
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-06-17

Inference of Approximated
Motifs with Conserved

Relations

Nadia Pisanti∗‡† Henry Soldano∗� Mathilde Carpentier�

Joel Pothier�
‡ Dipartimento di Informatica, Università di Pisa, Italy.

∗ Laboratoire d’Informatique de l’Université Paris-Nord, UMR-CNRS 7030, France.
� Atelier de BioInformatique, Université Paris 6, France.

† Supported by the ACI IMPBio Evolrep project of the French Ministry of Research.

November 9, 2006
ADDRESS: via F. Buonarroti 2, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Inference of Approximated Motifs with Conserved

Relations

Nadia Pisanti∗‡† Henry Soldano∗� Mathilde Carpentier�

Joel Pothier�
‡ Dipartimento di Informatica, Università di Pisa, Italy.

∗ Laboratoire d’Informatique de l’Université Paris-Nord, UMR-CNRS 7030, France.
� Atelier de BioInformatique, Université Paris 6, France.

† Supported by the ACI IMPBio Evolrep project of the French Ministry of Research.

November 9, 2006

Abstract

In this paper we define a new class of problems that generalizes that
of finding repeated motifs. The novelty lies in the addition of constraints
on the motifs in terms of relations that must hold between pairs of posi-
tions of the motifs. We will hence denote them as relational motifs. For
this class of problems we give an algorithm that is a suitable extension of
the KMR [9] paradigm and, in particular, of the KMRC [15] as it uses a
degenerate alphabet. The algorithm contains several improvements with
respect to [15] that result especially useful when—as it is required for
relational motifs—the inference is made by partially overlapping shorter
motifs, rather than concatenating them like in [9]. The efficiency, correct-
ness and completeness of the algorithm is assured by several non-trivial
properties that we prove in this paper. Finally, we list some possible ap-
plications and we focus on one of them: the study of 3D structures of
proteins.

1 Introduction

In this paper we define a new class of problems that extends the traditional
inference of repeated motifs. This latter is a well-known problem that consists
of finding frequent patterns in a given input text, or, equivalently, patterns
shared by several input sequences. This problem has applications in several
data mining tasks where data can be represented by a text. For many such
applications it is indispensable that a certain degree of approximation is allowed
among different occurrences of the same motif. For a survey on combinatorial
algorithms for finding approximate repeated motifs, see for example Chapter 5
of [10] or Chapter 4 of [8]. A general observation is that when approximate
motifs are sought, the problem becomes computationally critical as there can

1

be an exponential number of motifs satisfying the required frequency. Such
exponentiality is not with respect to input size, but rather on the length of
the sought motifs (or in their allowed degree of approximation, somehow often
proportional to the length itself), hence the problem is fixed parameter tractable.
Nevertheless, this drawback can even lead to unfeasibility and, in ”better” cases,
to a very noisy output. For this reason there have been attempts in the literature
to refine the query in the direction of specifying the structure of the motifs [11] or
of defining slim generators for the complete set of the motifs [12]. The refinement
of the former has clear motivations in molecular biology in inferring transcription
factors binding sites, while the latter—to the best of our knowledge—still misses
a convincing application.

We introduce here a new type of refinement which consists of requiring that
also relations between pairs of positions in the motifs are conserved, hence we
talk about relational motifs. This apparently complicates the problem, but we
will exhibit an algorithm that uses a very efficient representation of the motifs
and which — thanks to some non-trivial properties we prove in this paper —
results in an efficient inference: linear in the input size and ”really” fixed param-
eter tractable. Indeed, refining the query on the motifs reduces the output size
and also the explosion of the number of candidates. Moreover, relations allow
one to constraint the motifs so that more specific properties are satisfied and
thus a more sensitive tool can be conceived. The framework we suggest in this
paper is very general, and its solution we exhibit is for the most general case.
However, depending upon the specific application, some constraints concerning
conservation may be relaxed and hence further efficiency achieved. Indeed, the
inference of motifs with relations can find application in many tasks such as mu-
sic research (detecting scales or just tunes that are in different keys by using the
relation that indicates the difference of keys), extracting motifs in trees (where
being an ancestor or a father can be explicited by means of relations) or in any
sort of structured data such as XML/HTML files (or any other source code),
finding geometrical motifs (using points in a plane/space as elements and topo-
logical relations among them), studying RNA secondary structures (requiring
a Watson-Crick complementarity as relation among fragments of motifs), etc...
Each one of these applications has its own peculiarities that can lead to a spe-
cific instance of the framework of relational motifs. This specificity is in general
driven by a suitable balance between the sensitivity and the efficiency required.
In Section 7 we will focus our attention on yet another application in molecular
biology, that is finding repeated substructures in 3D protein structures, using
as relations the distances between the α-carbons in the protein structure.

We will use two input-defined degenerate alphabets for the description of
the motifs (one for the motif elements and one for the relations) thus allowing
in general the maximum freedom of approximation. Given that we refer to the
paradigm of the KMR algorithm [9], we will have to deal with the degenerate
alphabet like in KMRC [15]. In particular, we will restrict our attention to max-
imal motifs for a notion of maximality which is the same as in [15]. The choice
of dealing with relational motifs implies the fact that motifs will be inferred
by means of an incremental construction by partially overlapping two shorter

2

motifs. By doing so, we substantially differ from [9] in the same direction as [4]
where relations in motifs had been introduced for the first time. In [4], however,
several properties were unnoticed and thus unbearable drawbacks introduced.
In this paper we will prove some properties that will allow to improve the time
and space complexity of [4] by decreasing of an exponential factor the amount
of candidates generated at each step that we prove to be redundant.

A preliminary version of part of this paper appeared in [13].

2 Preliminary definitions

Our goal is to find approximate relational motifs on a input text that is a
sequence over an alphabet Σ. In this section we formalize the way we express the
approximation, and the motifs we want to infer according to this. For a simpler
explanation, we start with defining some concepts omitting the relations, that
we will integrate in the paradigm later.

Let the input text be a sequence t over the alphabet Σ. We assume that
it has length n and we denote this by |t| = n. The letter at position p in t is
denoted by t[p], and therefore we have that t = t[1]t[2] · · · t[n] where t[i] ∈ Σ for
all 1 ≤ i ≤ n.

Definition 1 Given the alphabet Σ, a cover on Σ is a set G = {G1, G2, ..., G|G|}
with Gi ⊆ Σ for 1 ≤ i ≤ |G|, such that ∪iGi = Σ and there are no 1 ≤ i, j ≤ |G|
with i 6= j such that Gi ⊆ Gj. The sets Gi’s are said groups.

The alphabet Σ of the input sequence is implicitly given by means of the
sequence itself, while that of the motifs is explicitly given by a cover on Σ
defined as above and given as input. The alphabet used to describe the motifs
will be that of the groups of such cover, which we will also refer to as degenerate
alphabet.

Definition 2 A k-pattern is a k-long sequence on the alphabet of the groups.
A k-pattern x = x[1]x[2] · · ·x[k] with x[i]∈G for 1≤ i≤k occurs in t at position
p if t[p + i− 1]∈x[i] for all 1≤ i≤k. In this case p is said to be an occurrence
of x. We will denote with extent the complete set of occurrences of a pattern.

We are interested in frequent patterns, that are patterns that occur more
than a certain number of times. Notice that, due to the degenerate alphabet,
different patterns may occur at the same position and that, even more, different
patterns may have the very same extent. This is the case when the patterns
differ in positions that in the occurrences correspond to letters that belong to the
intersections of distinct groups. Hence, given a pattern x, its extent is unique,
but this latter may be the extent of other patterns different from x.

Definition 3 Let k, q be integers and t a sequence on Σ. A s motif of size k
for t is a k-pattern that occurs in t at least q times. Given an extent LI , the
k-motif I is the set of s motifs x of size k that have extent LI . In this case we
say that x is an s motif of I. The parameter q is named quorum.

3

When unnecessary or clear from the context, we will omit the k and simply
talk about pattern and motif.

Definition 4 A k-motif I of t is said to be maximal if its extent LI is not a
proper subset of LJ for any other k-motif J . It is non maximal otherwise.

Example 1 Let us consider the input sequence t̃ = xbxcxaxbxc on Σ = {a, b, c, x}
and the cover G={C1 ={a, b}, C2 ={b, c}, C3 ={x}}. Assuming q =2, we have
that C3C3C3, C1C3C1 and C1C3C2 are all 3-patterns. Nevertheless, the first
never occurs in t̃, the second occurs only at position 6 and thus is not an s motif
either, while the third occurs in 2, 6 and 8 and hence it is an s motif of size 3.
Moreover, the 3-motif with extent {2, 8} is not maximal in t̃ because that with
extent {2, 6, 8} is the extent of another 3-motif; this latter is maximal as well as
that with extent {1, 5, 7}.

We will say that a k-motif I is a duplication if LI = LJ for any other k-motif
J with J 6= I. Notice that if I is a duplication of J , then J is a duplication of
I, as the relation is symmetrical (and transitive). If a k-motif is maximal and
it is a duplication, we will say that it is a maximal duplication.

The problem we address is to find the extents of all maximal k-motifs, and
it can be formally stated in the following way.

Problem 1 Finding maximal k-motifs:

INPUT: The input sequence t, the cover G, and the length k.
OUTPUT: The extents of all maximal k-motifs.

As stated so far, the problem has been solved in [15] by extending the method
of [9] to the case of maximal motifs which are approximate in that they are ex-
pressed using the degenerate alphabet. Basically, in [15] like in [9], maximal
k-motifs are obtained in O(log k) steps where at each step the length of the mo-
tifs is doubled by means of concatenation of shorter motifs, with the difference
that in [15] only maximal motifs are kept and hence, in particular, each step
is concluded with an exhaustive search of extents included into others in order
to detect non-maximal motifs and discard them. The set inclusions detection
results to be a sensible bottleneck of the algorithm. In other words, each step
of [15] is different from that of [9] as it deals with approximate and maximal
motifs, but the two algorithms share the fact that an `-long motif is obtained
by a concatenation of two (`/2)-long motifs that occur in the input sequences at
distance `/2 and in the same relative order. Only if the length k of the sought
motifs is not a power of two, there is a final step where the motif of length k are
generated by overlapping two motifs of length k′ such that k′ < k < 2k′ and k′

is a power of two. We call such a generation an overlap step, and the previous
ones concatenation steps. If the size of an overlap (that is, the length of the

4

string fragment that the two words share) is o, then we will talk about o-overlap.

