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{bartolet, degano, giangi}@di.unipi.it

February 1, 2007

Abstract

A static approach is proposed to study secure composition of services.

We extend the λ-calculus with primitives for selecting and invoking ser-

vices that respect given security requirements. Security-critical code is en-

closed in policy framings with a possibly nested, local scope. Policy fram-

ings enforce safety and liveness properties. The actual run-time behaviour

of services is over-approximated by a type and effect system. Types are

standard, and effects include the actions with possible security concerns —

as well as information about which services may be invoked at run-time.

An approximation is model-checked to verify policy framings within their

scopes. This allows for removing any run-time execution monitor, and for

determining the plans driving the selection of those services that match

the security requirements on demand.

1 Introduction

Service-oriented computing (SOC) is an emerging paradigm to design distributed
applications [39, 38, 20]. In this paradigm, applications are built by assembling
together independent computational units, called services. A service is a stand-
alone component distributed over a network, and made available through stan-
dard interaction mechanisms. An important aspect is that services are open, in
that they are built with little or no knowledge about their operating environ-
ment, their clients, and further services therein invoked. Composition of ser-
vices may require peculiar mechanisms to handle complex interaction patterns
(e.g. to implement transactions), while enforcing non-functional requirements
on the system behaviour (e.g. security and service level agreement). Web Ser-
vices [1, 43, 47] built upon XML technologies are possibly the most illustrative
and well developed example of the SOC paradigm. Indeed, a variety of XML-
based technologies already exists for describing, discovering and invoking web
services [14, 16, 12, 48]. There are also several standards for defining and enforc-
ing non-functional requirements of services, e.g. WS-Security [3], WS-Trust [2]
and WS-Policy [46] among the others. Orchestration of services consists of their
composition and coordination. Languages for that have been recently proposed,
e.g. WS-BPEL [12, 32].
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Service composition heavily depends on which information about a service is
made public, on how to choose those services that match the user’s requirements,
and on their actual run-time behaviour. Security makes service composition
even harder. Services may be offered by different providers, which only partially
trust each other. On the one hand, providers have to guarantee the delivered
service to respect a given security policy, in any interaction with the operational
environment, and regardless of who actually called the service. On the other
hand, clients may want to protect their sensible data from the services invoked.

In this paper, we tackle the problem of modelling composition of services
in the presence of security constraints. Our main result is a semantic-based
method to plan which services an application has to choose in order to complete
the original task, while guaranteeing security.

Our first technical contribution is on a foundational calculus for service or-
chestration, called λreq . We model services as expressions of a typed extension
of the λ-calculus with primitive constructs to describe and compose services,
being selected to enforce the given requirements. Indeed, our selection mecha-
nism matches (suitable abstractions of) service behaviour, rather than syntactic
signatures, as it happens in the standard discovery mechanisms.

We are interested in enforcing safety and liveness properties over the abstract
behaviour of services. This kind of properties have shown effective to reason
about security. For example, history-based access control can be handled as
safety properties [4, 42], while liveness properties can be exploited to formalize
denial-of-service and brute-force attacks on cryptographic keys [24]. Here, we
assume as given a set of primitive access events, that abstract from activities
with possible security concerns. The security policies are regular properties of
execution histories (i.e. sequences of access events) and have a possibly nested,
local scope. Given an expression e, a safety framing ϕ[e] enforces the policy ϕ
at each step of the execution of e. A liveness framing ψ〈e〉 prescribes that the
evaluation of emust eventually respect the policy ψ. Our results are independent
of the logic chosen for expressing regular properties of sequences, so we do not
fix any logic here.

We shall exploit a static analysis technique to determine plans that drive ser-
vice executions enjoying both safety and liveness properties. Note that, while
safety properties can be enforced by an execution monitor, liveness properties
cannot [40]. Also, liveness cannot be reduced to safety in general. Moreover,
here we cannot predict any bound on the time a service needs to be completed,
hence e.g. bounded liveness – a safety property – is inadequate. The considera-
tions above further support the use of static techniques.

We introduce a type and effect system [25, 37, 44] for our calculus. Types
are standard, while effects, called history expressions, represent all the possible
behaviour of services. A service is modelled as a λreq expressions with a func-

tional type of the form τ1
H
−→ τ2. Intuitively, when supplied with an argument

of type τ1, the service evaluates to a value of type τ2, and the side effect of
the invocation is an execution history belonging to the history expression H . A
service request is modelled by an expression reqrτ , where r uniquely identifies
the request, and τ is the type of the requested service, including the safety and
liveness properties on demand. The safety constraint says how the caller pro-
tects itself from the service. Instead, the liveness constraint can be seen as the
duties the invoked service must fulfill.
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For simplicity, here we assume that services are published in a global trusted

repository, i.e. a set of typed expressions {e1 : τ1
H1−−→ τ ′1 · · · ek : τk

Hk−−→ τ ′k}.
Types are the semantic information made visible about services. Operationally,
a service request reqrτ results in a sort of “call-by-contract”: the repository
is searched for a service with a functional type matching the request type τ ;
additionally, its effect H should respect the safety and liveness constraints in τ .
The effect of a service invocation reqrτ has the form {r[`1]BH1 · · · r[`k]BHk},
where r[`i] resolves the request r with the service ei in the repository. We say
that Hi is valid when it respects the safety and liveness constraints in τ , as well
as all the security framings within Hi itself.

