
UNIVERSITÀ DI PISA

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-06-13

Self-Configuring and Self-Optimising Grid
Components in the GCM model and their

ASSIST Implementation

M. Aldinucci∗, C. Bertolli†, S. Campa†, M. Coppola∗, M. Vanneschi†, L. Veraldi†, C. Zoccolo†
∗Institute of Information Science and Technology

CNR, Via Moruzzi 1, Pisa, Italy
Email: {marco.aldinucci, massimo.coppola}@isti.cnr.it

†Dep. of Computer Science, University of Pisa
Largo Bruno Pontecorvo 3, 56122, Pisa, Italy

Email: {bertolli,campa,vannesch,veraldi,zoccolo}@di.unipi.it

August 15, 2006
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Self-Configuring and Self-Optimising Grid
Components in the GCM model and their ASSIST

Implementation
M. Aldinucci∗, C. Bertolli†, S. Campa†, M. Coppola∗, M. Vanneschi†, L. Veraldi†, C. Zoccolo†

∗Institute of Information Science and Technology
CNR, Via Moruzzi 1, Pisa, Italy

Email: {marco.aldinucci, massimo.coppola}@isti.cnr.it
†Dep. of Computer Science, University of Pisa
Largo Bruno Pontecorvo 3, 56122, Pisa, Italy

Email: {bertolli,campa,vannesch,veraldi,zoccolo}@di.unipi.it

Abstract— We present the concept of adaptive super-
component as a hierarchy of components to which a well-
known parallel behavior is associated. The proposal of a super-
component feature is part of the experience we gained in the
implementation of the ASSIST environment, which allows to
develop self-configuring and optimising, component-based appli-
cations following a structured and hierarchical approach. We
discuss how such approach to Grid programming influenced the
design of the GCM component model.

I. INTRODUCTION

Grids Computing platforms offer the option to run complex
and multidisciplinary applications, exploiting aggregate soft-
ware and hardware resources that are physically available at
no single computation center. On the other hand, the Grid
is a highly dynamic platform, where resources availability
changes over time while the program is executing. This
makes adaptivity an essential feature in order to achieve high
performance and efficiently exploit the available resources.

Adaptivity [1] means that an application is (or its com-
ponents are) able to change its configuration at run-time,
preserving the semantics of the ongoing computation and
dynamically adapting to a specific need.

The autonomic computing paradigm [2], [3] targets self-
managing systems and applications, as defined by four aspects
that should be implemented by each system component:

• Self-Configuring: a component is self-configuring if it
is able to handle configuration goals in spite of the
underlying platform heterogeneity.

• Self-Healing: A component is self-healing if it is able to
provide its services in spite of failures of any kind.

• Self-Optimising: a component is self-optimising if it
adapts its configuration and structure in order to achieve
the best/required performance.

• Self-Protecting: A component is self-protecting if it is
able to predict, prevent, detect and identify attacks, and
to protect itself against them.

All these aspects can be studied as a whole in the framework
of autonomic computing, where support code, and abstractions

provided by the programming environment, react dynamically
in order to obey multiple kinds of constraints.

The Grid Component Model (GCM) is a proposal for a
component model oriented to Grid platforms, being developed
within the framework of the CoreGRID Network of Excellence
(NoE). Part of our contribution to the GCM component model
is in the set of abstractions needed to express autonomic
behaviour taking into account the aforementioned aspects in
a common and consistent way. Our contribution is based on
the experiences we have made in the development of the
ASSIST parallel programming environment [4], [5] and of the
component model developed in the Grid.it research project. In
this paper we will introduce the notion of super-component.
In ASSIST an adaptive super-component is the result of a
hierarchy of structured components provided with an embed-
ded parallel behavior. By instancing a super-component the
programmer selects functionalities as well as a well-known
parallel behavior (with given performance issues). Moreover,
each super-component represents a well-known pattern of
parallelism whose composite components can be automati-
cally managed in their non-functional aspects, without the
programmer intervention. Last but not least, since a super-
component exposes also adaptive features, it is able to manage
itself in order to follow self-configuration, self-optimization,
self-healing and self-protecting targets.

ASSIST shares with GCM many features w.r.t. autonomic
behaviour. On the one hand, GCM is currently a proposal for
a framework fully supporting hierarchical autonomic compo-
nents, in order to realize component-based autonomic Grid
applications. Grid.it components, on the other hand, already
provide self-optimising and self-configuring behaviour through
a hierarchy of user-configurable manager modules, an ap-
proach that already enables building HPC Grid applications.

In Sec. II we discuss previous work related to component
models and (self-)adaptive behaviour in Grid programming
also related to super-component abstractions. Starting from the
autonomic paradigm, which is the matter of Sec. III,we give
a first definition of the kind of interfaces that an autonomic

component frameworks should provide, in order to support
hierarchical composition and all aspects of autonomicity.

In Sec. IV we describe the architecture and the implemen-
tation of the ASSIST [5] programming environment, which
provides self-configuring and self-optimising parallel software
components. In this section, we will focus on the role of the
hierarchical organization of component managers as well as
on the notion of super-components. In Sec. VI we relate the
ASSIST approach to the ongoing definition of the GCM com-
ponent model and we will underlining their common aspects.
Moreover, ASSIST supports the development of interoperable
applications onto heterogeneous platforms. In Sec. V we show
with test results the self-management features of ASSIST
programs at run-time. Reconfiguration steps are fully transpar-
ent to the application programmer, and may be automatically
triggered by ASSIST run-time support according to a user
defined strategy [6]. Sec. VII concludes our presentation and
outlines future work directions.