The goal of this paper is to further extend the method of [15] to the case in
which O(k) steps are overlap steps. In particular, we are interested in o-overlaps
with o ∈ Θ(`) where ` is the length of the motifs involved at a generic step. In
other words, we infer motifs of growing length where at each step such growth is
of a constant factor only instead of doubling the size as in [15]. In this way, the
inference of repeated k-motifs requires Θ(k) overlapping steps while O(log k)
concatenations steps would have sufficed. The need of this apparently useless
drawback is motivated by the fact that we introduce relations, as we will show
in Section 3.2.

Finally, notice that an obvious variant of the algorithm presented in this
paper can solve the problem of finding the maximal motif(s) of maximum length.
This can be done by going on incrementing the length until no maximal motif
is found, and then possibly finding back the right length with a binary search.

3 Relational motifs

The idea is that in some applications (such as the one we will show in Sec-
tion 7) it can be useful to extract - not just repeated substrings - but rather
substrings that appear approximatively repeated and, moreover, they mostly
appear somehow arranged in the same relative way. For example, the elements
can have positions on a plane or space and the relations can be topological re-
lations, or the elements are numbers and the relations are arithmetical binary
relations, etc. In molecular biology one can consider RNA secondary struc-
tures where the required relation is Watson-Crick complementarity. More in
general, our framework allows relations that are independent from the elements
themselves. An instance of this that we will show in Section 7, concerns an
application to tertiary structures of proteins where we consider the protein’s
sequence of amino acids as symbols of the sequence, and relations such as the
distances between the α-carbons within k-long subsequences in their 3D struc-
ture. Notice that in this case the relations are completely independent from the
symbol that appear in the sequence (the amino acid) as they only depend from
the positions involved. This allows to actually represent and infer 3D structural
patterns.

3.1 Definitions

This section will formalize the notion of relational motifs starting with some
basic definitions concerning relations and relational motifs that integrate those
already given earlier in this paper. In particular we still assume there is an
input string t ∈ Σn whose pth position is denoted by t[p] and a cover G on
Σ. On this string we seek k-motifs which—so far—are sets of strings x ∈ Gk

represented by their complete extents Lx ⊆ {1, . . . , n − k + 1}. When taking

5

into account relations, the input string is enriched with the relations that hold
between each pair of distinct positions. Notice that there is no need to give
relations between positions that are more than k symbols apart as far as we
want to infer relational motifs of length k only.

Definition 5 Let R = {r1, . . . , r|R|} be the relations alphabet and r ∈ R a
relation. The relational input string t is a n long string on the alphabet Σ where
for each pair (p1, p2) of positions 1 ≤ p1 < p2 ≤ n such that |p1 − p2| ≤ k − 1,
it is given the unique (symmetric) relation r ∈ R that holds between position p1

and position p2. We will also denote this with r(p1, p2) and with (p1, p2) ∈ r.

Hence, the input size is no longer n, but rather n× k.
Also for the relations we want to allow a certain degree of approximation that
makes the framework more general and flexible.

Definition 6 Let GR = {CR1, . . . , CR|GR|} with CRi ⊆ R for 1 ≤ i ≤ |GR|
be a relations cover on R where the CRi’s are denoted as relations groups and
none of them is included into another.

Notice that there is no need to explicitly give the alphabet of the relations
as this will be implicit in the relational input sequence. On the other hand, a
relations cover such as that we just defined is given as input parameter.
The notion of pattern is also enriched with relations and therefore that of motifs
and occurrence as well. Formally:

Definition 7 A relational k-pattern is a k-pattern plus a relation group per
each pair of its distinct positions. A relational k-pattern x with relations groups
CR1, . . . , CR|GR| (where for each CRi ∈ GR it is indicated the set of pairs
(u, v) such that (u, v) ∈ r ∈ CRi for some 1 ≤ i ≤ |GR|) is said to occur in t at
position p if the pattern x occurs at position p of t and for all pairs (u, v) ∈ CRi

we have that r(p + u, p + v) for r ∈ CRi. Finally, given the quorum q, a
relational s-motif of size k is a relational k-pattern that occurs at least q times,
and a relational k-motif is the set of relational s-motifs of size k that share an
extent.

Indeed, we will still denote with extent the complete set of occurrences of a
relational pattern and, moreover, a relational k-motif IR is said to be maximal
if its extent LI is not a proper subset of LJ for any other relational k-motif JR.
Given that there is one (and only one) relation per each pair of positions of the
pattern, an extent, together with the length k, denotes again a relational motif
that would be unique if it weren’t for the degenerate alphabet that holds for
relations too.

Example 2 Let us consider as input sequence our running example of t̃ =
xbxcxaxbxc with in addition the alphabet of relations R = {r1, r2, r3} with its
cover GR = {CR1 = {r1, r2}, CR2 = {r2, r3}}, and such that ({(i, i + 1) | 1 ≤
i ≤ k−1}∪{(1, 4), (2, 5), (3, 6), (2, 6), (4, 8)}) ∈ r1, and {(1, 3), (3, 5), (5, 7), (7, 9),

6

(4, 7), (7, 10), (1, 5), (3, 7), (5, 9), (6, 10)} ∈ r2, and all other pairs of positions
1 ≤ i, j ≤ k are in relation r3. We have that all 2-motifs are relational 2-
motifs because the relations between consecutive positions is always the same
and thus definitely conserved. On the other hand, the 4-motif with extent {2, 6}
is not a relational motif because in its two occurrences the relations between the
first and last positions are different and in different groups (because (2, 5) ∈
r1 ∈ (CR1 \ CR2) and (6, 9) ∈ r3 ∈ (CR2 \ CR1)). Moreover, the maximal
4-motif with extent {1, 5, 7} has two occurrences, 1 and 7, where the relation
between the first and last positions is in CR1 (respectively there are (1, 4) ∈ r1

and (7, 10) ∈ r2), and again two occurrences, namely 5 and 7, where such
relation is in CR2 because (5, 8) ∈ r3 and again (7, 10) ∈ r2. Hence, this 4-
motif corresponds to two distinct relational 4-motifs.

Summing up, the problem we actually aim to solve is the following:

Problem 2 Finding maximal relational k-motifs:

INPUT: The input relational sequence t, the cover G, the relations cover GR,
and the length k.
OUTPUT: The extents of all maximal relational k-motifs.

3.2 Overlap Steps

In order to take into account relations during the inference phase, each time
a candidate k-motif is considered, the conservation of its relations has to be
investigated. In this section we count the amount of comparisons that have to
be made in order to verify whether relations are conserved in a candidate motif.
We do so for three different general ways to perform the inference. The goal of
this section is to show that doing overlap steps is the best choice. The analy-
sis we make here ignores the degenerate alphabet; indeed, the fact that motifs
are approximated affects the number of comparisons to do, but this affection is
independent from that resulting from taking into account relations, as we will
see later Section 4. Finally, for the purposes of this section, we ignore the fact
that we seek maximal motifs only, because this has no influence in the results
we prove here.

Given that each pair of positions of a k-motif has to be in a specific rela-
tion, we have that O(k2) relations have to be checked. Since motifs are built by
extending shorter ones, some relations are ensured by the fact that the shorter
were already relational motifs, while others have to be checked at the time of the
generation of the new motif, and per each one of its occurrences that can be as
many as n. Those that have to be checked are the relations involving positions
that were not belonging to the same shorter motif involved in the overlap (or in
the concatenation or extension). In the literature, there are basically two gen-
eral ways in which a k-motif can be inferred from shorter ones. Let us consider

7

the (virtual) trie of all k-patterns that are the candidates whose frequency has to
be tested. In order to perform a lossless search for k-motifs, the inference must
(virtually) perform a, hopefully partial, visit of this trie. This can be done by
attempting to extend the most possible a single candidate at a time and then
backtrack to attempt patterns with different prefixes in lexicographical order
(i.e. with an in depth visit) like in [11]. We will name this in depth inference.
Another way is to consider at each steps all patterns that are at the same level
of the trie (i.e. with an in width visit) like in [9]. This is what we call an in
width inference.

Remark 1 We point out that, in an input string of length n, the total number
of possible occurrences of exact motifs of fixed length are at most n because the
extents of distinct exact motifs cannot intersect. This holds independently from
the quorum q.

In a generic intermediate step of an in depth inference, a (`−1)-long motif
is extended by checking the possible conservation of, say, one extra position
on its right end and its corresponding relations. The following result counts
the maximum number of comparison required in this case in order to check
the conservation of the relations for all candidates motifs whose extension is
attempted.

Proposition 1 In a in depth inference of all relational k-motifs in a sequence
of length n, there are overall O(k3n) relations to be checked.

Proof At a generic step of an in depth inference, the extension with one extra
symbol/position of a motif of length ` with 1 ≤ ` ≤ k − 1 is attempted. The
new (` + 1)th extra position has to check its relations with all positions i for
1≤ i≤ `, and this has to be done for each occurrence of the motifs. There are
at most n distinct occurrences per each fixed length as stated in Remark 1, and
hence the relations to be checked are at most as many as

∑k−1
`=1 n ·

∑`−1
i=1 i, and

thus in O(k3n). •

Let us now make the same counting for the in width inference starting with
the KMR case of concatenation steps.

Proposition 2 In a in width inference of all relational k-motifs in a sequence
of length n that makes use of concatenations steps, there are overall O(k2n)
relations to be checked.

Proof At each step two motifs are concatenated in order to form a new one of
double length. There are only O(log k) such steps to perform, and at each step
i, for 1≤ i≤(log k)−1, we have two motifs of length 2i that are concatenated; in
this case relations between pairs of positions belonging to the two distinct sub-
motifs have to be checked, which makes (2i)2 comparison per each one of the
occurrences of the new motif. We have seen in Remark 1 that at a given step,

8

since the length is fixed, there are overall (for all the motifs that are being gen-
erated) at most n positions for which the check has to be done. Therefore, the
result is

∑(log2 k)−1
i=1 (n ·22i) =

∑(log2 k)−1
i=1 (n ·4i) = n ·4log2 k = n · (2log2 k ·2log2 k)

and thus we have O(k2n) relations that are checked. •

Notice that the result of Proposition 2 holds also when a constant number of
overlap steps replace as many concatenations, and when a non constant number
of concatenations are replaced by o-overlap steps with o ∈ O(1). The following
result, instead, shows what happens with an in width construction that performs
a non constant number of o-overlap steps where o is not fixed.

Proposition 3 In a in width inference of all relational k-motifs in a sequence of
length n that makes use of O(k) overlap steps, there are overall O(kn) relations
to be checked.