The effect H of a service composition e is obtained by suitably assembling
the effects of the component services, and of those services they may invoke in a
nested fashion. Note however that composing the effects of the selected services,
yet valid, may result in a non-valid overall effect. This is because the effect of
selecting a given service for a request is not confined to the execution of that
service, but it spans over the whole execution. The validity of the effect H of e
depends thus on the plan that selects a service for each request. It is convenient
to lift all the service choices r[`] to the top-level of H , collecting them in a set π,
called plan. We define then a semantic-preserving transformation that results
in effects of the form {π1 B H1 · · ·πn B Hn}, where each Hi is free of further
choices. Its intuitive meaning is that, under the plan πi, the effect of the overall
service composition e is Hi. If some Hi is valid, then the plan πi will safely drive
the execution of e, without resorting to any run-time monitor, and guaranteeing
all the safety and liveness properties required.

Validity of history expressions is still to be ascertained. We do that by model
checking (a suitable version of) Basic Process Algebras (BPAs) with finite state
automata. A history expressions H is naturally rendered as a BPA process,
while a finite state automaton models the validity of H . Because of the possible
nesting of framings, validity of history expressions is a non-regular property, so
standard model checking techniques cannot be directly applied. We transform
then history expressions so to make model checking feasible through specially-
tailored finite state automata.

2 Motivating examples

To illustrate our approach, consider a simple certification service that wants to
attest a contract between two external parties, while enforcing its own privacy
policy. Since specifying a privacy policy can be difficult and error-prone, this
task is delegated to a trusted policy provider.

Policy providers return a safety policy ϕ in the form of a closure λx. ϕ[x]
(indeed, policies are not first class objects in our model). The policy ϕ has to be
enforced in the subsequent execution of the certification service, i.e. (λx. ϕ[x])e
will evolve to ϕ[e]. This paradigm can be seen as a form of dynamic sandboxing.
The published interface of policy providers guarantees that the distinguished
event αp (modelling the return of a policy) will eventually occur.

To assert its willingness to provide clients with a signed and non-repudiable
copy of the contract, the certification service encloses its code into a liveness
framing ψ〈· · ·〉. The property ψ states that eventually there will be a signature
(modelled by an event αsgn) with no subsequent revocation (the event αrvk).
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The certification service requests a policy provider through the expression:

reqr1τ1 where τ1 = τ −→ (τ
ϕ1[ψ1〈•〉]
−−−−−−→ τ)

(here, τ is a base type, whose specification is irrelevant). The request asks for
a service that takes an argument of type τ , and returns a policy as a closure
of type τ −→ τ . The annotation ϕ1[ψ1〈•〉] in τ1 indicates that, when evaluated,
the selected service must respect the safety policy ϕ1 and the liveness policy ψ1.
The policy ψ1 requires that eventually αp occurs, while ϕ1 says that the service
cannot visit untrusted sites, modelled by the event αu.

The leftmost part in the following diagram highlights the evolution of the
certification service. The rightmost part shows the two policy providers p1 and
p2 available in the repository. For simplicity, the boxes only represent the effect
of the evaluation of the service; the arrows display the service invocation and
the delivered safety policy.

(ε+ αu) · αp

αp

p1

p2

...

...

ψ〈e〉

ψ〈ϕ[e′]〉

ψ〈reqr1τ1〉
ϕ1[ψ1〈•〉]

ϕ[•]

The service p1 exposes a history expression αp, to mean that p1 will generate
exactly the event αp and no other security-relevant operations. The service
p2 possibly connects to an untrusted site (thus generating the event αu), and
then provides the client with a privacy policy. This behaviour is modelled by
the history expression (ε + αu) · αp, where ε stands for the empty history, ·
for concatenation of histories, and + for non-deterministic choice. The effect
associated with the request r1 is then a planned selection of the form:

{r1[p1] B ϕ1[ψ1〈αp〉], r1[p2] B ϕ1[ψ1〈(ε+ αu) · αp〉}

In the first element, the plan r1[p1] indicates that the request r1 is served by
the provider p1. In this case, the resulting history expression is ϕ1[ψ1〈αp〉].
Similarly, when the plan is r1[p2]. Note that p1 successfully serves the request
r1, because αp satisfies both ϕ1 and ψ1. Instead, p2 can generate the histories
αp and αuαp. Since the second history does not respect the safety constraint
ϕ1, then p2 will be rejected by our static machinery.

