
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-06-01

SDP Diagonalizations and

Perspective Cuts for a Class

of Nonseparable MIQP

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 3, 56127 Pisa – Italy

frangio@di.unipi.it

Claudio Gentile

Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, C.N.R.

Viale Manzoni 30, 00185 Rome – Italy

gentile@iasi.cnr.it

ADDRESS: via Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

SDP Diagonalizations and Perspective Cuts for a

Class of Nonseparable MIQP

Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

Largo B. Pontecorvo 3, 56127 Pisa – Italy

frangio@di.unipi.it

Claudio Gentile∗

Istituto di Analisi dei Sistemi ed Informatica “Antonio Ruberti”, C.N.R.

Viale Manzoni 30, 00185 Rome – Italy

gentile@iasi.cnr.it

Abstract

Perspective cuts are a computationally effective family of valid
inequalities, belonging to the general family of disjunctive cuts, for
Mixed-Integer Convex NonLinear Programming problems with a spe-
cific structure. The required structure can be forced upon models that
would not originally display it by decomposing the Hessian of the prob-
lem into the sum of two positive semidefinite matrices, a generic and a
diagonal one, so that the latter is “as large as possible”. We compare
two ways for computing the diagonal matrix: an inexpensive approach
requiring a minimum eigenvalue computation and a more costly proce-
dure which require the solution of a SemiDefinite Programming prob-
lem. The latter dramatically outperforms the former at least upon
instances of the Mean-Variance problem in portfolio optimization.

Keywords: Mixed-Integer Quadratic Programs, Valid Inequalities,

SemiDefinite Programming, Portfolio Optimization

∗This author has been partly supported by the UE Marie Curie Research Training

Network no. 504438 ADONET

1

1 Introduction

Perspective cuts are a family of valid inequalities, belonging to the general
family of disjunctive cuts [1], for Mixed-Integer NonLinear Programming
(MINLP) problems which exhibit blocks of the form

min
{

f(x, y) = f(x) + cy : ly ≤ x ≤ uy , y ∈ {0, 1}
}

(1)

where f(x) is (closed) convex. That is, x is a semi-continuous variable whose
domain is the disconnected set 0∪ [l, u] (if 0 /∈ [l, u]), and/or one has a fixed-

charge cost function whereby one pays the fixed cost c whenever x 6= 0 (if
c 6= 0). Actually, the approach can be extended to more general cases where
several x variables depend on the same y and the linking constraints are
different [6], but for the sake of clarity of the present discussion the simpler
form (1) is more appropriate.

Perspective cuts are a way to strengthen the continuous relaxation of (1);
they are obtained by computing the convex envelope of f (the “best” convex
function approximating f) on its domain (0, 0)∪ [l, u]×{1}, which turns out
to be

cof(x, y)=

0 if x = 0 and y = 0
yf(x/y) + cy if x ∈ [l, u] , y∈(0, 1]
+∞ otherwise

.

This function (which is strongly related with a well-known object in convex
analysis, the perspective function of f(x), whence the name of the cuts)
provides a better continuous relaxation to the original problem; this is easily
seen in the quadratic case f(x) = ax2 + bx (a > 0), where one obtains

cof(x, y) = (1/y)ax2 + bx + cy > f(x, y)

for all y ∈ (0, 1) and feasible x. Note that nonlinearity is required for the
approach to have any impact: for a = 0, cof = f .

However, using cof as the objective function instead of f has a serious
drawback, especially in the “simple” quadratic case, in that cof is much
“more nonlinear” than f , and it is nondifferentiable at (0, 0). The interior-
point method of [3] could be used, but efficient implementations of that
approach are not widely available, and have not yet been shown to be com-
petitive with the sophisticated QP solvers available; furthermore, interior-
point methods are less well-suited than simplex-like methods in the context
of enumerative approaches [6], since the latter reoptimize more efficiently.

A possible alternative is to mimic what is done in most NonDifferentiable
Optimization algorithms [5], using a polyhedral approximation of cof as the

2

objective function; this requires characterizing the subdifferential of cof and
using the subgradient inequalities in the epigraphical space of f ((v, x, y)
such that v ≥ f(x, y)). After proper analysis, all this boils down to simple
formulae; in the quadratic case, for instance, the perspective cut obtained
at the feasible (fractional) point (x∗, y∗) is just

v ≥ (2ax̄ + b)x + (c − ax̄2)y (2)

where x̄ = x∗/y∗. This can be seen as an application of the general lift-
and-project approach [1], but it is much easier to implement since there is
no need to set up and solve a large-scale, nonlinearly-constrained separation
problem, and the obtained cuts are global by nature and do not require
lifting. Despite the low dimensionality of the faces that they represent,
perspective cuts have been shown to significanlty improve the efficiency of
enumerative approaches to Mixed-Integer Quadratic Problems (MIQP) with
(many blocks with) structure (1) [6].