Proof Assume we perform a total of O(k) (`−d)-overlap steps of two `-motifs
where d is in O(1). We would have, at step i for 1 ≤ i ≤ k/d, two (`i−d)-motifs
that are merged and only the relation between one of the d positions at the
extreme right and one of those at the extreme left of the new motif has to be
checked, and again for all its occurrences. Given that by Remark 1, these are
at most n in total for the whole step, we have that the relations to be checked
are at most

∑k/d
i=1 n · d2 = ndk ∈ O(n · k). •

As a result of Propositions 1, 2, and 3, we have that when inferring rela-
tional k-motifs, performing O(k) overlap steps is the best choice. Hence, in next
sections we will focus on solving the problem of finding all maximal k-motifs by
means of overlap steps only.

Performing overlap steps requires some care because an overlap step can
overgenerate non maximal motifs. In particular, we will see in Section 4.3 that
in the case of maximal approximate motifs, an overlap step of two maximal
motifs can generate extents that do not correspond to any motif and that will
be detected and discarded as they are properly included into extents of motifs
that are generated. This redundant generation causes extra work in the already
costly phase of the detection of non maximal motifs. We will characterize this
class of extents and show that, fortunately, there is a way to avoid generating
them that will be shown in Section 5 and that makes use of some non trivial
properties we prove in this paper. This drawback was unnoticed in [15], but
there it was not so relevant because there was only one overlap step. In the case
of a series of overlap steps as we have here, the absence of this optimization
could result catastrophic for several interesting applications.

9

4 Properties of (Maximal) k-Motifs

4.1 On the cardinality of maximal k-motifs

In this section we prove some properties of maximal motifs that will result useful
to set an upper bound on the cardinality of candidate motifs we will have to
deal with. Again, we will first exhibit results and examples omitting relations,
and we will later integrate them and consequently extend the results.

Let us start by reminding that several s-motifs may have the same extent
due to the adoption of the degenerate alphabet, and that we will implicitly
represent them all with a motif that is actually their extent. Formally, for the
input sequence t, a cover G, and a length k, the extent L represents the following
set of patterns of length k (that is a k-motifs if |L| ≥ q where q is the quorum):

{x = x[1] . . . x[k] | x[i] ∈ G such that t[p + i− 1] ∈ x[i] ∀ 1 ≤ i ≤ k ∀ p ∈ L}.

Example 3 In our running example t̃ = xbxcxaxbxc with G = {C1 = {a, b}, C2 =
{b, c}, C3 = {x}} we have that for k=3 the extent {2, 8} (the substring bxc oc-
curs at both positions) represents both C1C3C2 and C2C3C2.

Independently from the input sequence and the quorum, the set of distinct
patterns of length k can theoretically be as big as the set of different k-long
words on the alphabet G, which has size |G|k. In the following example we
show a sequence where this is the case.

Example 4 Let σ ∈ Σ occur in all groups of G. In the input sequence σn every
string in Gk is an s-motif of size k for 1 ≤ k ≤ n−1 (this holds for any quorum
1≤q≤n−k+1).

Hence, the upper bound happens to be tight. And indeed, although an
input sequence such as σn above is quite improbable, in practical cases an ex-
plicit representation of all motifs of a given length is unfeasible. On the other
hand, observe that the exponential number of k-motifs shown above can be
represented by an unique extent L = {1, 2, . . . , n − k + 1}, that is, in linear
space. This is a first intuitive motivation of why our algorithm actually deals
with extents only. In fact, the above mentioned motifs of the sequence σn can
all be represented by an unique extent because they are all maximal duplica-
tions of each other. It is easy to observe that, when representing maximal motifs
by means of their extents only, duplications are clearly a redundant information.

Unfortunately, although a single extent can represent an exponential number
of k-motifs, keeping only the extents does not suffice to avoid the exponential
upper bound, not even if we restrict to maximal and non duplicated motifs.
Indeed, we give below an example where we exhibit |G|k maximal and non
duplicated (hence with different extents) k-motifs in a string of length n = |G|·k.

10

Example 5 Let the cover be G = {G1, G2, . . . , G|G|} with Gi = {σi, σ} for
1 ≤ i ≤ |G| (hence |Σ| = |G| + 1). Let us consider the input sequence σ̃′ =
σkσ1σ

k−1σ2σ
k−1 · · ·σiσ

k−1 · · ·σ|G|σ
k−1 where each σi occurs at position ik + i.

Each string x ∈ Gk occurs at position 1, and in k more positions. Namely, for
each 1 ≤ j ≤ k, x occurs in position ik + i − j + 1 for x[j] = Gi. Since each
x has exactly k + 1 occurrences, none of them can be non maximal. Moreover,
given that for different x there are different occurrences, then they cannot be
duplications of each other. Given that there are |G|k such x’s that are k-motifs
in σ̃′, then there can be as many as |G|k maximal and non duplicated (hence
with different extents) k-motifs in a string of length n = |G| ·k, (for any quorum
1 ≤ q ≤ k + 1).

Besides the theoretical possibility shown in the example above, we have that
in practical applications we are fortunately very far from such worst case, as we
will show in Section 7. However, the example points out the crucial role that
the cover G, which indicates how much the motif can be approximated, plays
in the possible explosion of the number of candidates. Indeed, if exact motifs
are sought, then G should trivially coincide with Σ (and it is actually useless
to talk about groups). If G 6= Σ then we are allowing an approximation in the
way the motifs match their occurrences. We now formalize the degree of such
approximation.

Definition 8 Given a cover G = {G1, G2, ..., G|G|} on Σ, the degeneracy g of
G is the maximum number of distinct groups to which a same σ ∈ Σ belongs to.

In other words, g measures indeed how much degenerate is the alphabet of
the motifs. For exact motifs we have G = Σ and hence g = 1, but when an
approximation is sought, we have in general g > 1 which is somehow a measure
of the degree of such approximation. In theory, g can be as big as |G| like in
Example 5. Should this be the case, the output motifs would not be significant
(and too many). Hence, in practical cases it will not be the case, and this is
the reason why the upper bound of Example 5 is not met in practice. Given
that we deal with a degenerate alphabet like [15], it can be useful to view the
upper bound on the number of k-motifs also in terms of g. In [15] it is proved
the following1.

Proposition 4 In an input sequence in Σn, given a cover G of Σ having de-
generacy g, for a fixed k the total size of the extents of all the k-motifs is at
most min(|G|k, ngk).

In Section 3.2 we have counted the number of relations to be checked ignoring
the degenerate alphabet. If we use the upper bound of Proposition 4 instead of
that of Remark 1, the results of Propositions 1,2, and 3 can trivially be extended
to the case of approximate motifs obtaining new upper bounds where instead
of n we have ngk.

1In [15] the result is stated for maximal motifs. However the very same proof works for
motifs in general.

11

4.2 Compositionality of maximal motifs

Since we infer motifs of growing length, it is useful to know that at each step we
only need to store maximal motifs because these are enough to produce longer
ones. This is possible thanks to the following result.

Lemma 1 Each maximal k-motif I has an s-motif m whose `-long prefix and
`-long suffix (∀ 0 < ` < k) are s-motifs of maximal `-motifs.

Proof Let I be any maximal k-motif with extent LI , m any of its s-motifs, and
let Ip be the prefix of length ` of m. It must be that LI ⊆ LIp because a proper
suffix of any string occurs at least wherever the string does. If Ip is maximal
then we are done. If this is not, then it is because there exists another maximal
`-motif I ′p such that LIp

(LI′
p
. Since LI ⊆ LIp

, then we have that LI (LI′
p
,

and hence I ′p is a prefix of another s-motif of I (because it occurs wherever I
does). Given that by hypothesis I ′p is also maximal, we have that it is what we
are looking for. The very same proof can be done for suffixes of I and shifting
the corresponding extents, and hence the result is proved. •

Notice that the result of Lemma 1 actually holds for any substring and not
just for prefixes and suffixes as the proof does not depend at all from the fact
that the substring is a prefix or a suffix.
Given an extent L and an integer d, we denote with L + d the set {x + d |
∀x ∈ L}. Lemma 1 has the following consequence.

Theorem 1 The extents of all maximal k-motifs can be computed from the
extents of maximal `-motifs for a fixed ` such that k/2 ≤ ` < k.

Proof In order to obtain the extent of a maximal k-motif, it suffices to take the
extents Lp and Ls of the maximal `-motifs which are its maximal prefix and
suffix according to Lemma 1, and compute Lp ∩ (Ls + `− k). •

As a consequence, the set of all the extents of maximal motifs of a fixed
length ` is sufficient to generate any (hence possibly all of them) maximal motif
of length ` + d provided ` > d. Therefore, we have that in our incremental
construction of motifs, at each intermediate step we only need to keep extents
of maximal `-motifs in order to generate longer ones up to the required length
k.

4.3 Pseudo-motifs

We now show that, even when dealing with extents only and with maximal
motifs of fixed length, in general an overlap of two `-motifs can generate quite
more than just (` + d)-motifs. We will show why, and also that our algorithm
avoids this drawback. Let us start again with a simple example that anticipates
the definition.

12

Example 6 Let us consider again the running example t̃ = xbxcxaxbxc, q = 2,
and G = {C1, C2, C3} with C1 = {a, b}, C2 = {b, c} and C3 = {x}. Let us
consider the extent {1, 7} and length k = 3, corresponding to the substring xbx.
This latter is repeated 2 times as requested by the quorum and it corresponds to
C3(C1 ∩ C2)C3, which does not match our definition of pattern. Notice that its
extent is different from that of C3C1C3 (that is {1, 5, 7}) and C3C2C3 (that is
{1, 3, 7}) that are both maximal 3-motifs. On the other hand, (C1 ∩ C2)C3C2,
which also occurs twice (at 2 and at 8) and it is not a k-pattern, has the same
occurrences as the s-motif C2C3C2.

Definition 9 A k-pseudo-pattern is a k-long sequence on the alphabet of the
subsets of the groups whose extent is not the extent of a k-pattern. We name
it a k-pseudo-motif if it occurs at least q times and we name pseudo-extent its
complete list of occurrences.