II. RELATED WORK

High-level programming environments for grid aim at mov-
ing most of the grid specific efforts needed while develop-
ing high-performance grid applications from programmers to
grid tools and run time systems. A fundational proposal is
represented by the CORBA Component Model (CCM) [7],
followed by the Condor [8] experience from which we were
initially inspired in the design of the ASSIST component
[4]. GridCCM[9] is an extension of CCM supporting parallel
components with distributed data and communication opti-
mizations differing from our approach because of our focus
on adaptivity issues. In this sense and with respect to dynamic
reconfiguration and reoptimization, we share common goals
with the GrADs project [10], besides our programming model
proposes a more severe component structure. Common Com-
ponent Besides a clear component model, explicit component
composition and run-time adaptivity, we also propose the no-
tion of super-components, i.e. hierarchically structured compo-
nents able to drive to application reconfigurability. ProActive
[11], a Java implementation of the Fractal component model
exploiting RMI calls as primary communication mechanisms,
is a project that shares with us the super-component and
adaptivity targets but, currently they do not offer library mech-
anisms (all works arounds RMI mechanisms). We mention Ibis
[12] as another Java based programming environment offering
a kind of divide-and-conquer super-component notion but not
exploiting autonomicity issues. A similar approach is followed
by the Higher-Order Components (HOCs), that are [13] are
components offering the notion of components parameterized
with data and code but they do not support autonomicity.
Thus, a component expresses a behavioral schema that can be
instantiated on the target architecture at hand by providing the
corresponding code units. As seen below, the idea of having
kind of higher-order components is also exploited in the Grid.it
component model but we propose a higher level of abstraction
where hierarchy takes an important role.

Managed element

Monitor

Analyze Plan

 ExecuteKwowledge

Autonomic Manager

Fig. 1. Structure of an autonomic element. Elements interact with other
elements and with human programmers via their autonomic managers [15].

III. TOWARD AND AUTONOMIC GRID COMPONENT MODEL

As shown in Fig. 1, an autonomic element will typically
consist of one or more managed elements coupled with a
single autonomic manager that controls them. The managed
element could be a hardware resource (storage, CPU, etc.),
or a software resource, such as a Web service, or a software
component. Control loops, which are known in optimization
theory since (at least) the mid of the last century, can be used
to apply component self managing. They split the optimization
process into 1) a monitoring phase, where the symptoms are
collected; 2) an analysis phase, where the current status is
checked against the goal status; 3) a planning phase, where
a plan is created to enact the desired alterations according to
some policies; and 4) the execution phase, which provides the
mechanisms to schedule and perform the necessary changes
to the system [14], [15]. Truly autonomic systems are years
away, although in the nearer term, autonomic functionality
will appear in software, especially in very complex systems as
Grid-aware applications. In particular, early autonomic system
may threat self-optimization, self-healing, self-configuration
and self-protection as distinct aspects, with different solutions
that address each one separately.

The design of the component specification is driven by sev-
eral factors. First of all, we want to allow the reuse in parallel
components of existing code. Thus the component definition
must be abstract w.r.t. the component implementation and to
the run-time support of its implementation language. Equally
important, we want to describe autonomic behaviour, so that
components can be orchestrated in a consistent way in order
to pursuit Quality of Service goals for the entire application.
It should be possible to exploit both adaptation mechanisms
coded by hand by experienced programmers, and standard
ones provided by high-level programming languages.

To face this two-fold problem, the component model defines
manager entities, and a proper set of non-functional interfaces.
The manager of a component implements its non-functional
ports, and it is supposed to provide the component with some
autonomic features. Non-functional ports standardize the inter-
actions between different layers of application management.

Each quality aspect of an application clearly depends on the
quality level provided by every component, but the relation
can be complex, so that local choices taken in different
components, using only local information, hardly can lead
to the optimum. A straightforward solution, anticipated in

Sec. III, is to leverage the component hierarchy of the ap-
plication to coordinate its autonomic behaviour. To fulfill an
autonomic goal, a component should generally rely on its sub-
components, and generate sub-goals that will be delegated to
them.

Applying autonomicity hierarchically is particularly im-
portant for a hierarchical and distributed component model
like GCM or Grid.it are. The kind of hierarchy and the
management structures we can build depend on the abstraction
level provided by the autonomic interfaces that a component
frameworks defines.

1) The non-functional ports may expose/provide low-level
information/commands to external world to steer the
component behaviour. As an example, component sensor
values can be exposed to an external manager (or a
user interface) which can tune parallelism and replication
degrees, mapping, fail-stop tolerance level for a compo-
nent. This approach places all the burden of managing
the component behaviour on the external controller, but
it also allows to implement autonomic behaviour for
non-autonomic components, or to override the compo-
nent’s autonomic mechanism. This choice, if taken to
extremes, results in a system where autonomic control
is actually centralized, and monitoring information has
to be propagated, deceiving the encapsulation property
of components.

2) Alternatively, non-functional ports may expose/provide
interfaces toward the autonomic manager of each com-
ponent, as a mean to assign goals to pursue, described
by formal, high-level contracts, and to collect informa-
tion needed for non-local strategies. As an example, a
component may accept a QoS contract, and try to obey
it autonomously, possibly triggering events whenever the
contract can no longer be fulfilled. In this case the control
of component configuration is indirect. Proper filtering
of events and coordination of these high-level interfaces
is needed in order to enable proper subgoal delegation
without breaking component encapsulation.