Using perspective cuts crucially requires the objective function to be
separable among the blocks of semi-continuous variables; yet, there are ap-
plications, e.g., in Financial Trading and Planning problems [7], which sport
semi-continuous variables and a nonseparable objective function. For these
problems, a general reformulation technique was proposed in [6] which se-
lects “the nonseparable part” of the objective function and moves it to newly
introduced variables, leaving a separable objective function to which per-
spective cuts can then be applied. Different ways exist for selecting how to
“decompose” the nonseparable objective function; in [6] a simple procedure,
based on computing the minimum eigenvalue of the Hessian, was found to
already provide good enough results to prove the worthiness of the approach.
In this paper, we propose a more sophisticated—but still relatively simple
to implement—procedure which requires the solution of a SemiDefinite Pro-
gramming problem, and we report about the impact of using the resulting
approach upon instances of the Mean-Variance problem with minimum and
maximum buy-in thresholds in portfolio optimization. Our results show
that the significantly larger cost of reformulating the instance in a “better”
way dramatically pays off in terms of quality of the obtained lower bounds,
allowing us to routinely solving instances of much larger size than those
solvable (within the same time limit) with the simpler approach.

3

2 The reformulation technique

Assume the following (MIQP) is given

min xT Qx + qx + cy
Ax + By ≥ b
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

(3)

where Q is positive semidefinite (and not diagonal). Perspective cuts (2)
cannot be directly applied to (3), as the quadratic objective function is
nonseparable on the x variables. In [6] a decomposition technique of the
objective function was proposed: select any non-negative diagonal D ∈ R

n×n

such that Q−D still is positive semidefinite, replace xT Qx in the objective
function with xT Dx+ zT (Q−D)z and add contraints enforcing x = z. The
resulting model is

min xT Dx + zT (Q − D)z + qx + cy
Ax + By ≥ b , z = x
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

(4)

Model (4) is directly amenable to application of perspective cuts, and retains
most of the structure of the original problem by just introducing a copy of the
x variables and assigning it all the non-separability in the objective function.
Intuitively, the “larger” D (the “fraction” of the overall objective function
that is properly reflected on the separable costs) is, the more perspective
cuts could be expected to improve the lower bound. As we will see, this is
clearly confirmed by the computational results. Thus, procedures have to
be devised for (efficiently) finding a “large” D.

In the context of the original experiments of [6], aimed at evaluating the
effectiveness and efficiency of perspective cuts in general, a simple rule was
used: computing the minimum eigenvalue λmin of Q and setting D = λminI.
There are many efficient ways for computing the minimum eigenvalue of a
symmetric matrix; for our experiments, we have chosen to just compute all
the eigenvalues of Q using the eig() function of the open-source package
octave 2.1 [4], and then extract the smallest one. We will refer to this as
the Minimum Eigenvalue (ME) approach. More efficient methods for find-
ing the minimum eigenvalue exist, but this is irrelevant for our application
because the time required for this operation is negligible with respect to the
total time of the B&C approach (cf. Table 1). We remark that the ME
approach obviously requires Q to be strictly positive definite (for otherwise
λmin = 0 ⇒ D = 0); although this was the case in all the instances of our

4

test set, there may exist cases of nonseparable (MIQP) with non-full-rank
Hessian matrix, to which the ME approach could not be applied.

More sophisticated techniques allow to find “larger” matrices D. In want
of a better metric, we assumed tr(D)—the sum of the diagonal elements of
D—to be a relevant indicator of the quality of D as a diagonal approximation
of Q. Thus, finding the largest diagonal approximation that still leaves Q−D
positive semidefinite can be cast as the following dual pair of SemiDefinite
Programming (SDP) problems