In Example 6 for k = 3 we have that {1, 7} is a pseudo-extent for the
pseudo-motif C3(C1 ∩ C2)C3 while (C1 ∩ C2)C3C2 is not a pseudo-motif and
thus {2, 8} is not a pseudo-extent because {2, 8} is also the extent of the motif
C2C3C2. Our concern on pseudo-motifs is motivated by the fact that, given
a cover G, there can be O(2|G|k) distinct pseudo-motifs of length k because
there are as many pseudo-patterns as the number of distinct k-long strings on
the alphabet of the subsets of G which are not k-patterns, that is 2|G|k − |G|k.
Notice, however, that a pseudo-extent can never be an extent of a maximal
motif because it is always included into the extent of a k-motif. Namely, if
the pseudo-motif is, say, x = C1 · · · (Ci ∩ Cj) · · ·Ck with extent L, then by
definition the k-motif m = C1 · · ·Ci · · ·Ck has an extent which is different from
L and it must necessarily include it because m occurs wherever x does. Hence,
due to Theorem 1, pseudo-motifs are not necessary to generate longer maximal
motifs. On the other hand, the overlap of two maximal motifs can generate a
pseudo-motif, as shown in the following example.

Example 7 In our running example L1 = {2, 6, 8}, L2 = {2, 4, 8}, L3 =
{1, 5, 7}, and L4 = {1, 3, 7, 9} are the extents of maximal 2-motif. If we perform
a 1-overlap of m3 and m2, we obtain the extent {1, 7} corresponding exactly to
the pseudo-motif exhibited in Example 6. The same happens overlapping m4

and m1.

Hence, when overlapping maximal motifs we can generate pseudo-motifs.
And not only generating pseudo-motifs would be useless, but they would even
introduce a serious drawback on the performance of the method. Indeed, given
how many the pseudo-motifs can be (and how many they are in practice as
we shall see in Section 7), generating them all at each step postponing their
detection and elimination to the exhaustive search of included extents would
result very inefficient, and mostly unfeasible. More precisely let us suppose
that, in the worst case, we have computed the ngk maximal k long motifs, and
that we compute the k + d long motifs using a k − d-overlap step. This will
result in possibly generating ng2k among motifs and pseudomotifs. As there

13

cannot be more than ngk+d k + d long motifs, the rest, i.e. ngk(gk − gd) are
pseudomotifs. Note that if k = d, i.e we make concatenation steps, then there
are no pseudomotifs at all. We will see in Section 5 a necessary condition on
motifs that will allow us to avoid to generate pseudo-motifs.

4.4 Properties of relational motifs

In this section we extend to the case of relational motifs all the definitions and
properties we have given in Sections 4.1, 4.2, and 4.3.

Similarly to the case of the cover G on the alphabet Σ, a relations degeneracy
gR notion exists on GR (defined in the obvious way analogously to Definition 8),
and this represents the degree of approximation on the relations in the very same
way as g does on the symbols’ alphabet Σ.

As we have seen in Example 2, in general to an extent X of a non relational
motif may correspond several distinct extents Xi’s of relational maximal motifs
(being them different subsets of X). This can be the case when in different
occurrences hold different relations. Moreover, the higher gR, and higher is the
theoretical possibility that the Xi’s can even overlap, giving rise to a further
combinatorial explosion of their number. Should these extents be at least as
large as q and maximal, we have to retain them all. Therefore, we have to
review the upper bound given in Proposition 4 in order to take into account
(approximate) relations as well. We point out that what we are seeking is not
simply the maximum number of motifs of fixed length, but rather an upper
bound of the total amount, over all the extents of relational `-motifs, of text
positions that appear in these extents. This will result in the maximum amount
of data we have to store at a generic step of the algorithm.

Theorem 2 Given a length `, a cover G (resp. GR) with degeneracy g (resp.
gR) for the alphabet Σ (resp. R), in a given relational input sequence of length
n, the total size of all extents of relational `-motifs is at most n(g`.g

`(`−1)/2
R).

Proof Consider any position x on the input sequence s. We have that each let-
ter can be at most in as many as g groups of the cover G, and thus at position
x can start occurrences of at most g` distinct motifs. Moreover, at the same
position x there can start a relation motif with its `(` − 1)/2 relations, each
one being in at most gR distinct relational groups; hence at x occur at most
g

`(`−1)/2
R relational motifs. Since there are less than n possible positions x, the

resulting upper bound is n(g`.g
`(`−1)/2
R). •

Again, this is the only theoretical upper bound we can give, but it is far
from being tight in practical cases, as we shall see in Section 7.

The compositionality of maximal motifs holds also for the relational case,
as the proofs of Lemma 1 and Theorem 1 can straightforwardly be extended to

14

prove the following.

Theorem 3 The extents of all maximal relational k-motifs can be computed
from the extents of maximal relational `-motifs for k/2 ≤ ` < k.

Finally, also the definition of relational pseudo-motif is a natural extension
of Definition 9. Namely, a relational k-pseudo-pattern is a k-long sequence on
the alphabet of the subsets of the groups in G, with a subset of the groups
in GR per each pair of positions 1 ≤ p1 < p2 ≤ k, whose extent is not the
extent of a relational k-pattern. A relational k-pseudo-pattern is a relational
k-pseudo-motif if it occurs at least q times. We omit examples of relational
pseudo-motifs as the notation can result heavy and, however, the concept is the
very same as that shown in Example 6. The overlap of two relational motifs
can generate a relational pseudo-motif (this can be seen adding any relation
between the two positions of the motifs of Example 7). Finally, notice that
by definition, also relational pseudo-motifs cannot be maximal. We omit the
counting of how many relational pseudo-motifs there can be in theory, as we
shall see in Section 7 how many occurrences of them we have in practice that
we actually avoid to generate as we prove in the next section.

5 The algorithm

5.1 The idea

Once again, we will begin with the simple case of non-relational motifs, and we
will point out later in Section 6 the peculiarities of the algorithm that guarantee
conserved relations as well.

As we have anticipated earlier, our algorithm performs an incremental in-
ference of maximal motifs of growing length, from short ones to those of the
required length, avoiding an explicit enumeration of all motifs. Indeed, we only
deal with their extents, resulting in a more compact and efficient representa-
tion. In this way, we sensibly decrease the phenomenon of the combinatorial
explosion of candidates. Their extents contain all the information we need for
filtering maximal motifs and generating longer ones by overlapping them. Only
a limited amount of additional information per each maximal extent will allow
us, as we will show, to avoid generating pseudo-motifs.

Our algorithm infers maximal k-motifs by incrementally extending maximal
motifs by means of pairwise overlaps, until the length k is reached. Roughly, for
a given constant d, it performs O(k/d) steps where in each one of them pairs
of maximal `-motifs undergo a (` − d)-overlap starting the set of all maximal
`0-motifs, with `0 being the smallest power of two greater than d (as no (`− d)-
overlap would be possible for ` < d). Hence, there is a first phase of O(log d)
steps where maximal motifs of growing length are generated with a constant
number of concatenations steps as in [15], until the length `0 > d is obtained.

15

In a second phase, there are O(k/d) steps where in each one of them pairs of
maximal `-motifs undergo a (`−d)-overlap and generate (`+d)-motifs. Each one
of these steps is concluded by a detection of non maximal motifs that are then
discarded. Finally, the very last overlap step might possibly involve a d′ < d in
case k− `0 is not a multiple of d. The parameter d will be input defined and its
choice will actually depend upon the application. More details will be given in
Section 6. In the next section we describe more formally the algorithm whose
correctness and completeness is partly due to Theorem 1, but also to further
results that will be proved in Section 5.3.

5.2 Pseudocode

Let us now describe in a more detailed way the O(k/d) overlap steps. At step
i (i ≥ 0) we have the extents of all maximal `i-motifs with `i = `0 + id, with
which we:

(i) Perform all possible pairwise (`i − d)-overlaps of two `i-motifs, computing
the extents of the resulting `i+d-motifs and storing from which pair of `i-motifs
they have been obtained.
(ii) Keep only those whose extents have size at least q.
(iii) Eliminate non-maximal and duplicated extents.

After these three steps we are left with all maximal and non duplicated
`i+1-motifs. This is iterated as long as `i < k. After that, if `i = k then we
have completed the task, and otherwise we perform a final (2`i − k)-overlap.
We now describe how we intend to minimize the amount of extents generated
at step (i) and thus also to speed up the filtering of step (ii), and especially
of step (iii) which otherwise would be an unbearable bottleneck. The idea is
that for each ordered pair I and J of maximal `i-motifs the extent of the `i+d

motif obtained by overlapping I and J is computed, and the fact that I is its
prefix and J its suffix is stored. Later on, whenever a motif X ′ is discarded
in phase (iii) because its extent is included into that of X, X ′ is eliminated
and X adds the prefix(es) and suffix(es) of X ′ to its. If this is the case, we
say that X inherits X ′. This storage of data about which maximal prefixes
and suffixes a motif comes from, and their inheritance for eliminated motifs is
motivated by the fact that actually the generation of a new motif will be con-
ditioned by whether or not a simple property concerning this data holds. This
condition, that we will refer to as prefix-suffix condition, will actually allow us
to be guaranteed not to generate any pseudo-motif, as we will see in next section.

At step i an `i-motif I is described by the following data: the identifier #I,
the extent LI , and a pair (PI , SI) of lists indicating the set PI of prefixes in
terms of identifiers used in step i−1 (omitting the #), and the set SI of suffixes
in terms of identifiers used in step i−1. For an efficient computation and for
ease of notation, we will also make use, at step i, of a vector Vi of length n such
that Vi[p] = {#I | p ∈ LI at step i}. The algorithm is the following.

16

// Initial Phase //
1. Create an identifier for each Gi ∈ G occurring in t and compute its extent;
2. Compute V1;
3. `0 := 1;
4. while `0 ≤ d do begin
5. for each maximal `0-motif I do for each x ∈ LI do
6. for each #J ∈ V1[x + `0] do
7. LIJ := LIJ ∪ x;
8. Eliminate non-maximal extents and duplications;
9. `0 := 2`0; end

// Overlap Phase //
i := 0;

10. repeat
begin

11. Compute Vi;
12. for each maximal `i-motif I do for each x ∈ LI do
13. for each #J ∈ Vi[x + d] do
14. if SI ∩ PJ 6= ∅ then begin LIJ := LIJ ∪ x; PIJ := I; SIJ := J end;
15. Detect and eliminate extents below quorum, non-maximal extents and duplications;
16. for each eliminated non-maximal or duplicated I ′ do

begin
17. choose one I such that LI′ ⊆ LI with I maximal;
18. PI := PI ∪ PI′ ; SI := SI ∪ SI′

end;
19. i := i + 1; `i := `i + d

end
20. until `i > k − d;

// Final Step //
21. if `i < k then same as lines 11− 15 with d = k − `i;

Notice that the pseudocode could be written in a much more compact way
grouping the three phases into a unique cycle parametrizing the size of the
overlap. We chose to display it as it is for ease of exposition. We denote with
LIJ the set LI ∩ (LJ − d) which is the extent which is possibly generated at
lines 12-14 by overlapping the two maximal motifs I and J (in fact, lines 12-14
are executed for each x ∈ (LI ∩(LJ −d))). The condition of line 14 is the prefix-
suffix condition. Although not explicitly processed (due to complexity reasons),
it is clear that a motif IJ obtained by an (`−d)-overlap of I and J inherits their
composition in the following way. If I (resp. J) was a duplication, it definitely
represents several s-motifs; let G1 . . . Gd . . . G` (resp. G′

1 . . . G′
`−d . . . G′

`) be any
s motifs of I (resp. J). We also denote this with I[i] = Gi (resp. J [i] = G′

i).
Then we have that IJ = G1 . . . Gd(Gd+1 ∩ G′

1) . . . (G` ∩ G′
`−d)G

′
`−d+1 . . . G′

`.
Therefore, IJ will be a motif only if for all such s motifs of I and J we will
have that for all 1 ≤ d ≤ `− d the intersection (Gd+i ∩G′

i) restricted to the set
LIJ + d + i is equal to Gd+i or to G′

i. In other words, definitely IJ [i] ∈ G for
1 ≤ i ≤ d and (` + 1) ≤ i ≤ (` + d), but for all positions where the occurrences

17

of I and J overlap, whether IJ is a motif is in general an open question whose
answer is relevant in terms of complexity issues and it is addressed in the next
section.