As we will see in the following, ASSIST components
and super-components may be equipped with a manager,
while GCM hierarchical components can have component con-
trollers. In both models, these managing entities can exploit
sub-component’s monitoring information (introspection) and
autonomic capabilities, at the high and low abstraction levels,
in order to achieve global QoS, by assigning contracts as goals
to autonomically pursue, as well as to steer the adaptation
mechanism of a component when non-local strategies have to
be employed to manage less autonomic (legacy) components.

In the following sections we will describe how such aspects
are modeled in the ASSIST environment by exploiting adap-
tive supercomponents as the result of a hierarchy of structured
managers and how this contribution will be mapped onto the
definition of the GCM model.

GAM

Application Manager (AM)

ASSIST components

Abstraction of the basic services:
resource management & scheduling,
monitoring, ...

standard middleware

Fig. 2. ASSIST software architecture.

IV. THE ASSIST FRAMEWORK

ASSIST currently supports the Grid.it component model
(developed within the Grid.it Italian national project) which
shares several features with the forthcoming GCM. A complete
porting of the ASSIST to meet the GCM is planned in
the near future. In the rest of the section we sketch the
ASSIST programming environment, starting from its parallel
coordination language, its modular architecture and the support
for components, to introduce adaptive supercomponents driven
by an ASSIST hierarchy of managers and end up with the
description of ASSIST self-managed QoS for performance and
self-configuration.

ASSIST applications are described by means of a coordina-
tion language, which can express arbitrary graphs of modules,
interconnected by typed streams of data.

Modules can be either sequential or parallel. A sequen-
tial module wraps a sequential function. A parallel module
(parmod) can be used to describe the parallel execution of a
number of sequential functions that run as Virtual Processes
(VPs) activated by items arriving from the input streams. VPs
may synchronize implicitly by activation, or through explicit
barriers. The sequential functions can be programmed by using
a standard sequential language (C, C++, Fortran).

A parmod may behave in a data-parallel (e.g. SPMD/for-
all/apply-to-all) or task-parallel way (e.g. task farm), and it
may exploit a distributed shared state, which survives to VPs
lifespan. More details on the ASSIST coordination language
can be found in [4], [5].

The ASSIST compiler translates an arbitrary graph of
ASSIST modules into a network of processes. Sequential
modules become sequential processes, while parallel modules
are turned into a parametric networks of processes, each
one behaving as the execution engine for the VPs of a
given parmod. Besides, processes devoted to manage module
adaptivity and QoS control are added to the network (see [6],
[16] for any further details).

As we shall see from the next sections, ASSIST modules
exhibit the same kind of non-functional interfaces of GCM
components, and once wrapped within Grid.it components
they can be dynamically wired one another.

A. The Grid.it Component: Modules, Non-Functional Inter-
faces and Managers

A single parmod or an arbitrary ASSIST graph of modules
can be declared as Grid.it component. A Grid.it component
is characterized by provide and use ports, as well as by non-
functional ports, which are related to component QoS control.
Each port of an ASSIST component may be configured to be-
have as endpoint of one-way stream connection, RPC method,
or event channel. A Grid.it component may also interoperate
with Corba/CCM (via IIOP based RPC) components or Web
services (via HTTP/SOAP).

The software architecture of the ASSIST component-based
parallel programming environment is organized as shown in
Fig. 2. The run-time environment of ASSIST 1.3 is imple-
mented on top of a Grid Abstract Machine (GAM). The GAM
implements abstract services, i.e. the functionalities needed by
the programming environment to support high-performance,
component-based Grid-aware applications. These regard re-
sources discovery, management and monitoring; components
deployment, run, and wiring; routing of communications
through networks with private addresses.

Whether possible, these services rely on the underlying Grid
middleware, which are just abstracted out at the GAM level.
In other cases, GAM services extend Grid middleware services
(e.g. monitoring) [17].

Grid.it components natively implement several non-
functional ports, for both introspection and autonomic pur-
poses. The non-functional interfaces publicly expose either an
RPC or an event-based semantics, involving subscriptions and
following gather of required information. The standard RPC-
based interfaces for low-level dialog with Grid.it components
and super-components are:

• request for monitoring measurements;
• describe the current parallel layout of the component;
• apply a user-provided reconfiguration script;
• suspend/resume the component computation;
• stop the computation, releasing all involved grid resources

allocated for the component.
Any Grid.it component can directly be asked to report its

instantaneous performances or details about its own modules,
their location on the grid and current parallel behaviour. Aside
the autonomic behavior of the manager hierarchy, users may
directly interfere with the decision process for reconfigurations
and impose a sequence of changes for the component to obey
to: e.g., explicit addition of parallelism up to a certain degree
for a farm application manager.

Components can explicitly be suspended (and subsequently
resumed or stopped), in a correct manner w.r.t. the semantics
of the parallel computation. This functionality is exploited
in farm application manager to allow a high-performance
implementation of autonomic behavior. In fact, farm managers
allow worker components to be removed as well as added
dynamically. To optimize performance, considering the non
negligible overhead of component package transmission and
loading on remote machines, the implemented policy for dy-

namicity in farm-like application managers currently choices
to suspend, rather than barely stop and unload, exceeding
workers, up to a certain limit.

In all the frequent scenarios where component input pres-
sure varies during executions, and cuts in the parallelism
degree are likely to be followed by new increments, this
approach may lead to much better results, since resuming
a suspended component is orders of magnitude faster than
instantiating a new one.