(PD) max

{

n
∑

i=1

di : Q −

n
∑

i=1

di(eie
T
i) = R , R � 0 , d ≥ 0

}

(DD) min
{

tr(QX11) : xii − xi+n,i+n = 1 i = 1, . . . , n , X � 0
}

where Γ � 0 means that Γ belongs to the cone of symmetric positive semidef-
inite matrices of proper dimension, ei is the i-th vector of the canonical base
of R

n and X11 is the n × n principal submatrix of the 2n × 2n matrix X.
The above dual pair of small-scale SDP problems can be solved by means

of the currently available interior-point SDP codes; for our tests we used the
open-source package csdp 4.8 [2], which proved to be efficient and reliable
and directly delivered the required solution di, i = 1, . . . , n (we remark that
(DD) is the primal problem according to the csdp standards, so di are ac-
tually optimal dual variables). We will refer to this as the SemiDefinite
Programming (SDP) approach. Clearly, the SDP approach is immediately
extended to the case where each of the di variables is given a different (non-
negative) weight to indicate different relevance of having a large quadratic
coefficient for xi in the resulting reformulation; however, up to now no sen-
sible rules have been devised for computing those weights, so for our compu-
tational results we have always used identical (unitary) weights. Also, note
that, unlike ME, the SDP approach can in principle be applied even to cases
where Q is not strictly positive definite, i.e., λmin = 0.

For both SDP and ME, as a further safeguard measure to avoid that
Q − D turs out not to be positive semidefinite due to numerical errors,
we subtracted from D (hence, added to Q − D) a “small” positive definite
matrix of form εI for a suitably chosen “small” ε.

3 Computational results

We have tested the influence of the two procedures ME and SDP on the
overall efficiency of a B&C approach using perspective cuts to nonseparable

5

(MIQP) with semi-continuous variables; in particular, as in [6] we have
applied the approach to instances of the Mean-Variance (MV) model in
portfolio optimization [8], which is as follows.

A set of n risky assets are available; for each asset i = 1, . . . , n, the
expected unitary return µi for the considered time horizon is known. Also,
the n × n variance-covariance matrix Q defined for the assets is available.
Denoting by xi ∈ [0, 1] the fraction of the portfolio value invested in asset i,
any vector x with ex = 1 (e being the vector of all ones) is a feasible al-
location of the available resources over the assets, µx is the corresponding
expected return and xT Qx is a measure of the associated risk (volatility).
Thus, the problem faced by the “rational investor” is that of trading returns
versus risk. With no further constraints, the problem of fixing a desired level
of return ρ and minimizing the associated risk is an easy convex (QP); thus,
one can effectively trace all the risk-return efficient frontier, with a classical
procedure that has been considered the very beginning of rational financial
analysis. However, in many real cases a number of further constraints over
portfolio decisions exist. Typically, minimum and maximum buy-in thresh-

olds li and ui are set on each asset i, turning the problem into the much
harder (MIQP)

min

{

xT Qx

∣

∣

∣

∣

ex = 1 , µx ≥ ρ ,
liyi ≤ xi ≤ uiyi , yi ∈ {0, 1} i = 1, . . . , n

}

. (5)

Further constraints can be easily imposed, such as maximum and minimum
numbers of purchased assets, or fixed purchase costs can be considered;
however, in the following we will stick to the basic formulation (5). This
problem is quite demanding for general-purpose (MIQP) solvers, most likely
due to the fact that it has very few constraints with basically no structure,
so that the classical polyhedral approaches to improve the lower bounds are
ineffective. Also, as shown in Table 2 (column “Cplex”) the root node gaps
of the standard continuous relaxation are huge; as a result, instances with
n = 200 are already practically unsolvable by standard methods.

For our tests, we have generated 10 (MV) instances for each value of
n ∈ {200, 300, 400}. The variance-covariance matrices Q have been gen-
erated using the well-known random generator of [9]. The desired level of
return ρ has been randomly chosen in the interval [0.002, 0.01], and the
minimum and maximum buy-in thresholds li and ui have been randomly
generated in the intervals [0.075, 0.125] and [0.375, 0.425], respectively. The
data required for reproducing the instances is available upon request by the
authors.

6

For our experiments we have implemented a B&C based on perspec-
tive cuts. This is not entirely straightforward, as some of the required
operations—such as changing the quadratic part of the objective function
during the execution of the B&C—are not supported by the API of available
(MIQP) solvers such as Cplex. Furthermore, a number of different algorith-
mic choices, some unique to perspective cuts and some quite standard, have
to made which have an impact on the overall effectiveness of the approach.
However, these issues are mostly irrelevant for the present discussion, since
a preliminary computational investigation showed that the effect of the dif-
ferent implementation choices is basically the same for both diagonalization
procedures ME and SDP; thus, we just followed the guidelines developed
in [6], to which the interested reader is referred for further details upon the
implementation issues of the B&C approach with perspective cuts.