Assume now that the privacy policy ϕ delivered by p1 states that connecting
to the network (αc) is prevented after a read (αr) of local data. The diagram
below depicts the invocation of the contracting parties, modelled by the request

reqr2τ2 where τ2 = τ
ψ2〈•〉
−−−→ τ

The required guarantee is expressed by the liveness property ψ2, saying that
the certification service will eventually receive back a signed contract (note that
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here a bounded liveness in place of ψ2 would work as well, just because the code
of services is visible; however, this is not the case in general).

There are three contracting parties. The service s1 opens a network connec-
tion (αc), reads the contract file (αr) and then signs it (αsgn); the service s2 is
a loop of either action of revoking or signing (recursion is written through the
µ operator); the service s3 reads the contract file (αr), signs it (αsgn), and then
can possibly open a network connection (αc).

s1

s2

s3

ψ〈ϕ[e′]〉

ψ〈αc〉

...

...

ψ〈ϕ[reqr2τ2]〉
ψ2〈•〉

µh. ε+ (αrvk + αsgn) · h

αc · αr · αsgn

αr · αsgn · (ε+ αc)

The planned selection associated with r2 is then:

{r2[s1] B ψ2〈αc · αr · αsgn〉,

r2[s2] B ψ2〈µh.(ε+ αrvk + αsgn) · h〉,

r2[s3] B ψ2〈αr · αsgn · (ε+ αc)〉}

The history expressions exposed by s1 and s3 clearly satisfy the requested agree-
ment ψ2, while that of s2 does not, because, e.g. the history (αrvk)

n is possible,
for all n. Therefore, the service request can only be served successfully by either
s1 or s3. After completion of the service, the safety framing ϕ[· · · ] is left, so the
certification service can eventually connect to the network.

Considering only the services matching the requests (i.e. p1 for r1 and s1, s3
for r2) we associate the following overall history expression H with the whole
certification service:

H = ψ〈{r1[p1] B ϕ1[ψ1〈αp〉]} ·

ϕ[{r2[s1] B ψ2〈αc · αr · αsgn〉, r2[s3] B ψ2〈αr · αsgn · (ε+ αc)〉}] · αc〉

To determine the correct service compositions, we first “linearize”H , by moving
all the associations of requests with services at the top-level. Here we obtain:

{r1[p1] | r2[s1] B ψ〈ϕ1[ψ1〈αp〉] · ϕ[ψ2〈αc · αr · αsgn〉] · αc〉,

r1[p1] | r2[s3] B ψ〈ϕ1[ψ1〈αp〉] · ϕ[ψ2〈αr · αsgn · (ε+ αc)〉] · αc〉}

where | composes independent plans. The first element is valid, because choosing
p1 for r1 and s1 for r2 drives a successful computation. Indeed, the liveness
framing ψ is satisfied by the signature αsgn which is never revoked afterwards.
Also, the safety framing ϕ is obeyed, since within its scope there is no connection
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αc after a read αr. Instead, the history expression associated with the plan
r1[p1] | r2[s3] is not valid, because αc may occur after an αr within the scope
of ϕ. This verification phase is mechanizable and determines all and only the
valid elements.

In the next sections we shall describe a way of extracting the relevant infor-
mation from services (through a type and effect system) and for verifying when
their composition is valid (by model checking), so providing us at static time
with a winning planning strategy – in our example the plan r1[p1] | r2[s1]. The
paramount point is that we can execute an expression and resolve its requests
according to a winning plan, with no run-time monitoring and with the guaran-
tee that the overall behaviour will always comply with the safety and liveness
policies on demand.

3 Programming model

To study secure service composition in a pure framework, we consider λreq, a
call-by-value λ-calculus enriched with local security policies and service requests.
An access event α ∈ Ev abstracts from a security critical operation (e.g. writing
a file, opening a socket connection). A history η is a sequence of access events.
A security policy ϕ ∈ Pol is a regular property of histories. A safety framing
ϕ[e] enforces the policy ϕ at each step of the evaluation of e. A liveness framing
ψ〈e〉 requires that the policy ψ will eventually be satisfied while evaluating e.
Services e : τ are typed λreq expressions, collected in a trusted, finite, and
global repository Srv, abstracting from the distributed service directories (e.g.
UDDI [48]). The types τ are annotated with history expressions that over-
approximate the possible run-time histories. E.g., when a function with type

τ
H
−→ τ ′ is applied to a value, it will generate one of the histories denoted by H .