Finally, users may like to stop a component running on
a certain grid site, in order to execute an identical copy
of it elsewhere, where performance/cost rate may be better.
Gracefully stopping a component is a low-level mechanism to
implement stateless migration.

The event-based interfaces, instead, provide for:
• subscription for continuous performance monitoring mea-

sures, at regular time intervals:
• subscription for QoS contract violations.

These introspection interfaces allow either a user interface, or
a component autonomic runtime support on users’ behalf, to
monitor in real-time the execution of controlled components.

The most interesting non-functional port for Grid.it compo-
nents is the RPC one allowing for users (or managers, as well)
to dynamically change the hierarchical QoS contract, for the
application as a whole or for portions of it.

B. The hierarchy of Managers

As shown, component nesting provides the application with
a logically unitary managing infrastructure, actually composed
of the set of managers along the hierarchy of components,
which operate in distributed and cooperative fashion.

We call CAM (Component Autonomic Manager) the man-
ager of a component or super-component. As mentioned in the
previous sections, ASSIST modules exhibits the same non-
functional interface of Grid.it components, and can be con-
sidered as part of the managing infrastructure. We call MAM
(Module Autonomic Manager) the manager of a module. We
call Application Manager (AM) the CAM at the root of the
manager hierarchy, since it (indirectly) controls the whole
application, and coordinates the QoS of the whole application
through CAMs and MAMs. The AM also assumes the role of
the interface toward the user. Clearly, nothing prevents the AM
itself to be composed of a set of distributed entities cooperating
to achieve the same goal of enforcing a given QoS for the
whole application [16].

Fig. 3 shows an application in which we recognize four
components, component a consisting of modules M1, compo-
nent b consisting of modules M2, and component c consisting
of modules M3 and M4. The whole application exposes a
provided port. Each module and component has an associated
management entity, respectively a CAM or a MAM, arranged
as a tree having the AM as its root.

Each CAM applies control strategies at the level of the
associated component, leveraging on non-functional ports of
the nested components. Whenever nested components do not

M4

MAM4

M3

MAM3

AM

M1

CAMa
MAM4

CAMc

M2

CAMb
MAM2

ASSIST stream

component
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

Fig. 3. Four interacting Grid.it components.

exploit any significant mechanism for adaptation and recon-
figuration, the CAM can possibly implement strategies based
on dynamic component creation and wiring functionalitiess
provideded by the component model. As a concrete example,
a component wrapping a legacy MPI program will likely
miss adaptation functionalities (its non-functional ports will
be no-ops). If the legacy component state can be saved or
disregarded, an outer CAM may create on the fly a new
instance of the component, with a different configuration and
mapping, and substitute the new version to the old one. A
CAM can also receive proposals of restructuring by the child
CAMs (monitor). In this case, the CAM has to apply a global
performance model in order to detect the need to restructure
more children modules and devise a good solution (analyze
& plan). Recursively, a CAM can receive reconfiguration
requests from father CAMs, and can send them reconfiguration
proposals (execute). The root manager (AM) is the eventual
responsible for the final decisions in the global reconfiguration
control which, as seen, is a sort of parallel and asynchronous
Divide&Conquer strategy applied along the hierarchical Ap-
plication Manager structure.

The definition of a sound set of behavioral and interac-
tion rules (that, once embedded in CAMs, will induce the
desired global behavior) is under investigation. For instance,
a general strategy enabling to make sound decisions at the
lowest possible level in the CAM hierarchy may significantly
improve management overhead. To this end, the analysis of
the application graph in terms of a queuing network seems
a promising approach [18], [19]. This approach enables the
detection of bottlenecks in application DAGs or sub-DAGs ex-
ploiting a data-flow behavior, i.e. ASSIST components mainly
interacting via streams.

C. Super-components

The advantages offered by a hierarchical structure of a
component application based on the managers interactions,
suggests a further abstraction step leading to the notion of
super-component, i.e. a container that can host both other com-
ponents or super-components. Grid.it super-components may
be considered as higher-order or parametric components which
can be instantiated at launch time with other components.

They describe common computation paradigms (skeletons,
actually). We have to point out that such common computation
paradigms could be also described by manually composing
Grid.it components into a graph a by caring about the encoding
of the related managers. However, this is a complex and error
prone programming phase. Super-component allow to provide
the programmer with a well-known hierarchical structure of
components whose manager can be automatically generated.

In other words, Grid.it super-components differ from other
implementations of higher-order components (e.g. HOCs [13])
because they are transparent to the programmer, who is not re-
quired to care about internal behavior (such as scheduling and
data distribution) since it is defined by the super-component
kind (as usual for skeletons). As a consequence, it is also
possible to equip the super-component with an automatically
generated autonomic manager.

In the Grid.it model two kinds of super-components are
currently defined:

a) DAG: it enables the wiring of components/super-
components as nodes of a Direct Acyclic Graph, as a gen-
eralisation of the a pipeline parallel pattern.

b) Farm: it enables the replication of a given host
component/super-component, and is functionally equivalent to
the replicated component, exposing the same provided/used
functional ports of the host. The farm can of course expose
different non-functional ports. Each data item (call/pure data)
on the farm provided functional ports is routed to the provided
ports of one of the internal replicas. Data items from the
replica’s used ports are routed on the super-component ones.
The replication degree can be changed at run-time via the farm
non-functional ports, causing replicas to be spawn/deactivated,
exploiting mechamisms and policies analogous to those used
in parallel modules, described in this section and in Sec. V.