5.3 Correctness and Completeness

We here prove that the algorithm we just introduced is correct (that is, it outputs
only maximal k-motifs) and complete (it outputs all of them). Correctness
requires that only k-long motifs are output and among them only maximal
ones. The latter is guaranteed by line 15 of the pseudocode where non maximal
motifs are discarded. The former comes directly from the condition of line 20
and the setting of d at line 21. Completeness would be a direct consequence
of Theorem 1 should not be for the prefix-suffix condition SI ∩ PJ 6= ∅. In the
remaining of this section we show that this condition, together with the settings
of lines 16-18, does not affect the completeness of our method. To this purpose,
in particular, we need to show that this condition does not discard any maximal
and non duplicated motif, which is proved by the following theorem.

Given an `-motif I with extent LI in an input sequence s, we denote with I[p]
the set of groups that occur at position p of I. That is, I[p] = {g ∈ G | s[x+p] ∈
g ∀x ∈ LI}.

Theorem 4 Let q be the quorum and let I and J be maximal `-motifs such that
SI ∩ PJ = ∅ and |LIJ | ≥ q with LIJ = LI ∩ (LJ − d). Then we have that LIJ

is either a pseudo-extent or a duplication for length ` + d.

Proof Given that SI ∩ PJ = ∅, we must have that per each pair of (`− d)-
motifs SI, PJ such that SI ∈ SI and PJ ∈ PJ we have that SI 6= PJ .
This means that there must exist 1 ≤ p ≤ ` − d such that SI[p] 6= PJ [p]
and thus such that I[p + d] ∩ J [p] = ∅ (because I[p + d] ⊆ ∪SI∈SI

SI[p] and
J [p] ⊆ ∪PJ∈PJ

PJ [p]). Let us now consider position p + d of the candidate
(` + d)-motif IJ , that is IJ [p + d]. We have that no group g′ ∈ I[p + d] can be
in IJ [p+ d] because LIJ ⊆ (LJ − d), and thus g′ would belong to I[p+ d]∩J [p]
which is empty by hypothesis. Similarly, no group of J [p] can be in IJ [p + d],
otherwise it would also be in I[p + d] (because LIJ ⊆ LI), contradicting again
that I[p + d] ∩ J [p] = ∅. Therefore, LIJ is either the extent of a pseudo-
motif, or the extent of a motif that in IJ [p + d] has one (or more) group(s)
g′′ ∈ (G \ (I[p + d] ∪ J [p])). In this case, LIJ will be generated by another
overlap involving two motifs I ′ and J ′ (with I ′ 6= I or J ′ 6= J) whose suffix
(resp. prefix) list contains g′′ and for which the prefix-suffix condition holds. •

Theorem 4 guarantees that no maximal and non duplicated motif is discarded
(or, actually, not even generated) because of the prefix-suffix condition. The
next result concerns discarded non maximal motifs, and shows that it suffices
that only one motif inherits it. As a consequence, the total number of prefixes
and suffixes inherited by `-motifs does not exceed the number of maximal motifs
of length `− d. Moreover, this does not have to be a particular motif, but just

18

any maximal motif (e.g. the first detected). whose extents cover the one that
is discarded.

Theorem 5 Let LM1 , LM2 , LM ′ be three extents of `-motifs generated at step
i > 2 such that LM ′ ⊆ LM1 and LM ′ ⊆ LM2 and both M1 and M2 are maximal.
If (wlog) M1 inherits M ′ and M2 does not, then completeness is preserved.

Proof We show that if both M1 and M2 inherit a non maximal (or a dupli-
cated) motif M ′, then the resulting extents of (` + d)-motifs would be the same
as if only M1 did, except for possibly one or more non pseudo or duplicated
extents. This, together with the fact that pseudo-motifs can not be maximal,
ensures that the inheritance of M ′ by M2 would be redundant. Let us suppose
that M1 6= M2 (otherwise the result is trivial). We assume that both M1 and
M2 inherit M ′, and then show that any extension generated only thanks to the
fact that M2 has inherited M ′, is either non maximal or a duplication.

Let p′ (resp. s′) denote any prefix (resp. suffix) of M ′ that is inherited by
M1 and M2. Moreover, we denote with P2 (resp. S2) the set PM2 (resp. SM2)
of prefixes (resp. suffixes) of M2 without the inheritance of p′ (resp. s′). We
assume that p′ 6∈ P2, otherwise the result is trivial. Finally, we denote with P ′

2

the set P2 ∪ {p′} (resp. S′
2 = S2 ∪ {s′}).

Since LM ′ ⊆ LM1 and LM ′ ⊆ LM2 , it must be that LM1 ∩ LM2 contains
at least LM ′ and thus it is not empty. Let x denote a generic text position
belonging to LM ′ (and thus also to LM1 and LM2). We prove the thesis in
several different cases of set inclusions relations between LM1 , LM2 , and LM ′ :

1. LM ′ = LM1 ∩ LM2

1a. LMi
\ LM ′ 6= ∅ for both i = 1, 2.

Let o1 (resp. o2) be a generic element in LM1 \LM ′ (resp. LM2 \LM ′).
The extent of M1 will give raise in general, according to lines 12-14
(possibly filtered), to several extents of (` + d)-motifs of the form
LM1N for possibly several `-motifs N . Let us focus our attention
to those that contain any x ∈ LM ′ (the others do not concern the
goal of this proof). There will be, say, h of them that we will denote
with LM1N1 , LM1N2 , . . . , LM1Nh

where LM1Ni
will contain Xi ⊆ LM ′

for i = 1, ..., h. We have that if each set is generated and contains
x ∈ Xi, then for our hypothesis it must be that:

(i) #Ni ∈ V`[x + d], and
(ii) SM1 ∩ PNi 6= ∅.
Moreover, each LM1Ni may or may not contain also any position
o1 ∈ (LM1 \ LM ′).
Let us now consider the contribution of M2 to extents of (` + d)-
motifs, and in particular the extents that result there only because

19

s′ ∈ S2. Notice that the condition (i) above does not depend from
whether x is coming from LM1 or LM2 , and thus it also holds for
overlaps involving M2. Moreover, for all extents we are concerned
about, we have that also the equivalent of condition (ii) holds, that
is, S′

2 ∩ PNi 6= ∅ because s′ ∈ (S′
2 ∩ PNi). Therefore, we have that

LM2Ni will also contain Xi for i = 1, ..., h. No other extent will con-
tain elements of M2 caused by the inheritance of M ′. Moreover, if
the extent LM2Ni is generated only because s′ ∈ S′

2, it must be that
S2 ∩ PNi

= ∅. In this case, if #Ni 6∈ V`[o2] for any o2 ∈ LM2 \ LM ′ ,
then no position other than x ∈ Xi belongs to LM2Ni , and thus
LM2Ni = Xi ⊆ LM1Ni for all LM2Ni generated only because s′ ∈ S′

2.
Otherwise, if #Ni ∈ V`[o2], then LM2Ni would have been generated in
any case, also without M2 inheriting M ′. Therefore, all such LM2Ni

extents are non maximal or duplicated.

In a similar way, it can be shown that each extent of the form LNM2

that has been generated only because p′ ∈ (P ′
2 \ P2) is included (or

equal to) an extent LNiM1 . Hence, M2 inheriting M ′ has only led to
non maximal or duplicated extents.

1b. LM2 \ LM ′ 6= ∅, but LM1 \ LM ′ = ∅ (or vice-versa).
We have that LM1 = LM ′ is a proper subset of LM2 , and thus M1

is not maximal, contradicting the hypothesis. Similarly, we cannot
have that LM2 \ LM ′ = ∅ and LM1 \ LM ′ 6= ∅ because M2 could not
be maximal.

1c. LM1 = LM2 .
In this case we have that LM1 = LM2 = LM ′ , that is M ′ is maximal
but it is a duplication of both M1 and M2, and moreover also M1

and M2 are duplications of each other. Notice that since M1 6=
M2, it must be that they have been generated by means of different
prefixes and/or suffixes. This is just a particular (and simpler) case
of 1a where we have that for each i = 1, ..., h the extents LM1Ni

and LM2Ni only contains Xi because no o1 nor o2 exist, and thus all
entries LM2Ni generated only because s′ ∈ S′

2 result in duplications
of entries LM1Ni . Similarly, all extents of the form LNiM2 that have
been generated are duplications of extents of the form LNiM1 . This
actually holds for any extent that M2 could generate and in fact in
this case also M2 should have been inherited by M1.

2. If LM ′ (LM1 ∩ LM2

Let x, o1, o2 be as above, and let y ∈ (LM1 ∩ LM2) \ LM ′ . Let us consider
the same sub-cases a, b and c as in case 1.

2a. LM1 \ LM2 6= ∅ and LM2 \ LM1 6= ∅.
This is the most general case and it differs from case 1a only in that

20

the extents LM1Ni may now also contain one or more y ∈ (LM1 ∩
LM2) \ LM ′ next to Xi, or possibly only such y’s. But in this case
the corresponding LM2Ni would contain the very same y’s and thus
the inclusions still hold.

2b. LM2 \ LM1 6= ∅, but LM1 \ LM2 = ∅ (or vice-versa).
Similarly to the case 1b, this case is again impossible because we have
that LM ′ (LM1 (LM2 (resp. LM ′ (LM2 (LM1) and thus M1

(resp. M2) could not be maximal.