The repository Srv guarantees that H represents all the possible histories of e.
A service request has the form reqrτ . The label r uniquely identifies the

request in an expression, and the request type τ is defined as:

τ ::= unit | τ
(ϕ,ψ)
−−−→ τ

where unit is the standard singleton type. The annotations (ϕ, ψ) on the arrow
are the safety/liveness constraints imposed on the service. Operationally, this
drives a search in the repository Srv for a service with a functional type τ ′

“compatible” with τ (defined later on in Section 5) and such that τ ′ respects
the constraints imposed by τ . For clarity, we omit the null constraint (tt , tt), we
write ϕ[•] for (ϕ, tt), ψ〈•〉 for (tt , ψ) and ϕ[ψ〈•〉] in the general case. Intuitively,
a constraint can be seen as a context that wraps the behaviour H of a service,
obtaining ϕ[ψ〈H〉], and meaning that the histories denoted by H must satisfy
“always ϕ” and “eventually ψ”.

We put some restrictions on the types a programmer can use in a request.
First, only functional types are allowed: this models services being considered
as remote procedures. Higher-order return values are allowed: if the type of a
returned value is functional, then the request can be seen as a code download,
e.g. an applet. Second, no constraints should be imposed over the type τ0 of a

request type τ0
(ϕ,ψ)
−−−→ τ1, i.e. in τ0 there are no annotations. This is because

the constraints on the selected service should not affect its argument.
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3.1 Syntax

The syntax of our calculus follows. We assume as given the languages for (regu-
lar) policies ϕ, ψ and for guards b. We omit their definition here, as they are not
relevant for the subsequent technical development. To enhance readability, our
calculus comprises conditional expressions and named abstractions (the variable
z in e′ = λzx. e stands for e′ itself within e).

Expressions

e, e′ ::=
∗ unit
x variable
α access event
if b then e else e conditional
λzx. e abstraction
e e′ application
ϕ[e] safety framing
ψ〈e〉 liveness framing
reqrτ service request

The values v of our calculus are the variables, the abstractions, the requests,
and the distinguished element ∗. The following abbreviation is standard: e; e′ =
(λ. e′) e. Without loss of generality, we assume that each framing has an opening
event, e.g. for all ϕ[e], the expression e has the form α; e′, for some α and e′.
The opening event can be dummy, with no influence on security.

3.2 Operational semantics

The evaluation of a λreq expression requires to check all the policies within
their framings, and to serve requests. In this section, we do not have yet an
operational mechanism to resolve requests, and so we resort to an oracle. We
assume that, upon a request reqrτ , the oracle selects from Srv a service (if
any) that respects the type and the constraints expressed by τ . The oracle
guarantees that the execution of the selected service satisfies the safety/liveness
policies in τ (although, e.g. it might violate a policy that was already active
before the request). In the following sections, we will develop a static machinery
that will enable us to efficiently implement the oracle, guaranteeing that an
expression will never go wrong. Consequently, we will safely discard all the
security framings, and avoid to check them dynamically.

Here, we are not interested in characterizing what the oracle guarantees, and
we simply model it as a set of service choices, called plan. A plan formalises how
a request is resolved into an actual service, and takes the form of a finite injective
mapping from request labels to services. Plans have the following syntax:

Plans

π, π′ ::=
0 empty
r[`] service choice
π | π′ composition
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The empty plan 0 has no choices; the plan r[`] associates the service e` : τ`
with the request labelled r. The composition operator | on plans is associative,
commutative and idempotent, and its identity is the empty plan 0.

Now we define the behaviour of expressions through the following small-
step operational semantics. The configurations are pairs η, e and a transition
η, e →π η′, e′ means that, starting from a history η, the plan π allows the
expression e to evolve to e′ and to extend η to η′. An expression is initially
evaluated starting from the empty history ε. We write η |= ϕ when the history
η obeys the (safety/liveness) policy ϕ. We assume as given a total function B
that evaluates the guards in conditionals.

Operational semantics of λreq

η, e1 →π η
′, e′1

η, e1e2 →π η
′, e′1e2

(E-App1)
η, e2 →π η

′, e′2

η, ve2 →π η
′, ve′2

(E-App2)

η, (λzx. e)v →π η, e{v/x, λzx. e/z} (E-AbsApp)

η, α →π ηα, ∗ (E-Ev) η, if b then ett else eff →π η, eB(b) (E-If)

η, e→π η
′, e′ η′ |= ϕ

η, ϕ[e] →π η
′, ϕ[e′]

(E-SF1)
η |= ϕ

η, ϕ[v] →π η, v
(E-SF2)

η, e→π η
′, e′ η 6|= ψ

η, ψ〈e〉 →π η
′, ψ〈e′〉

(E-LF1)
η |= ψ

η, ψ〈e〉 →π η, e
(E-LF2)

e` : τ` ∈ Srv π = r[`] | π′

η, (reqrτ)v →π η, e` v
(E-Req)

The first two rules implement call-by-value evaluation; as usual, functions are
not reduced within their bodies. The third rule implements β-reduction. Notice
that the whole function body λzx. e replaces the self variable z after the sub-
stitution, so giving an explicit copy-rule semantics to recursive functions. The
evaluation of an event α consists in appending α to the current history, and pro-
ducing the no-operation value ∗. A conditional if b then ett else eff evaluates
to ett (resp. eff ) if b evaluates to true (resp. false).