Super-components can be used with both event/one-way
and RPC-style ports. However, they are particularly suited
to be connected via one-way streams, describing a flow of
data that is computed along different logical phases. In these
case, wiring among components may be done via buffered
ports (implemented via distributed queues), enabling multi-site
deployment without a strict co-allocation mechanism.

Super-components turn the Grid.it component model into a
hierarchical component model, according to GCM specifica-
tion.

D. QoS contracts and its autonomic management

A Grid.it component may accept (statically or dynamically)
a QoS contract via its non-functional ports. Currently, QoS
contracts are described by a specific XML file, and include
the specification of the processing bandwidth (service time) in
stream-based computations, and/or the completion time, which
is often more significant for non-stream computations. Such
contract may be subject to constraints on the amount and on
the kind of computing resources.

A Grid.it QoS contract carries a component QoS goal and
the description on how it should be achieved. In particular:

• Performance features: a set of variables, which can be
evaluated from module static information, run-time data,
collected through monitoring, and performance model
evaluation.

• Performance model: a set of relations among performance
features variables, some of them representing the perfor-
mance goal.

• Performance goal: a set of inequalities involving perfor-
mance features.

• Deployment annotations describing processes resource
needs, such as required hardware (platform kind, memory
and disk size, network configuration, etc.), required soft-
ware (O.S., libraries, local services, etc.), and other all
strictly required constraints to enforce code correctness.

• Adaptation policy: a reference to the desired adaptation
policy chosen among the ones available for the module.
Standard adaptation policies are represented as algorithms
and embedded within MAM code at compile time.

Among all possible QoS goals, Grid.it managers currently sup-
port the performance related ones that are achievable through
adaptation within each parallel module. Aspects regarding
modules coordination, as well as other QoS measures such
as reliability, availability, and security are currently under
investigation.

The performance models used in the ASSIST framework
range from very simple and approximate analytical models,
such as the one used to manage task farm parmods, to
more complex models derived using advanced mathematical
techniques, such as those derived in [6], [18].

As an example, the following is the QoS contract of the
experiment in Fig. 4. For more details about Grid.it QoS
contracts we refer back to [16].

Perf. features QLi (input queue level), QLo (input queue level), TISM

(ISM service time), TOSM (OSM service time), Nw (number
of VPMs), Tw[i] (VPMi avg. service time), Tp (parmod avg.
service time)

Perf. model Tp = max{TISM ,
∑n

i=1
Tw[i]/n, TOSM}

Goal Tp < K

Deployment arch = (i686-pc-linux-gnu ∨ powerpc-apple-darwin*)

Adapt. policy goal based

Since an ASSIST super-components are pre-defined hier-
archical structures of components, the autonomic manage-
ment discussed can be applied also to such structures, thus
allowing the ASSIST framework to expose autonomic super-
components.

V. ASSIST IMPLEMENTATION RESULTS

In this section we will focus on adaptation for ASSIST
parallel modules with reference to the satisfaction of user-
provided QoS constraints. We will show quantitative results
and discuss related experiences in the literature.

A. ASSIST native adaptivity

As reported in [20], the ASSIST support natively pro-
vides for a wide range of dynamic adaptations for parallel

N.
 o

f V
PM

s

 80 60 40 20 140

 8
 6
 4
 2

Fi
ll %

Wall Clock Time (s)

Ite
m

s/
s

 2

 200

 4
 6
 8

 10

Input stream pressure

 160 180 120

Input stream queue fill level
 0

 50
 100

VPMs aggregated power

N. of VPMs in parmod

 100

Fig. 4. Experiments on ASSIST adaptivity: Farm reconfigurations guided
by QoS contract changes

!

!"#

!"$

!"%

!"&

'

'"#

($)#"*+,- ($)#+,- (.)&%&/,- ($)#"&+,-

(0123456789:;

<
=
=
"7
=
54
3"
7>
92
?
51
29
4
:
@
A@
B

!C

'C

#C

.C

$C

*C

%C

D
9:
E
F
7G
4
H
4
/
I(
J

<=="7=5409:H
7G4H4/I(J

< G K L

Fig. 5. Experiments on ASSIST adaptivity: Performance of chosen machines
on a non-dedicated execution environment

modules: new processes belonging to the VPM class can
be added/removed at runtime within a parmod, and can be
migrated across heterogeneous platforms, using a specifi-
cally optimized checkpointing strategy. This allows to exploit
remapping strategies to balance the workload in data-parallel
computations

No matter when a change request is issued by user or
runtime support, the involved module is actually able to
reconfigure itself only in special conditions. In such time
windows, which are called reconf-safe points, the parmod state
is consistent, i.e. it is completely defined by the value of its
attributes, and no communications involving data are pending.

Notably, the runtime does not introduce any additional syn-
chronization, apart from those required by program semantics.
It rather delays reconfiguration execution until the next natural
reconf-safe point is reached.

Reconfiguration actions are implemented and optimized for
each parmod taking into account its parallel computation
semantics. Migration overhead is especially dependent on the
knowledge we can infer from the high-level specification of
the computation that a parmod provides.