The experiments were performed on a PC with an Opteron 252 processor
and 2Gb RAM, running the Linux Fedora operating system (kernel 2.6.11).
The codes were compiled with gcc 4.0 using aggressive optimizations -O3;
our B&C code uses Cplex 9.1 to solve the continuous relaxations at each
node of the enumeration tree. We also solved, on the same machine, the
same instances with the general-purpose B&C algorithm of Cplex 9.1. For
each code, we set a global time limit of 10000 seconds.

In Table 1 we report some data that describes the average results of
the initialization phase alone on all the instances of each of the three sizes.
For both approaches, column “time” report the time (in seconds) required
for computing D; then, for SDP columns “dmax”, “dmin” and “davg” report
respectively the maximum, minimum and average element of the diagonal
of D, while for ME the column “λmin” reports the minimum eigenvalue (note
that λmin = dmax = dmin = davg for ME). On these instances, SDP finds
diagonal elements of D which range from about 0.97 to about 1.97 times the
minimum eigenvalue, with average 1.47 times; for doing so, it requires over
two orders of magnitude more time than ME.

SDP ME
n dmax dmin davg time λmin time

200 3918 1933 2934 7.24 2001 0.13
300 5910 2905 4392 24.08 2996 0.23
400 7894 3887 5886 44.25 3994 0.39

Table 1: Comparison of SDP and ME initializations

Yet, the longer time is well-spent when one consider the total effective-

7

ness of the B&C approach, as shown in Table 2. For each code and in-
stance, columns “nodes” and “time” report respectively the total number of
explored nodes and the total time (in seconds) for the B&C approach, com-
prised the initialization phase, while columns “r.gap”, “p.gap” and “d.gap”
report respectively the root node gap and the gap of the best primal solution
and the best lower bound attained at the end of the enumerative process
(in percentage); a blank entry corresponds to a gap less than 0.01%—the
optimality tolerance of the B&C—while a “*” in column “p.gap” means that
the algorithm found no feasible solution. We have avoided to report column
“time” for Cplex since it never terminated before the time limit, as well as
columns “p.gap” and “d.gap” for SDP since it solved all the instances to
the required precision.

As already seen in [6], the standard continuous relaxation has a huge
root node gap, usually in the 80-90% range, that is only reduced to the
25-75% range (with the only exception of the “easy” pard400b instance)
within 10000 seconds of the standard B&C. It is worth remarking that,
owing to the extremely simple structure of the feasible set, Cplex only adds
a handful of standard MIP cuts for each instance, so it basically behaves
like a “pure” B&B approach. The same simple structure, however, helps the
standard MIP rounding heuristics of Cplex to attain relatively good primal
solutions (although with several exceptions); in comparison, the relatively
“more complex” structure created by the perspective cuts makes life more
difficult to the rounding heuristics, up to the point that, more often than
not, no primal solution at all is obtained by ME. On the other hand, even
with ME diagonalization perspective cuts close the root node gap to a much
more manageable 5-8%; this allows to solve most of the smallest instances,
but it is not enough for the largest ones.

The SDP diagonalization further reduces the root node gap to around
1.5%, making it possible to solve all the instances of our test bed up to
n = 400. It is worth noting that not all instances are equally difficult, with
over two orders of magnitude of difference in time and node count between
the easiest and the most difficult ones; on the easy ones, solving the SDP
program for computing D takes more than 50% of the total time, but it is
clearly time well-spent.

We remark that in [6] (MV) instances were found quite difficult to solve,
and thereby a heuristic approach had been developed, based on perspec-
tive cuts (and ME initialization), that was often—but not always—capable
of providing reasonably accurate solutions for instances with n up to 300.
A better choice of the diagonalization approach produces an exact B&C
algorithm which is blatantly more efficient than our previous approximate