To evaluate a safety framing ϕ[e], we must consider two cases. If, starting
from the current history η, e may evolve to e′ and extend the history to η′,
then the whole framing ϕ[e] may evolve to ϕ[e′], provided that η′ satisfies ϕ.
Otherwise, if e is a value and the current history satisfies ϕ, then the scope of
the framing is left. In both cases, as soon as a history is found not to respect ϕ,
the evaluation gets stuck, to model a security exception. For simplicity, we do
not model here exceptions and exception handling, but extending our language
in this direction is straightforward.

Within a liveness framing ψ〈e〉, the expression e evolves as long as the prop-
erty ψ is not satisfied. As soon as the current history obeys ψ, the framing is
discarded. Note that we cannot operationally guarantee that ψ will eventually
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hold: indeed, this is a liveness property, so it cannot be enforced by execution
monitoring alone [40]. It is then particularly relevant that our static analysis is
able to discover whether a liveness framing will be eventually discarded or not.

The rule for service invocation enquires the oracle to select from Srv a service
that respects the types and the required constraints. If no such service exists,
the execution gets stuck.

4 History expressions

To statically predict the histories generated by programs at run-time, as well as
the scopes of policies, we introduce history expressions with the following ab-
stract syntax. History expressions are a sort of context-free grammars, and in-
clude the empty history ε, access events α, sequencing H ·H ′, non-deterministic
choice H + H ′, safety and liveness framings ϕ[H ] and ψ〈H〉, recursion µh.H
(µ binds the occurrences of the variable h in H), and planned selection.

History Expressions

H,H ′ ::=
ε empty
h variable
α access event
H ·H ′ sequence
H +H ′ choice
ϕ[H ] safety framing
ψ〈H〉 liveness framing
µh.H recursion
{π1 BH1 · · ·πk BHk} planned selection

Safety and liveness framings are the abstract counterparts of the analogous
constructs in λreq . Given a plan π, a planned selection {π1 BH1 · · ·πk BHk}
chooses those Hi such that π includes πi. Intuitively, the history expression
H = {r[`1] BH1, r[`2] BH2} is associated with a request r that can be resolved
into either e`1 or e`2 . The histories denoted by H depend on the given plan π:
if π chooses `1 (resp. `2) for r, then H denotes one of the histories represented
by H1 (resp. H2); otherwise, H denotes no histories. Due to our assumption on
the form of plans, we always discard the components πi B Hi from a planned
selection, if πi turns out to be non-injective.

We assume that the operator · has precedence over +, that in turn has
precedence over µ. We say that a history expression H is closed when it has no
free variables, i.e. fv(H) = ∅, where free variables are defined as expected, e.g.:

fv(h) = {h} fv (µh.H) = fv(H) \ {h}

fv ({π1 BH1 · · ·πk BHk}) =
⋃

i∈1..k fv (Hi)

To define the semantics of history expressions, we enrich histories with a set Frm

of special framing events, parametrized by policies in Pol. The events [ϕ and ]ϕ
denote the opening and closing of a safety framing ϕ[· · · ], while 〈ψ and 〉ψ play
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the same role for liveness framings. Formally, a history η is a sequence β1 · · ·βk
where βi ∈ Ev ∪ Frm, Frm = { [ϕ, ]ϕ, 〈ϕ, 〉ϕ | ϕ ∈ Pol }, and Ev ∩ Frm = ∅.

For example, a history α[ϕα
′]ϕ represents a computation that (i) generates

an event α, (ii) enters the scope of the safety framing ϕ[· · · ], (iii) generates α′

within the scope of ϕ, and (iv) leaves the scope of ϕ. Note that histories with
events in Ev only were enough to give the operational semantics of our calculus,
because the role of framing events is played by framed expressions.

Hereafter, a history may end with the truncation marker !. The history η!
represents a prefix of a possibly non-terminating computation that generates
the sequence of events η. We assume that histories are undistinguishable after
truncation, i.e. η! followed by η′ equals to η!. A history η is balanced when
either η is empty, or η is an access event, or η =!, or η = [ϕη

′ ]ϕ with η′ bal-
anced, or 〈ψη′〉ψ with η′ balanced, or η = η′η′′ with both η′ and η′′ balanced.
A history is well-formed when it is the prefix of a balanced history. For ex-
ample, α[ϕα

′[ϕ′α′′]ϕ′ ]ϕ is balanced, α[ϕα
′ is well-formed but not balanced, and

α[ϕα
′[ϕ′α′′]ϕ is not well-formed. Hereafter, we will only deal with well-formed

histories, because they model exactly the histories that will show up when exe-
cuting λreq expressions. Let H range over sets of balanced histories. We define
HH′ as the set of histories { ηη′ | η ∈ H, η′ ∈ H′ }, ϕ[H] as { [ϕη ]ϕ | η ∈ H},
and ψ〈H〉 as the set { 〈ψη〉ψ | η ∈ H}.