2c. LM1 = LM2 .
In this case we have that M1 and M2 are maximal duplications and
that M ′ is not maximal. This is a simple extension of case 1c where
nothing else than xi’s and y’s would appear in the extent generated
by M1 and M2, and the latter are equal to the former for the reasons
mentioned above.

The arguments above hold for any generic prefix or suffix (inherited or not),
and thus they can be extended to the case of sets of them. As a consequence,
the result can be iterated and applied to the case of inheritance of inherited lists
of prefixes and suffixes, until only maximal and non duplicated extensions are
left. •

Finally, observe that a recursive application of Theorem 5 shows that if the
list of extensions of a non maximal motif is included into those of p > 2 (not
necessarily all maximal) ones, then even in this case it is enough that one of
them inherits it. Summing up, we have thus proved the following result.

Corollary 1 At all steps i > 2, let p + 1 extents LM1 , LM2 , ..., LMp
and LM ′

of `-motifs be generated such that LM ′ ⊆ LMi
for i = 1, 2, ..., p. If only one of

the p motifs inherits M ′, then the resulting set of maximal (` + d)-motifs is the
same as if all of them (or a part of them) inherit M ′. •

5.4 Complexity

The algorithm consists of O(k) steps. The cost of step i depends from the
amount of motifs that have to be overlapped (at most as many as the maxi-
mal `i-motifs) and above all from how many extents they generate before the
elimination of non-maximal motifs takes place. We now show a crucial property
ensuring that no pseudo-motif is generated at any step.

Theorem 6 Let IJ be a (` + d)-long pseudo-motif that could be obtained by
overlapping two maximal `-motifs I and J . Then we have that SI ∩ PJ = ∅.

Proof Given that IJ is a pseudo-motif with pseudo-extents LIJ , it must be that
there exists d + 1 ≤ p ≤ ` such that IJ [p] = I[p] ∩ J [p− d] and I[p] 6= J [p− d].
Moreover, the (pseudo-)motif IIJ obtained by IJ setting IJ [p] = I[p] (resp
IJJ setting IJ [p] = J [p − d]) has strictly more occurrences that IJ itself. Let

21

LIIJ = LIJ ∪ Y1 (resp. LIJJ = LIJ ∪ Y2) with LIJ ∩ Y1 = LIJ ∩ Y2 = ∅.
As a consequence, it must be that LI = LIJ ∪ V and LJ = (LIJ + d) ∪ U
with U ⊆ (Y2 + d) and V ⊆ Y1 and thus that both U and V are not empty,
V ∩ LIJ = ∅ and (U − d) ∩ LIJ . Moreover, there is no intersection between
V and U − d (otherwise this would have end up in LIJ as well). Given that
V ⊆ LI , then any ` − d long suffix of I must have at least occurred in V + d.
Also, the fact that U ⊆ LJ means that any prefix of J must have occurred at
least in U . The fact that (V + d)∩U = ∅ excludes that any (`− d)-motif could
at the same time be (or have been inherited) a suffix of I and a prefix of J . •

Hence, no pseudo-motifs are generated at lines 12-14 due to the prefix-suffix
condition and Theorem 6. As a consequence, at each step it is enough to store
the extents of all generated motifs, and later on only those of all maximal
motifs with their list of prefixes and suffixes (which are at worst as many, given
that each eliminated motif leaves a constant size prefix and suffix information).
Therefore, the space complexity is the size of the former for which Proposition 4
gave us an upper bound of O(n·gk). Time complexity in the worst case coincides
with the cost of the overlapping phase. The repeat starting at line 10 is done
O(k/d) = O(k) times and its dominant parts are the nested for cycles of lines
12−14 and the inclusions detection of line 15. The former take O(n·gk) because
this is the maximum number of motifs it generates, and the latter takes O(n·g2k)
assuming it is made like in [15]. Therefore, overall the time complexity is in
O(k(ngk + ng2k)) = O(kng2k). Notice that it is linear in the input size.

6 Inferring Relational Motifs

We now show how the algorithm of Section 5 can be extended in order to take
into account also relations and how its correctness and completeness is pre-
served. We name this new algorithm KMRoverlapR. As we have anticipated,
the novelty starts with the fact that the input sequence is enriched with rela-
tions that hold between pair of distinct positions. The inference phase will use
this information in order to ensure that relations are conserved as well. Indeed,
we still manage the inference storing extents only. These now represent not
just repeated motifs, but rather repeated relational motifs. The overlap of two
relational submotifs of length ` that occur at distance d at least q times and in
the same relative order necessarily results into a (` + d)-motif (as before) that
also has conserved all relations between pairs of position that are at distance
at most ` and that come from the same submotif. The only new relations that
need to be checked are those between pairs of positions that belong to the two
different d-long non overlapped ends of the new motif. In other words, when
two `-motifs I and J are overlapped, the relations whose repetitions have to be
checked are those between a symbol at the ith position of I for all 1 ≤ i ≤ d
and a symbol at the jth position of J for all ` − d + 1 ≤ j ≤ ` for a total
of O(d2) checks to be done. Hence, at each step i, whenever the vector Vi is
checked (at lines 6 and 13 that is, when the occurrences of two `i-patterns are

22

detected at distance d so that their overlap is a (`i + d)-pattern), these O(d2)
comparisons are also made. In order to do so, we use a n × d matrix Wi that
stores in Wi[j, q] the relation groups CR’s whose relations hold between position
j and position j + `i− q of the input sequence. This is the only kind of relations
to be checked at step i. There are two possible results of these O(d2) checks
for the relations. In a first case we can have that in at least q occurrences of
the motif the relations are conserved as well, and then a new extent is created
per each distinct conserved relation group (this is the case of the 4-motif with
extent {1, 5, 7} in Example 2). In a second case, no relation is conserved at least
q times and the motif is discarded (like the 4-motif with extent {2, 6} in Exam-
ple 2). For all other features of the algorithm, everything can be left unchanged.

It remains to show that the prefix-suffix condition on relational motifs keeps
on ensuring that all and only relational pseudo-motifs are discarded. This is
stated in the following result.

Theorem 7 The following results hold:

1. Let q be the quorum and let I and J be maximal relational `-motifs such
that |LIJ | = |LI ∩ (LJ − d)| ≥ q and SI ∩PJ = ∅. Then we have that LIJ

is either a relational pseudo-extent or a duplication.

2. Let LM1 , LM2 , LM ′ be three extents of relational `-motifs generated at step
i > 2 such that LM ′ ⊆ LM1 and LM ′ ⊆ LM2 and both M1 and M2 are
maximal. If (wlog) M1 inherits M ′ and M2 does not, then completeness
is preserved.

3. At all steps i > 2, let p+1 extents LM1 , LM2 , ..., LMp and LM ′ of relational
`-motifs be generated such that LM ′ ⊆ LMi for i = 1, 2, ..., p. If only one
of the p relational motifs inherits M ′, then the resulting set of maximal
relational (` + d)-motifs is the same as if all of them (or a part of them)
inherit M ′.

4. Let IJ be a (` + d)-long relational pseudo-motif that could be obtained by
overlapping two maximal relational `-motifs I and J . Then we have that
SI ∩ PJ = ∅.

Proof The proofs of parts 1, 2, and 4, are straightforward extensions of those
of Theorems 4, 5, and 6 respectively. The proof of part 3 is the extension to
relational motifs of Corollary 1, that is a consequence of 1. and 2.. •

Summing up, the correctness and completeness of the algorithm introduced
in this section, are based on the following result.

Proposition 5 A k-pattern is a relational k-motif if, for any 1 ≤ d < k/2:
(i) Its (k − d)-long prefix I is a relational motif (from Theorem 3).
(ii) Its (k − d)-long suffix J is a relational motif (from Theorem 3).
(iii) Its relations between all d2 pairs of positions (l, r) with 1 ≤ l ≤ d and

23

(k − d + 1) ≤ r ≤ k are conserved in at least q of its occurrences.
(iv) It satisfies the quorum (by definition).
(v) SI ∩ PJ 6= ∅ (from Theorem 7).

where condition (iii) is ensured by the way we have extended the algorithm
to the case of relational motifs as described earlier in this section.

From part 4 of Theorem 7, we know that the prefix-suffix condition does
not allow to generate any relational pseudo-motif. Hence, we still have that the
total size of all the extents of motifs that can be generated at each step is at
most as much as the upper bound given in Theorem 2. Hence, the complexity
of KMRoverlapR changes with respect to that of Section 5 because now also
the degeneracy gR of the relations has to be taken into account. Assuming that
d is a constant and thus the cost of the O(d2) relations tests is negligible, the
time complexity of KMRoverlapR can be computed as in Section 5.4, except
that here the upper bound on the number of maximal motifs of fixed length is
that given by Theorem 2. Therefore the time complexity of KMRoverlapR is in
O(kn(g2kgk2

R)). Reminding that in KMRoverlapR the input size is no longer n
but rather n · k, the complexity is again linear in the input size.

7 Applications to 3D protein structures

7.1 Implementation details

In this section we sketch our implementation of KMRoverlapR describing the
data structures we use and the way we realize the main steps of the method.

We now list the data structure we keep at each step, assuming that at step
i we begin with all and only maximal motifs of length `i.

• v : It is a vector of stacks having the size of input string. For each
1 ≤ p ≤ n, the stack at v[p] contains the (identifier of the) maximal
`i-motifs that occur at position p of the input sequence.

• w : It is a matrix of size u × d. At each step the entry w[p, j] (with
1 ≤ p ≤ u and 1 ≤ j ≤ d) contains the list of relations groups between
positions p and j.

• p : It is another vector of stacks that contains the same information as v,
but it is indexed with the motifs’ identifiers. It is as long as the number
of distinct maximal `i-motifs, and p[I] contains LI in a stack.

• Qa : It is a vector of stacks of the same size as p and indexed in the
same way. The entry Qa[I], indicated in Figure 1 as I, contains a list of
extents, each one being the list of occurrences of an (`+d)-motif obtained
with an overlap involving I as a suffix (and a J as prefix which is shown
at the beginning of each extent in light grey in Figure 1).

24

• Qb : It is yet another vector of stacks built from Qa by a further filter or
subdivision of extents. Each extent contained in Qa[I] is either eliminated
if it does not satisfy the quorum, or it is subdivided into one or more new
extent(s) each corresponding to the occurrences of a motif with conserved
relations as well (a relational motif).

• The list of prefixes and suffixes associated with each motif are stored in a
binary search tree.