8

SDP ME Cplex

time nodes r.gap time nodes r.gap p.gap d.gap nodes r.gap p.gap d.gap

pard200a 93 7615 1.26 9537 695228 5.28 11479562 89.23 0.21 54.53

pard200b 13 357 0.97 1145 77509 6.19 5100085 77.82 27.45

pard200c 24 1182 1.62 349 25777 6.07 4404025 77.49 1.07 26.07

pard200d 10 203 0.75 1364 92785 5.31 3863561 81.34 35.04

pard200e 20 1051 0.69 7246 536692 7.51 11801638 89.65 0.14 55.29

pard200f 20 1035 0.89 1745 126090 5.74 11645001 89.14 54.18

pard200g 16 531 0.85 1025 71814 5.65 3985115 83.45 35.95

pard200h 12 343 0.47 10000 679364 8.57 * 1.04 11708754 89.61 55.66

pard200i 153 12167 2.00 2160 177523 5.81 11594165 88.99 53.72

pard200j 1275 105789 1.89 10000 711113 8.61 * 1.83 11605554 89.54 55.73

pard300a 1419 46607 1.55 10000 272460 4.81 * 0.50 5246001 92.61 66.19

pard300b 64 1305 0.46 10000 263120 5.66 * 1.29 2989191 92.76 0.16 67.53

pard300c 184 5501 1.30 10000 284900 5.64 13.31 0.48 2066676 91.55 2.55 62.56

pard300d 214 6857 1.16 10000 251600 5.96 * 1.32 4598355 92.59 65.62

pard300e 133 3465 0.96 10000 244400 5.18 * 0.57 4739540 92.55 66.06

pard300f 1486 49851 1.61 10000 266789 5.90 * 1.27 5037373 92.64 0.04 66.10

pard300g 48 758 1.14 1091 29957 4.81 1864199 87.94 54.14

pard300h 3293 114694 2.05 10000 275115 5.48 2.09 1.07 5044579 92.67 0.07 66.60

pard300i 353 10624 1.20 10000 259493 6.12 5.46 1.79 2189540 92.18 0.85 66.26

pard300j 2354 75672 1.48 10000 273821 5.89 * 1.02 5077818 92.60 0.23 66.84

pard400a 1577 321082 1.47 10000 122184 6.42 * 3.07 1583601 94.45 0.88 77.01

pard400b 129 660 1.89 228 3516 6.07 918151 63.51 6.48

pard400c 60 341 0.49 10000 147532 6.97 0.29 1080227 86.81 50.70

pard400d 1614 29680 1.23 10000 141442 5.95 * 2.10 1565201 94.35 7.46 75.29

pard400e 9689 169024 1.74 10000 119398 6.02 * 2.16 2838399 94.42 75.69

pard400f 257 1889 1.69 5396 48868 8.09 1405341 80.29 0.19 32.93

pard400g 3617 57793 1.42 10000 140572 5.51 * 1.35 2828635 94.37 0.26 75.84

pard400h 2327 36860 2.07 10000 154412 5.10 2.33 1.02 1108111 93.60 1.69 70.73

pard400i 123 1424 0.51 10000 138389 4.96 * 0.61 2787859 94.40 75.43

pard400j 7238 116128 1.76 10000 130460 6.40 * 1.93 2886807 94.41 75.21

Table 2: Results of the three B&C approaches

approach. We also remark that the much larger root node gaps of [6, Table 2]
are actual gaps (between the upper and lower bound at the root node) while
Table 2 in this paper displays theoretical gaps with respect to the optimal
solution.

4 Conclusion

We have shown that reformulating (MIQP)s with semi-continuous variables
and nonseparable cost matrix is possible in such a way that a B&C approach
using perspective cuts can be quite efficient in the solution of large-scale

9

instances. For this to be true, however, a reasonably sophisticated approach
has to be used for extracting “as large as possible” a part of the original
nonseparable objective function; luckily, the current available interior-point
approaches to SemiDefinite Programming offer reliable and efficient tools
for performing this operation. An interesting issue that still remains open
is the development of different weighting schemes for the variables in the
SDP problem used to construct the reformulation to further improve the
performances of the B&C approach.

Acknowledgements

We are grateful to Brian Borchers for maintaining csdp and helping us
using it.

References

[1] E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Mathematical Programming, 58:295–
324, 1993.

[2] B. Borchers. http://infohost.nmt.edu/∼borchers/csdp.html.

[3] S. Ceria and J. Soares. Convex programming for disjunctive convex
optimization. Mathematical Programming, 86:595–614, 1999.

[4] J.W. Eaton et al. http://www.octave.org.

[5] A. Frangioni. About Lagrangian Methods in Integer Optimization. An-

nals of Operations Research, 139:163–193, 2005.

[6] A. Frangioni and C. Gentile. Perspective Cuts for 0-1 Mixed Integer
Programs. Mathematical Programming, to appear, 2006.

[7] N.J. Jobst, M.D. Horniman, C.A. Lucas, and G. Mitra. Computational
aspects of alternative portfolio selection models in the presence of dis-
crete asset choice constraints. In Quantitative Finance, volume 1, pages
1–13. Wiley, Chichester, 2001.

[8] H.M. Markowitz. Portfolio Selection. Journal of Finance, 7:77–91, 1952.

[9] P.M. Pardalos and G.P. Rodgers. Computing aspects of a branch
and bound algorithm for quadratic zero-one programming. Computing,
45:131–144, 1990.

10

