, we can observe that 2-SPPs are fully testable in the SAFM (see Theorem 2), while SPPs may
contain redundancies. Indeed the redundancies in SPP networks are due to the heuristic used for their
synthesis, and to the fact that the variable ordering in the minimization algorithms is fixed (see Theorem 4).
But also in this case, the number of redundancies is low.

In summary, the experiments show that 2-SPP forms provide a very good compromise between compact
representation, complexity of the minimization process and testability. Beside being more efficient than
SOP regarding number of literals, they are so far the only three-level form that ensures full testability of the
resulting circuit by construction.

17

6 Conclusion

In this paper we studied for the first time the testability of the resulting networks for two static fault models,
i.e. the stuck-at fault model and the cellular fault model. For specific classes, i.e. 2-SPPs and SPPs minimal
w.r.t. the number of literals in any variable ordering, full testability has been proved for the SAFM, while
for other classes counter-examples were provided. Networks that are not fully testable have been studied
in order to improve their testability. In particular, 2-SPP networks minimal with respect to the number of
2-pseudoproducts can be transformed into minimal 2-SPP forms that are fully-testable.

References

[1] M. Abramovici and M. Breuer. Digital Systems Testing and Testable Design. IEEE, 1994.

[2] A. Bernasconi, V. Ciriani, F. Luccio, and L. Pagli. Three-Level Logic Minimization Based on Function
Regularities. IEEE Transactions on CAD, 22(8):1005–1016, 2003.

[3] M. Breuer and A. Friedman. Diagnosis & reliable design of digital systems. Computer Science Press,
1976.

[4] V. Ciriani. Synthesis of SPP Three-Level Logic Networks using Affine Spaces. IEEE Transactions on
CAD, 22(10):1310–1323, 2003.

[5] V. Ciriani. Three-Level Logic Synthesis: Algebraic Approach and Minimization Algorithms. PhD thesis,
Dipartimento di Informatica, University of Pisa, 2003.

[6] V. Ciriani and A. Bernasconi. 2-SPP: a Practical Trade-Off between SP and SPP Synthesis. In 5th
International Workshop on Boolean Problems (IWSBP2002), pages 133–140, 2002.

[7] V. Ciriani, A. Bernasconi, and R. Drechsler. Testability of SPP Three-Level Logic Networks. In IFIP
12-th International Conference on Very Large Scale Integration, (VLSI-SOC), pages 331–336, 2003.

[8] V. Ciriani, F. Luccio, and L. Pagli. Synthesis of Integer Multipliers in Sum of Pseudoproducts Form.
Integration - the VLSI journal, 36(3):103–118.

[9] O. Coudert. Two-Level Logic Minimization: an overview. INTEGRATION, 17:97–140, 1994.

[10] D. Debnath and T. Sasao. Multiple–Valued Minimization to Optimize PLAs with Output EXOR Gates.
In IEEE International Symposium on Multiple-Valued Logic, pages 99–104, 1999.

[11] D. Debnath and Z. Vransic. A Fast Algorithm for OR-AND-OR Synthesis. IEEE Transactions on
Computer Aided Design, 22(9):1166–1176, 2003.

[12] E. Dubrova, D. Miller, and J. Muzio. AOXMIN-MV: A Heuristic Algorithm for AND-OR-XOR Min-
imization. In 4th Int. Workshop on the Applications of the Reed Muller Expansion in circuit Design,
pages 37–54, 1999.

[13] M. Eggerstedt, N. Hendrich, and K. von der Heide. Minimization of Parity-Checked Fault-Secure
AND/EXOR Networks. In IFIP WG 10.2 Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, pages 142–146, 1993.

[14] M. S. Fiorenzo-Catalano and F. Malucelli. Parallel Randomized Heuristics For The Set Covering Prob-
lem. International Journal of Computer Research, 10(4), 2001.

18

[15] A. Friedman. Easily testable iterative systems. IEEE Transactions on Computers, C-22:1061–1064,
19733.

[16] G. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms. Kluwer Academy Publishers,
1996.

[17] R. Ishikawa, T. Hirayama, G. Koda, and K. Shimizu. New Three-Level Boolean Expression Based on
EXOR Gates, journal = IEICE Transactions on Information and Systems, pages = 1214-1222, year =
2004, volume = e87-d, number = 5.

[18] R. Ishikawa, T. Igarashi, T. Hirayama, and K. Shimizu. Pseudocube-based expressions to enhance
testability. In IEEE Asia-Pacific Conference on Circuits and Systems, volume 2, pages 305–310, 2002.

[19] F. Luccio and L. Pagli. On a New Boolean Function with Applications. IEEE Transactions on Com-
puters, 48(3):296–310, 1999.

[20] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli. Architecture of Field-Programmable Gate Arrays.
Proceedings of the IEEE, 81(7):1013–1029, 1993.

[21] T. Sasao. On the Complexity of Three-Level Logic Circuits. In Int. Workshop on Logic Synthesis, 1989.

[22] T. Sasao. AND-EXOR Expressions and their Optimization. In T. Sasao, editor, Logic Synthesis and
Optimization. Kluwer Academic Publisher, 1993.

[23] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan, R. Bray-
ton, and A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit synthesis. Technical report,
University of Berkeley, 1992.

[24] J. Tebboth and R. Daniel. A Tightly Integrated Modelling and Optimisation Library. Annals of
Operations Research, 104:313–333, 2001.

[25] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design. Addison-Wesley Publishing Company,
1993.

[26] T. Williams and K. Parker. Design for Testability - A Survey. IEEE Transactions on Computers,
31(1):2–15, 1982.

[27] S. Yang. Synthesis on Optimization Benchmarks. User guide, Microelectronic Center, 1991. Benchmarks
available at ftp://ftp.sunsite.org.uk/computing/general/espresso.tar.Z.

19