B. Quantitative results

To evaluate the effectiveness of our approach we report
experiences about a farm and a data-parallel parmod (Fig.
4–5). The former farms out a dummy sequential function
with 2s average service time; the latter computes an iterative
(forall) reduction on internal shared state.
Farm parmod is executed with an initial, relatively strict QoS

constraint over the overall module service time (Fig. 4).
The QoS contract for the parmod is changed twice by

 4

 2

 0

 400
 350
 300
 250

 150
 200

 100
 50

D

A

C

B

additional load started on platform B

VP
s

to
 V

PM
s

m
ap

pi
ng

se
co

nd
s

Iteration count
 0 50 100 150 200 250 300 350 400

Max unbalance time
Iteration time 3

 1

Fig. 6. Experiments on ASSIST adaptivity: Data-parallel rebalancing

user. The first time, about 70s after computation start, a
more relaxed contract is submitted. The runtime support
consequently mandates a reduction of the parallelism
degree to free the exceeding resources. The second time,
QoS gets tighter, thus fresh resources are recruited and
new VPM processes launched on them, in order to meet
the user requirements.

Data-parallel computation is distributed on four heteroge-
neous machines in a non-dedicated execution environ-
ment (Fig. 5 shows their relative performance). When
a PE is artificially overloaded (Fig. 6, ray-tracing and
code compiling starts on node B) the autonomic run-
time redistributes the workload trying to re-balance the
computation. The support decides to shrink the partition
of shared data assigned to the overloaded PE for the
rest of the execution, distributing the exceeding workload
proportionally to the performance of the other PEs.

These experiments show that the approach is feasible for
data-parallel computations, and that good results are obtained
for the task-parallel ones, for which we found effective adap-
tation policies.

C. Related experiences

In order to find earliest examples of dynamically recon-
figurable code we shall go back until the eighties; proposals
included process migration environment both at the OS level
([21]) with kernel modules, and at the application one, with
user libraries providing checkpointing API ([22], [23]). Main
checkpointing drawback is that it’s not generically suitable
for Grid and high-performance, distributed executing envi-
ronments. More recently, Java bytecode portability has been
exploited to equip programs with load balancing facilities
([12]) or provide user-level mechanisms for process migra-
tion ([24]). The most interesting and promising approach to
dynamicity in Grids appeared in [25], where the GrADS
project is presented. The runtime facilities include contract
negotiators and configuration optimizer. Our approach is quite
different in that we provide for a transparent dynamicity (no
specific programming efforts required), with sensibly better
performance (we do not stop the complete application), and
designed and implemented an autonomic runtime system, able
to cope with user-defined QoS constraints.

<Binding>
<Components>
<Component refId="InputComponent">

<LaunchRef ref="inputPkg"/>
</Component>
<Component refId="DataParallelComp">

<LaunchRef ref="dataParallelPkg"
dataAAR="calibration"/>

</Component>
</Components>

<Connectors>
<Stream refId="Channel">

<BasicType>long</BasicType>
</Stream>

</Connectors>

<Dependencies>
<Component refId="InputComponent">

<Produce>
<Stream refId="Channel" origName="out"/>

</Produce>
</Component>
<Component refId="DataParallelComp">

<Consume>
<Stream refId="Channel" origName="src"/>

</Consume>
</Component>
</Dependencies>

</Binding>

Fig. 7. A typical composition in a pipeline application

D. Component-based applications

Applications are expressed at the highest level, as simple
interconnection of black-box components as well as hierar-
chical compositions of managers, where users only have to
define the correct bindings of declared functional interfaces.
The functional behavior of parallel components may be easily
and effortless described, naturally exploiting the ASSIST
coordination language. The framework supports stream, event
and RPC communication paradigms, and consequently pro-
vides for component interconnection at run-time by means of
declared interface binding. The experiences achieved with the
work on ASSIST has naturally driven us to focus more on to
the stream nature of logical interconnection. Study about the
other kinds of support is currently ongoing.

As an example of component composition, Fig. 7 shows
a typical layout of a pipeline application, where two stages
are defined and a logical connector is created, of type stream.
In the simple formalism used to bind components’ interfaces
together no knowledge of internal component behavior, nor
implementation, is actually required to produce the final
packaging of the application. The configuration file exposed
can be used as input for a pipeline Application Manager to
be executed on Grid machines. Once run, users can interact
with the top-level manager to alter the parallel behavior of the
stages or monitor its performance in real-time.

VI. THE GCM APPROACH

The Grid Component Model (GCM in short) has been
recently introduced by the Work Package 3 of the CoreGRID
NoE, as a unified software component model for Computa-
tional Grids, currently at the level of a proposal.

44

4

4

4

Component

Definition

Self−* Controller

Definition

Component

controller
controller

*−contract

N.F.I.
self−*

*−contract

N.F.I.

Non Functional Interface

Monitoring

self−*

Fig. 8. The hierarchy of controllers inside a GCM composite component.

GCM is based on the Fractal component model [26], which
is hierarchical. Components can be contained within other
components, and the support of a component (its membrane in
the Fractal terminology) can also be made up of other compo-
nents. Component controllers are primitive Fractal components
devoted to controlling their containing component, by means
of internal non-functional interfaces which allow them e.g. to
alter their host component configuration, and to intercept the
communication flow between the inside and the outside of the
host component.

To enhance component interoperability with legacy code,
Fractal considers different levels of compliance of actual com-
ponents with the implementation framework. GCM applies a
similar approach also to autonomic behaviour, with the highest
level of compliance being that of fully autonomic components,
which implement the whole set of autonomic interfaces. At
lower levels of compliance, components can implement a
subset of the interfaces needed for autonomic behavior (e.g.
steering or introspection interfaces).

The autonomicity of a GCM component can be character-
ized w.r.t. two main points:

1) non functional ports implements the interface through
which the user can express, at an high-level, the desired
behaviours/properties of the component. Non functional
ports are implemented by a hierarchy of linked compo-
nent controllers, whose structure reflects the component
hierarchical structure (see Fig.8).