The denotational semantics of history expressions is defined over the lifted
cpo of sets of balanced histories [49], ordered by (lifted) set inclusion ⊆⊥, where,
for all balanced histories H,H′, ⊥ ⊆⊥ H, and H ⊆⊥ H′ if H ⊆ H′. The least
upper bound between two elements of the cpo is standard set union ∪, assuming
that ⊥∪H = H. The strict least upper bound is denoted by ∪⊥, and it is such
that ⊥ ∪⊥ H = ⊥. We stipulate that concatenation of sets of histories is strict,
i.e. it returns ⊥ whenever one of its arguments is such.

The semantics JHKπρ of a history expression H (in an environment ρ and
under a plan π) is defined by the following rules. The environment ρ maps
variables to sets of balanced histories. Hereafter, we feel free to omit curly
braces when writing singleton sets, and we omit the empty environment for
closed expressions.

Semantics of history expressions

JεKπρ = ε JH ·H ′Kπρ = JHKπρ JH ′Kπρ JH +H ′Kπρ = JHKπρ ∪⊥ JH ′Kπρ

JαKπρ = α Jϕ[H ]Kπρ = ϕ[JHKπρ ] Jψ〈H〉Kπρ = ψ〈JHKπρ 〉

JhKπρ = ρ(h) Jµh.HKπθ =
⋃

n>0

fn(!) where f(X) = JHKπθ{X/h}

J{}Kπρ = ⊥ J{π1 BH1 · · ·πk BHk}K
π
ρ =

⋃

i∈1..k J{πi BHi}K
π
ρ

J{0 BH}Kπρ = JHKπρ J{π0 |π1 BH}Kπρ = J{π0 BH}Kπρ ∪⊥ J{π1 BH}Kπρ

J{r[`] BH}Kπρ =

{

JHKπρ if π = r[`] | π′

⊥ otherwise
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Example 1. Consider H = µh. α+h ·h+ϕ[h]. For all plans π, the semantics of
H consists of all the (possibly truncated) histories having an arbitrary number
of occurrences of α, and arbitrarily nested, balanced safety framings of ϕ. For
instance, ϕ[α]ϕ[αϕ[α]] ∈ JHKπ , for all plans π.

Example 2. Let H = {r[`1] Bα1 · {r
′[`′1] B β1, r

′[`′2] B β2}, r[`2] Bα2}, and let
π = r[`1] | r′[`′2]. Then:

JHKπ = J{r[`1] B α1 · {r′[`′1] B β1, r
′[`′2] B β2}}Kπ ∪ J{r[`2] B α2}Kπ

= Jα1 · {r′[`′1] B β1, r
′[`′2] B β2}Kπ ∪ ⊥

= Jα1K
πJ{r′[`′1] B β1, r

′[`′2] B β2}Kπ

= {α1}(J{r′[`′1] B β1}Kπ ∪ J{r′[`′2] B β2}Kπ)

= {α1}(⊥ ∪ Jβ2K
π) = {α1}{β2} = {α1β2}

Example 3. Let H = α+ {r[`] B β}, and let π = 0. Then:

JHKπ = JαKπ ∪⊥ J{r[`] B β}Kπ = {α} ∪⊥ ⊥ = ⊥

This example models a situation where, e.g. H has been extracted from an
expression if b thenα else (reqrτ)∗, and e` is the only service whose type is
compatible with τ . The semantics of H is undefined (i.e. ⊥) because, in case b
is false, the plan π = 0 is not able to choose any of the proposed services.

4.1 Validity

We now define when histories and history expressions are valid. Intuitively,
valid histories represent viable computations. Instead, invalid ones happen to
violate some security constraints, so they are going to be identified and rejected
by our static analysis. For example, consider the history η0 = αcαrϕ[αc], where
ϕ requires that no αc occurs after αr (see Section 2). Then, η0 is not valid
according to our intended meaning, because the rightmost αc occurs within a
safety framing enforcing ϕ, and αcαrαc does not obey ϕ. Consider now the
history η1 = αψ〈α〉αsgn, where ψ requires that eventually αsgn. Then, η1 is not
valid, because the event αsgn occurs after the liveness framing has been closed.