Figure 1 shows with a simple example the data structures we just described
as well as the main steps of the algorithm that we describe as follows.

1. Init() : It is executed only once at the beginning and it performs the
initialization constructing the first vector v for patterns of length 1. That
is, it tells — for each position of the string — which groups contain the
letter occurring at that position. In Figure 1 we can see that the identifiers
1, 2 and 3 are associated to the three groups (motifs of size one coincide
with the groups), and that a vector v of size 10 is created indicating where
these occur. Moreover, there are three groups of relations that we indicate
in black, grey and dashed.

2. BuildQa() : It builds the stack vector Qa. We are building motifs of
length `i + d from the `-motifs indexed in p. For each stack of p referring
to motif I, a list of stacks is built, each one containing the extents LJI =
LJ ∩ (LI − d) for an `-motif J such that LJI 6= ∅ and SJ ∩ PI 6= ∅. In
Figure 1 the list of prefixes and suffixes are not shown at the step describing
BuildQa because for ` = 1 they still do not exist. As an example in figure
1, the first position in p is 10 (as in stacks we start from the right) and is
the last one in vector v. It is therefore discarded. The second position in
p, 9, in pushed in stack ”1” of Qa as identifier 1 is v at position 9+1.As we
are in stack 1 of p, identifier 1 is also pushed in Qa (in grey, first number
in Qa).

3. BuildQb() : It builds the stack vector Qb. Each extent of Qa is pushed in
Qb in stacks each one corresponding to a newly inferred relational motif.
In Figure 1, only needed relations are shown, that is relations between
positions j and j + `i+1 − 1 (vector w). For example, the first position in
Qa is 4 (starting from the right). There are two relations groups between
positions 4 and 5: as we can see in vector w, we have both black and grey
relations groups (CR1 and CR2). Position 4 is therefore pushed in two
stacks of Qb (stacks CR1 and CR2). The grey numbers before position
number 4 in Qb (1 and 3) are the prefixes and suffixes for the next step.

4. BuildV() : The new vector v is built. Each stack L of Qb is associated to
a new identifier corresponding to a relational `i+1-motif and this identifier
is pushed in v[i] for each position i occurring in the stack L. For each one
of this new identifier, the suffix list is initialized with the number of the
entry of Qb where L has been taken (corresponding indeed to the `i-motif

25

that was the suffix in the overlap). Similarly, the prefix list is initialized
with the number that we have indicated in light grey in Qa of Figure 1
at the beginning of each L (corresponding to the prefix J involved in
the overlap with I). At this point the quorum is checked and the motifs
that do not satisfy it are discarded and not inserted in v (actually the
assignment of new identifiers is made only after this deletions). This is
the case in Figure 1 of the extent {1} that is crossed in Qa and the extent
{9} that is crossed in Qb. Now the rightmost entry of v is definitely empty
as there cannot be a motif whose occurrences ends after the last position
of the sequence, and hence the size of v can be decreased by 1 at each
step. From v, its dual vector p is also built showing at position p[I] the
extent LI .

5. FilterV() : The vector v is filtered. Here non maximal and duplicated
motifs are eliminated. They are detected by means of inclusion tests2 in
the extents listed in the vector p generated by BuildV (). As an example, in
Figure 1 the entries number 2 and 3 in p are eliminated as shown and their
prefixes and suffixes are inherited by the first motif. After this filtering
phase, the motifs are re-numbered and a new version of v is generated.
The vector v and its lists of prefixes and suffixes are now ready to be the
starting point of step i + 1 of the inference that starts with all distinct
maximal motifs of length `i+1.

7.2 Finding repeated substructures: preliminaries

A promising area of application of KMRoverlapR is the search for repeated mo-
tifs in mono or multidimensional signals or series. In this case we have in general
a sequence of points in a multidimensional space. There are then basically two
options to represent relative positions in terms of relations. A first way is to
define a relation between two points xp and xq by discretizing the coordinates
of the vector −−−−−→xq − xp. In the simple case of linear space in which the signal is
a sequence of numbers, we can set for example GR = {{≥}, {<}}, i.e we have
either xq ≥ xp or xq < xp. For instance, let us consider the input sequence
of integers t = 1 4 8 9 5 4 8 7 14 2 9 4 4, and suppose that we consider only
relations, i.e. all values belong to a unique group and hence g = 1. Then the
relational 3-motif p1p2p3 such that {p2 ≥ p1, p3 < p2, p3 < p1} has the occur-
rence 8 9 5 at position 3 of t, and the occurrence 7 14 2 at position 8 (they
are indicated in bold above). Note that here we have also gR = 1, and hence
such relational k-motifs can be extracted in O(n · k) time and space. A second
possibility, which is what we actually adopt, is to define the relation between
two points xp and xq by discretizing the Euclidian distance d(xq, xp). In this
case, a relational value represents a distance between two points, and thus —

2The way this inclusion test is performed deserved a special investigation that we have
described in [14].

26

Figure 1: Example with the input string ”aacbdacbdd” on Σ = {a, b, c}, the cover G =

{C1 ={a, d}, C2 ={a, c}, C3 ={b}}, and q=2. We omit data structures and procedures (resp.

Qb and BuildQb) concerning relations as they are logically the same as what we do show.

27

Figure 5: A numeric structural sequence S defined as a sequence of 3-D points.

r1,4 = 4 r6,9 = 6

r1,3 = 3 r2,4 = 3 r6,8 = 3 r7,9 = 5

r1,2 = 3 r2,3 = 4 r3,4 =3 r6,7 = 5 r7,8 = 4 r8,9 =2

Figure 6: Relational representation of two subsequences in S.

 Cr3

 Cr1 Cr2

Cr2 Cr1 Cr1

Figure 7: M: relational word.

A work is in progress to evaluate results obtained in searching for repeated 3D structural motifs on proteins

backbones when using KMRCRelat and internal distances based descriptions. The results are compared to those

obtained with GOK [5, 8] that uses KMRC together with a non-relational representation of the protein backbone

as a sequence of pair of angles. The theoretical superiority of the relational approach relies here on avoiding a

possible addition of angle errors when defining 3D-substructures as similar.

Another immediate application of KMRCRelat concerns the case where the sequence S corresponds to the

biological sequence of a protein. In fact, S can represent the concatenation of a set of sequences. Given a set of

protein sequences, KMRCRelat searches the longest word that is repeated in the sequence. For amino acids

sequences for example, the relation between amino acids may be easily obtained by setting a threshold on a

similarity matrix such as PAM250. More generally KMRCRelat can be applied to find repeated relational

words on numerical sequences. There is a set of chemical and physical properties of interest regarding protein

sequences. Hydrophobicity is one of the most important properties. and each aminoacid is assigned a specific

value describing her hydrophobicity. Together with the absolute value of hydrophobicity, the relation between

values at various position in the sequence can indicate periodicities related to the structural description of the

protein. For instance, when we use the hydrophobic values of amino acids, the difference between the values

found in two positions leads to a relational value..We regroup then together all elements having a difference

between their hydrophobic values less than a threshold value. We also define a stitch number for gathering

relations in a relational cover. A stitch number is defined as the maximal difference between the elements of a

relational group. We give hereunder a simplified example of relational numerical words searched for in an

integer sequence.

Example 1: Let S = ‘1 4 8 9 5 4 8 7 10 4 9 4’ be a numerical sequence. Let’s consider one alphabet cover

containing all components of the sequence S, C1={1, 4, 5, 8, 9, 10}.Two relational values ri and rj,

corresponding to the difference between two numerical values, will be in the same relational group if and only if

the difference between them |ri - rj| is less than the stitch number. In this example, the relational groups are

Cr1={1, 2 ,3}, Cr2={2, 3, 4}, Cr3={3, 4, 5}, and so on, as the sticth number is 2. We so calculate differences

between an element si and all it’s successors (sj where j>i) . Then this difference d(si, sj) is used to define

difference interval by extreme values ri , ..., rk.

Figure 8 represents two occurrences of a relational word.

Figure 8: Two occurrences of a relational word M.

r(1,3)=3

r(1,2)=-1 r(2,3)=4

s1= 8 s2= 9 s3= 5

r(1,3)=3

r(1,2)=-3 r(2,3)=6

s1= 7 s2= 10 s3= 4

Figure 2: A sequence of 3D points with the distances represented as labels of
the edges relating the nodes associated to the points. The two occurrences are
p1− p2− p3− p4 and p6− p7− p8− p9 in a 9-long sequence t.

unlike in the previous case — the motifs’ occurrences are insensitive to trans-
lations and rotations. Such internal distances between atoms were first used in
[3] to search structural motifs in the general context where all the atoms of the
protein were considered. In [5], we have a first example in which a degree of
approximation is also allowed. As an example of relational motifs representing
a structure by using discretized distances as relations, Figure 2 describes two
occurrences of a motif of length 4 where we consider that a prior discretization
of the distances has been performed so that relations are then positive integers.
We then consider a set of relational groups {Rj = {j, ..., j + δ}} where δ repre-
sents the approximation level: two discretized distances d(xp, xq) and d(xp′ , xq′)
belong to the same group whenever |d(xp, xq)− d(xp′ , xq′)| ≤ δ. Note that as a
consequence we have gR = δ + 1. In the example of Figure 2, we consider δ = 1
and so gR = 2, and we find two occurrences of a 4-long relational motifs (with
q = 2).

Hereunder we give an example of the results obtained when searching a
structural pattern repeated in the backbone of several proteins. In particular,
we report here the results concerning the amount of pseudo-motifs and non
maximal motifs, as well as maximal ones, that we have in a series of overlap
steps. This data motivates most of the technical results of this paper (we shall
see biological results on the same data in Section 7.3). Note that here we have
to slightly adapt the algorithm in order to find patterns that occur at least q
times in a set of m protein structures. Here m = q = 4. The distances between
α-carbon are discretized using 1.5Å-long intervals, with a tolerance level δ = 2
and so gR = 3. Here ` long motifs are obtained from (` − 3)-long one, and
hence d = 3. The average length of the sequences considered is about 400. For
each step building maximal `-long motifs overlapping two (` − 3)-long motifs,
we give below the total number of occurrences for the generated `-long motifs,
the number of occurrences of pseudo-motifs that are avoided at that step thanks
to the prefix-suffix condition, the number of `-motifs that satisfy the quorum
q = 4, the number of resulting maximal `-long motifs that survive the inclusion
test (and that are hence used at the next step), and finally the total number of

28

occurrences of these latter3:

`− 3 → ` generated avoided number maximal occ. of
occurrences occurrences of motifs motifs max. motifs

4 → 7 8,335 0 153 76 16,918
7 → 10 104,006 77,882 7,565 1,439 84,390
10 → 13 1,410,871 4,223,925 78,847 4,181 157,311
13 → 16 4,438,142 23,143,653 97,401 628 4,896
16 → 19 13,160 31,763 629 25 129
19 → 22 41 43 5 2 9

It is clear that the amount of occurrences of the pseudo-motifs is consid-
erable. Should they be generated, their detection and elimination would be
postponed to the inclusion test, and hence become unbearable. Moreover, these
results also show that the number of maximal motifs, and also that of their
occurrences, is sensibly smaller than that of generated motifs. This motivates
the validity of our choice to focus our attention on maximal motifs. Indeed,
although in theory the upper bound on the number of maximal motifs in the
worst case is the same as motifs (that is, they can all be maximal), in practice
the difference is sensible.