2) Each controller is related to a specific aspect of the auto-
nomicity of the component. Controllers are implemented
as sub-component of the whole component itself. In
order to allow flexible dynamic replacing of support code
within a component, Dynamic component controllers
have been proposed which can be stopped and replaced
at run-time, encapsulating specific policies or low-level
functionalities. The specific implementation of controllers
is thus configurable, and defines the autonomic behaviour
of the component.

A. Autonomic Component Controllers

The GCM proposal defines a set of separate controllers that
hierarchically implement the run-time support of the differ-
ent autonomicity aspects, exposing interfaces through which
contracts can be specified. The organisation of controllers is
depicted in Fig. 8:

• The composite component provides a set of non func-
tional interfaces bound to the controllers of the compo-
nent itself.

• The controllers of the composite are bound to the con-
trollers of the sub-components by means of subcompo-
nent non-functional interfaces.

• Each sub-component controller directly monitors the
subcomponent itself, and, when requested, provides this
information to the composite component controller.

• Each sub-component controller directly manages the sub-
component.

As it can be seen, there is a quite clear similarity between
GCM controllers and ASSIST manager, as well as between
their hierarchical organization. However, GCM require a sep-
arate controller for each autonomicity aspect, while in ASSIST
more attention is paid on the interactions between managers
that coordinate them-self to reach a common autonomicity
goal.

Another common aspect regards the role of non-functional
interfaces. Non functional ports in the GCM proposal are each
one related to a specific autonomicity aspect. Examples of the
kind of requests acceptable by those interfaces are:

• a new level of performance of the component constraining
the service time under a specified threshold, explicited
by a new performance contract (what we call self-
optimization in ASSIST)

• a requirement on the fault tolerance level provided, or on
the fault recovery mechanism. That a contract can require
a 99.9% probability of fail-free execution or mandate that
a failure should cost less that one hour of computation
(self-healing in ASSIST).

• a desired level of security for a protocol (e.g. the hardness
of a cryptographic code) or a specific constraint on the
kind of protocols/resources used self-protection (provided
by ASSIST, too).

• the interface can accept the description of a goal, a
parameter, or a procedure to adopt in order to configure
the component (self-configuring in ASSIST).

The GCM framework proposal does not define how the
different contracts can interact, even though it is clear that they
do in the general case: for instance, a performance contract can
be satisfied if resources are available (thus we may need to
self-configure new ones) and as long as the overhead due to
fault tolerance is not too high.

It is thus a matter of research to understand how contracts
specified at the top of the hierarchy are translated into goals
for the leaf components, and how to prevent or control interac-
tions between different controllers, especially if we take into
account that dynamic component controller can be replaced at

any time. This is a quite powerful feature but it also adds to
the complexity of the problem.

As previously mentioned, GCM also supports deriving
full autonomic behaviour from non-autonomic components.
Controllers can choose to expose outside of the component
the steering interfaces that are usually available only from
inside, e.g. allowing to modify the parallelism degree of a
subcomponent. Devolving control to an outer entity can break
autonomicity, but also allows us to develop an overall auto-
nomic composition out of non-autonomic components (having
a very limited controller support) by adding external manager
components which play the autonomic controller role. This
approach is just the same that has been pursued in the design
of ASSIST and the Grid.it component model.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a general approach to
autonomic grid components, which is common to the GCM
and the Grid.it component models. We have described the
ASSIST architecture with its managing hierarchy ensuring
specific QoS aspects and we have introduced the concept
of super-component as the result of a hirarchy of manager
component embedding a given parallel behavior.

From the test results it is clear that ASSIST partially
implements the features required in the GCM model, allow-
ing structured design and deployment of component based
applications over grids, with high performance and ensuring
autonomic control w.r.t. performance and optimization.

There are however differences and open issues which still
have to be investigated. GCM models autonomicity thanks to
separate a controller for each aspect: it is not yet clear how
the different hierarchies related to the aspects will interact.

Even in the simpler design adopted in ASSIST/Grid.it,
where managers are not separate for the different aspects, it
a critical issue to develop interaction schemes and techniques
to break autonomic goals into cooperating and non-conflicting
subgoals to be applied to lower levels of a component hierar-
chy.

Currently, GCM doens’t adopt the concept of super-
component but we are working on integrating it into the model.

Another issue is that even if the ASSIST approach to
autonomic performance management is general, we still are
more geared toward stream asynchronous communication.
While this communication paradigm is quite efficient to exploit
over grids, more general models and techniques have to be
applied in order to tackle more general application structures.

At the moment we are working to enlarge the set of super-
components, and experimenting with different policies and
coordination protocols for the manager hierarchy. At the same
time, since our experiences will contribute to the analysis
and design of the GCM component model, we have planned
to enhance the compatibility between the ASSIST/Grid.it
environment and GCM, implementing a larger subset of it
within our programming environment.

ACKNOWLEDGMENTS

This work has been partially supported by Italian na-
tional FIRB project no. RBNE01KNFP Grid.it, by Italian
national strategic projects legge 449/97 No. 02.00470.ST97
and 02.00640.ST97, and byt the FP6 Network of Excellence
CoreGRID funded by the European Commission (Contract
IST-2002-004265).

REFERENCES

[1] M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Dane-
lutto, and C. Zoccolo, “Parallel program/component adaptivity manage-
ment,” 2005, PARCO 2005, Malaga, Spain, to appear.