Note that our notion of validity ensures that, at each step of execution,
the policies enforced by safety and liveness framings can always inspect the
whole history generated so far. This is motivated by our basic assumption
that no events can be hidden. For example, the history α0α1ϕ[α2]α3 is valid
when α0α1 |= ϕ (to make sure ϕ is satisfied while entering the framing) and
α0α1α2 |= ϕ (even if α0 and α1 are outside of the safety framing), while α0α1α2α3

is not required to satisfy ϕ any longer. However, this is not a limitation, as shown
in the discussion preceding Lemma 8 below.

To give a formal definition of validity, we introduce the notion of safe and
live sets (S- and L-sets for short), which are sets of histories. For example, the
history η0 above has one S-set ϕ[{αcαr, αcαrαc}]. Intuitively, this means that
the scope of the framing ϕ[· · · ] spans over the histories αcαr and αcαrαc. For
each S-set of the form ϕ[H], validity requires that all the histories in H obey ϕ.
Similarly, η1 has one L-set, ψ〈{α, αα}〉. For each L-set ψ〈H〉, validity requires
that at least one of the histories in H satisfies ψ.
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Some notations are now needed. Let η[ be the history obtained from η by
erasing all the framing events, and let η∂ be the set of all the prefixes of η,
including the empty history ε. For example, if η0 = αcαrϕ[αc], then (η [0 )∂ =
((αcαr[ϕαc]ϕ)[)∂ = (αcαrαc)

∂ = {ε, αc, αcαr, αcαrαc}.
Let η be a (well-formed) history. To have a short definition of S-set and

L-set, it is convenient to balance all the safety framings of η, e.g. [ϕα becomes
[ϕα]ϕ = ϕ[α]. Then, the S-set S(η), the L-set L(η), and validity of histories and
history expressions are defined as follows:

Safe/Live sets and validity

S(ε) = ∅ L(ε) = ∅

S(η α) = S(η 〈ψ) = S(η 〉ψ) = S(η) L(η α) = L(η [ϕ) = L(η ]ϕ) = L(η)

S(η0 ϕ[η1]) = S(η0 η1) ∪ ϕ[η[0 (η[1)
∂ ] L(η0 ψ〈η1〉) = L(η0 η1) ∪ ψ〈η

[
0 (η[1)

∂〉

A history η is valid (|= η in symbols) when:

ϕ[H] ∈ S(η) =⇒ ∀η′ ∈ H. η′ |= ϕ

ψ〈H〉 ∈ L(η) =⇒ ∃η′ ∈ H. η′ |= ψ

A history expression H is π-valid when JHKπ 6= ⊥ and η ∈ JHKπ =⇒ |= η

Example 4. Consider again the history η1 = αψ〈α〉αsgn. We have that:

L(η1) = L(αψ〈α〉αsgn)

= L(αψ〈α〉) = L(αα) ∪ ψ〈α[(α[)∂〉

= ∅ ∪ ψ〈α{ε, α}〉 = ψ〈{α, αα}〉

Since neither α |= ψ nor αα |= ψ, then η1 is not valid. Consider now the history:

η = 〈ψ[ϕα1]ϕ〈ψα2〉ψα3[ϕ′α4

Then, after rewriting η as η]ϕ′ to balance the safety framings, we have:

S(η) = { ϕ[{ε, α1}], ϕ
′[{α1α2α3, α1α2α3α4}] }

L(η) = { ψ〈{α1, α1α2}〉 }

5 Type and effect system

We now introduce a type and effect system for our calculus, building upon [4, 42].
Types and type environments, ranged over by τ and Γ, are mostly standard and
are defined in the following table. The history expression H in the functional

type τ
H
−→ τ ′ describes the latent effect associated with an abstraction, i.e. one

of the histories represented by H is generated when a value is applied to an
abstraction with that type. Note that we overload the symbol τ to range over

both expression types and request types τ
ϕ[ψ〈•〉]
−−−−−→ τ ′.
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Types and Type Environments

τ, τ ′ ::= unit | τ
H
−→ τ ′ Γ ::= ∅ | Γ;x : τ (x 6∈ dom(Γ))

A typing judgment Γ, H `Srv e : τ means that, given a service repository Srv

(omitted in the index, when immaterial), the expression e evaluates to a value
of type τ , and produces a history belonging to the effect H . The relation
Γ, H `Srv e : τ is defined as the least relation closed under the rules below. Typ-
ing judgments are similar to those of the simply-typed λ-calculus. The effects
in the rule for application are concatenated according to the evaluation order of
the call-by-value semantics (function, argument, latent effect). The actual effect
of an abstraction is the empty history expression, while the latent effect is equal
to the actual effect of the function body. The rule for abstraction constraints
the premise to equate the actual and latent effects, up to associativity, commu-
tativity, idempotency and zero of +, associativity and zero of · , α-conversion,
unfolding of recursion, and elimination of vacuous µ-binders. The last rule al-
lows for weakening of effects. A service invocation reqrτ has an empty actual
effect, and a functional type τ ′, whose latent effect is a planned selection that
picks from Srv those services matching the constraints on the request type τ . A
more detailed explanation will follow after Example 5.