7.3 Some results on cytochromes P450 proteins

Hereunder we give an example of the results obtained when searching a struc-
tural pattern repeated in the backbone of several proteins. As anticipated ear-
lier, both the framework of relational motifs and the KMRoverlapR solutions
we suggested are very general. Depending from the specific application they
are used for, they can be instantiated to increase specificity or sensitivity, or to
speed up the inference. Observe, for example, that in a 3D protein structure the
distances between two positions that are pairwise adjacent are not independent
between each other. In other words, consider two positions p and q of the input
sequence. Assume that they are part of occurrences of two relational motifs
(respectively P and Q) that are distinct but that overlap. Since P (resp. Q)
is a relational motif, we know that the distance between positions, say, p and
p + 1 (resp. q and q + 1) are conserved in the occurrences of P (resp. Q). The
same holds for p and p − 1 (resp. q and q − 1). When we overlap P and Q, if
p and q belong to parts that were not overlapping, the conservation of the rela-
tion between this two positions has to be checked. Nevertheless, if the relations
between p− 1 and q− 1 are conserved as well as those between p + 1 and q + 1,
then it is unlikely (actually impossible under reasonable degeneracy conditions)
that the relations between position p and position q are not conserved. Due to
our choice of relations (see below for details), in our applications on 3D proteins
we can safely check only relations every, say, 3 positions without affecting the
sensitivity of the method, while considerably speeding up the inference. Indeed,

3In this experiment only one relation is checked to form a new motif rather than d2 (see
section 7.3 for details).

29

in the experiment we describe in this section, we have performed overlap steps
with d = 3 and at each step when we overlap two `− 3-motifs in order to build
an `-motif, we have checked only the relations between the two extreme sides
(position 1 and position `) of the new `-motifs. In this way, at each step we
only check the conservation of one relation instead of checking it for the 32 = 9
new relations. We have verified that by doing this, we do not miss any biologi-
cally meaningful motif. In general, we have that starting from the length `0, we
incrementally infer motifs of length `0 + d, `0 + 2d, and so on, until length k is
reached. If we replace the d2 relations check with only one between the extreme
positions, then the relations that are not tested in a k-motif are those of the set
E(1, k, d) where E(p, k, d) for 1 ≤ p ≤ k is recursively defined as follows with
d < `0 < ` ≤ k.

• E(p, `0, d) = ∅.

• E(p, `, d) = E(p, ` − d, d) ∪ E(p + d, ` − d, d) ∪ {(i, j) | p ≤ i ≤ p + d −
1, p + `− d ≤ j ≤ p + `− 1, (i, j) 6= (p, p + `− 1)}.

We chose to study structures of the cytochrome P450 multigenic superfamily
(CYP, P450). They are proteins involved in many oxidations of hydrophobic
substrates. The substrates are steroid hormones, extracellular fatty acids sig-
nalling molecules and vitamins but also exogenous substrates as drugs or en-
vironmental pollutants (see [6] for an historical review). These P450s can be
found in many living beings: bacteria, yeast, fungi, plants, insects, fishes and
mammals. They have been widely investigated notably because of their role in
drugs degradation. Their amino-acids primary sequences are dissimilar in spite
of their structural similarities. We selected four cytochrome P450 structures:
three from bacteria (PDB codes 1CPT, 2HPD chain B and 3CPP) and one from
fungi (PDB code 1ROM). Note that here the algorithm searches for patterns
that occur at least q times in a set of m protein structures. Here m = q = 4. As
above, the distances between α-carbon are discretized using 1.5Å-long intervals,
with a tolerance level δ = 2 (so that the degeneracy is 3). The average length
of the sequences considered is about 400 amino acids.

We focused on the structural motifs found on all of the 4 proteins. The results
are the five motifs that are shown in Figure 3. Such motifs were previously
identified in [7], using different techniques, on 3 out of these 4 proteins, showing
the sensibility of the method we introduced in this paper. In Figure 4 we exhibit
the alignments of the structures belonging to different protein sequences. These
show that indeed our method succeeds in finding conserved structures, and
hence that the relations are a good choice to represent structural information.

8 Conclusions

The first use of relational motifs (without a degenerate alphabet) can be found
in [2] to extract repeated RNA secondary structures. In this work an RNA
secondary structure was defined as a sequence of helices, i.e. as an ordered set

30

Figure 3: Five structural relational motifs found in four cytochromes P450: two
of 22 amino acids, two of 19 and one of 16. They are shown only on protein
3CPP.

of possibly overlapping subsequences of the RNA sequence. In this case the
structure is represented as the set of relations (amongst include, overlap and
disjoint) between the helices. In [2] an ad hoc coding scheme was used allowing
to reduce the extraction of such k-long motifs to the extraction of prefixes of
k-long words in a dictionary. The overall complexity of the resulting KMR-like
algorithm was O(n · k) like KMRoverlapR in the case g = gR = 1. However,
note that the coding scheme only applies to relations encountered when motifs
are union of possibly overlapping intervals [16] as it is the case when dealing
with temporal motifs [1]. As a matter of fact, it would be interesting to use
the relational variant of KMRoverlapR to extract more flexible repeated RNA
secondary structures in RNA sequences using a degenerate alphabet to describe
the helices, and still using crisp relations (gR = 1) to describe the relations
between helices.

Notice that there are applications where actually the number of relations to
be taken into account, in the non degenerate case, can be bounded by a con-
stant number that depends from the specific problem addressed. This is the

31

(a) 22-motif (b) 22-motif (c) Same 22-motif

(d) 19-motif (e) 19-motif (f) 16-motif

Figure 4: Details of the 5 motifs found in the 4 P450. The second one is shown
twice (4(b) and 4(c)) as it has two occurrences in protein 1ROM which overlaps
(the first one begins at residue 248 and the second one at residue 258, darker
on the figures).

case in particular when searching for geometrical motifs in a d-dimensional Eu-
clidian space, like the 3D space used to represent the structure of proteins. In
the degenerate case, the interesting one for practical applications, this allows to
obtain a good approximation when checking occurrences of a relational k-motif,
by only checking a number of relations linear in k and to perform the computa-
tion with a fixed length overlap. As a result only log k steps are performed, the
number of k-long motifs is in O(ngk

R) rather than in O(ngk2

R), and the overall
complexity of the relational algorithm is similar to the complexity of KMRC.

In Section 7.3 we have shown motifs of different length, namely 16, 19, and
22 as we have used d = 3. Obviously, a 22-motifs contains for example 3
distinct motifs of length 19 that we have discarded because they are certainly
less significant than their extension in length since they occur nowhere else. A
future work we are planning is to conceive a notion of maximality relating motifs
of different length, and possibly an efficient way to infer them.

References

[1] K. Bouandas and A. Osmani. Optimal algorithm for temporal patterns
discovery. In FLAIRS-2003, pages 455–460. AAAI Press, 2003.

[2] D. Bouthinon and H. Soldano. A new method to predict the consensus
secondary structure of a set of unaligned rna sequences. Bioinformatics,

32

15(10):785–798, 1999.

[3] C. W. Crandell and D. H. Smith. Computer-assisted examination of com-
pounds for common three-dimensional substructures. Journal of Chemical
Information and Computer Sciences, 23(4):186–197, 1983.

[4] N. El-Zant and H. Soldano. Finding repeated flexible relational words in
sequences. Journal of Systemics, Cybernetics and Informatics, 2(4), 2004.

[5] V. Escalier, J. Pothier, H. Soldano, and A. Viari. Pairwide and multi-
ple identification of three-dimensional common substructures in proteins.
Journal of Computational Biology, 5(1):41–56, 1998.

[6] R. W. Estabrook. A passion for p450s (rememberances of the early history
of research on cytochrome p450). Drug Metab Dispos, 31(12):1461–73, 2003.

[7] P. Jean, J. Pothier, P. M. Dansette, D. Mansuy, and A. Viari. Automated
multiple analysis of protein structures: application to homology modeling
of cytochromes p450. Proteins, 28(3):388–404., 1997.

[8] N. C. Jones and P. A. Pevzner. An Introduction to Bioinformatics Algo-
rithms. The MIT Press, 2004.

[9] R. Karp, R. Miller, and A. Rosenberg. Rapid identification of repated
patterns in strings, trees and arrays. In Fourth ACM Symposium on Theory
of Computing, pages 125–136, 1972.

[10] M. Lothaire. Applied Combinatorics on words. Cambridge University Press,
2005.

[11] L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs
using a suffix tree with application to promoter and regulatory consensus
identification. Journal of Computational Biology, 7:345–360, 2001.

[12] N. Pisanti, M. Crochemore, R. Grossi, and M.-F. Sagot. A basis of tiling
motifs for generating repeated patterns and its complexity for higher quo-
rum. In B.Rovan and P.Vojtás, editors, Mathematical Foundations of Com-
puter Science, LNCS 2747, pages 622–631. Springer-Verlag, 2003.

[13] N. Pisanti, H. Soldano, and M. Carpentier. Incremental Inference of Re-
lational Motifs with a Degenerate Alphabet. In Combinatorial Pattern
Matching (CPM), pages 229–240. Springer-Verlag, 2005. LNCS 3537.

[14] N. Pisanti, H. Soldano, M. Carpentier, and J. Pothier. Implicit and ex-
plicit representation of approximated motifs. Technical Report TR-05-19,
Dipartimento di Informatica, Università di Pisa, 2005.

[15] H. Soldano, A. Viari, and M. Champesme. Searching for flexible repeated
patterns using a non-transitive similarity relation. Pattern Recognition
Letters, 16:243–246, 1995.

33

[16] S. Vialette. On the computational complexity of 2-interval pattern match-
ing problems. Theoretical Computer Science, 312(2-3):223–249, 2004.

34