[2] A. Ganek and T. Corbi, “The dawning of the autonomic computing era,”
IBM Systems Journal - Autonomic Computing, vol. 42, no. 1, pp. 5–18,
2003.

[3] S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart, “An
architectural approach to autonomic computing,” in Proceedings of the
International Conference on Autonomic Comput ing, May 2004, pp. 2–9.

[4] M. Vanneschi, “The programming model of ASSIST, an environment
for parallel and distributed portable applications,” Parallel Computing,
vol. 28, no. 12, pp. 1709–1732, Dec. 2002.

[5] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo,
“ASSIST as a research framework for high-performance Grid program-
ming environments,” in Grid Computing: Software environments and
Tools, J. C. Cunha and O. F. Rana, Eds. Springer, 2006, pp. 1–32,
iSBN 1-85233-998-5. Draft available as TR-04-09, Dept. of Computer
Science, University of Pisa, Italy, 2004.

[6] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi,
L. Veraldi, and C. Zoccolo, “Dynamic reconfiguration of grid-aware
applications in ASSIST,” in 11th Intl Euro-Par: Parallel and Distributed
Computing, ser. LNCS, J. C. Cunha and P. D. Medeiros, Eds., vol. 3648.
Lisboa, Portugal: Springer Verlag, Aug. 2005, pp. 771–781.

[7] T. C. . C. home page, http://ditec.um.es/∼dsevilla/ccm/
.

[8] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the grid,” in
Grid Computing: Making the Global Infrastructure a Reality, F. Berman,
G. Fox, and T. Hey, Eds. John Wiley & Sons Inc., December 2002.

[9] A. Denis, C. Pérez, T. Priol, and A. Ribes, “Bringing high performance
to the corba component model,” in SIAM Conference on Parallel
Processing for Scientific Computing, February 2004.

[10] S. Vadhiyar and J. Dongarra, “Self adaptability in grid computing,”
Concurrency & Computation: Practice & Experience, vol. 17, no. 2–4,
pp. 235–257, 2005.

[11] F. Baude, D. Caromel, and M. Morel, “On hierarchical, parallel and dis-
tributed components for Grid programming,” in Workshop on component
Models and Systems for Grid Applications, V. Getov and T. Kielmann,
Eds., ICS ’04, Saint-Malo, France, June 2005.

[12] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman,
C. Jacobs, T. Kielmann, and H. E. Bal, “Ibis: a flexible and
efficient java-based grid programming environment,” Concurrency &
Computation: Practice & Experience, vol. 17, pp. 1079–1107, 2005.
[Online]. Available: http://www.cs.vu.nl/∼kielmann/pubs.html

[13] S. Gorlatch and J. Dünnweber, “From grid middleware to grid appli-
cations: Bridging the gap with HOCs,” in Future Generation Grids,
ser. CoreGRID series, V. Getov, D. Laforenza, and A. Reinefeld, Eds.
Springer-Verlag, Nov. 2005.

[14] A. Andrzejak, A. Reinefeld, F. Schintke, and T. Schütt, “On adaptability
in grid systems,” in Future Generation Grids, ser. CoreGRID series,
V. Getov, D. Laforenza, and A. Reinefeld, Eds. Springer-Verlag, Nov.
2005.

[15] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[16] M. Aldinucci, M. Danelutto, and M. Vanneschi, “Autonomic QoS in
ASSIST grid-aware components,” in Proc. of Intl. PDP 2006: Parallel
Distributed and network-based Processing, Euromicro. Montbèliard,
France: IEEE, Feb. 2006, pp. 221–230.

[17] M. Aldinucci, M. Coppola, S. Campa, M. Danelutto, M. Vanneschi, and
C. Zoccolo, “Structured implementation of component based grid pro-
gramming environments,” in Future Generation Grids, ser. CoreGRID
series. Springer Verlag, Nov. 2005.

[18] C. Zoccolo, “High-performance component-based programming for het-
erogeneous computing,” Ph.D. dissertation, Dept. Computer Science,
Univ. of Pisa, 2005.

[19] M. Aldinucci and A. Benoit, “Automatic mapping of ASSIST applica-
tions using process algebra,” in Proc. of HLPP2005: Intl. Workshop on
High-Level Parallel Programming, Warwick University, Coventry, UK,
July 2005.

[20] M. Aldinucci, A. Petrocelli, A. Pistoletti, M. Torquati, M. Vanneschi,
L. Veraldi, and C. Zoccolo, “Dynamic reconfiguration of Grid-aware
applications in ASSIST,” Computer Science Department, University of
Pisa, Italy, Tech. Rep. TR-05-05, Feb. 2005, submitted to Euro-Par 2005.

[21] E. R. Zayas, “Attacking the process migration bottleneck,” in Proceed-
ings of the 11th ACM Symposium on Operating System Principles, 1987.

[22] M. Litzkow, “Supporting checkpointing and process migration outside
the unix kernel,” in Usenix Winter Conference, 1992.

[23] E. Godard, S. Setia, and E. White, “Dyrect: Software support for
adaptive parallelism on nows,” in Proc. of IPDPS Workshop on Runtime
Systems for Parallel Programming, 2000.

[24] F. Baude, D. Caromel, and M. Morel, “On hierarchical, parallel and
distributed components for grid programming,” in orkshop on component
Models and Systems for Grid Applications, 2005.

[25] S. Vadhiyar and J. Dongarra, “Self adaptability in grid computing,”
Concurrency and Computation: Practice and Experience, 2005.

[26] The Fractal Component Model, Technical Specification, ObjectWeb
Consortium, 2003.