Typing relation

Γ, ε ` ∗ : unit (T-Unit) Γ, α ` α : unit (T-Ev)

Γ, ε ` x : Γ(x) (T-Var)
Γ;x : τ ; z : τ

H
−→ τ ′, H ` e : τ ′

Γ, ε ` λzx. e : τ
H
−→ τ ′

(T-Abs)

Γ, H ` e : τ
H′′

−−→ τ ′ Γ, H ′ ` e′ : τ

Γ, H ·H ′ ·H ′′ ` e e′ : τ ′
(T-App)

Γ, H ` e : τ

Γ, ϕ[H ] ` ϕ[e] : τ
(T-SF)

Γ, H ` e : τ

Γ, ψ〈H〉 ` ψ〈e〉 : τ
(T-LF)

τ ′ = d{ τ ⊕r[`] τ` | e` : τ` ∈ Srv ∧ τ` ≈ τ }

Γ, ε `Srv reqrτ : τ ′
(T-Req)

Γ, H ` e : τ Γ, H ` e′ : τ

Γ, H ` if b then e else e′ : τ
(T-If)

Γ, H ` e : τ

Γ, H +H ′ ` e : τ
(T-Wkn)

Example 5. Consider the following expression:

e = if b then λzx. α else λzx. α
′

Let τ = unit , and Γ = {z : τ
α+α′

−−−→ τ ;x : τ}. Then, the following typing
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derivation is possible:

Γ, α ` α : τ

Γ, α+ α′ ` α : τ

∅, ε ` λzx. α : τ
α+α′

−−−→ τ

Γ, α′ ` α′ : τ

Γ, α′ + α ` α′ : τ

∅, ε ` λzx. α′ : τ
α′+α
−−−→ τ

∅, ε ` if b then λzx. α else λzx. α
′ : τ

α+α′

−−−→ τ

Note that we can equate the history expressions α + α′ and α′ + α, because +
is commutative. The typing derivation above shows the use of the weakening
rule to unify the latent effects on arrow types. Let now:

e′ = λwx. if b
′ then ∗ elsew(e x)

Let Γ = {w : τ
H
−→ τ, x : τ}, where H is left undefined. Then, recalling that

ε ·H ′ = H ′ = H ′ · ε for any history expression H ′, we have:

Γ, ε ` ∗ : τ

Γ, ε ` w : τ
H
−→ τ

Γ, ε ` e : τ
α+α′

−−−→ τ Γ, ε ` x : τ

Γ, α+ α′ ` e x : τ

Γ, (α+ α′) ·H ` w(e x) : τ

Γ, ϕ[(α + α′) ·H ] ` ϕ[w(e x)] : τ

Γ, ε+ ϕ[(α + α′) ·H ] ` if b′ then ∗ elseϕ[w(e x)] : τ

To apply the typing rule for abstractions, the constraint H = ε+ϕ[(α+α′) ·H ]

must be solved. Let H = µh. ε+ ϕ[(α+ α′) · h]. It is easy to prove that:

JHK = Jε+ ϕ[(α + α′) · h]K
{JHK/h}

= {ε} ∪ ϕ[(α+ α′) · JHK]

We have then found a solution to the constraint above, so we can conclude that:

∅, ε ` e′ : τ
µh. ε+ϕ[(α+α′)·h]
−−−−−−−−−−−−→ τ

Note in passing that a simple extension of the type inference algorithm of [42]
suffices for solving constraints as the one above. The main difference concerns
planned selections. To deal with that, our algorithm uses a straightforward
implementation of the rule (T-Req)

To give a type to requests, we need to define the auxiliary operators ≈, ⊕
and d. We introduce them below, with the help of a running example.

We write τ ≈ τ ′, and say τ, τ ′ compatible, whenever, omitting the annota-
tions on the arrows, τ and τ ′ are equal. Formally:

unit ≈ unit (τ0
X
−→ τ1) ≈ (τ ′0

Y
−→ τ ′1) iff τ0 ≈ τ ′0 and τ1 ≈ τ ′1

Example 6. Let τ = unit , let e = reqrτr, where τr = (τ −→ τ)
ϕ[•]
−−→ (τ

ψ〈•〉
−−−→ τ),

and let Srv = {e`1 : τ`1 , e`2 : τ`2}, where τ`i = (τ
hi−→ τ)

αi·hi−−−→ (τ
βi
−→ τ) for

i ∈ 1..2. We have that τr ≈ τ`1 ≈ τ`2 , i.e. both the services in Srv are compatible
with the request in e.
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The operator ⊕r[`] combines a request type τ and a service type τ ′, when

they are compatible. Given a request type τ̂ = τ0
ϕ[ψ〈•〉]
−−−−−→ τ1 and a service type

τ̂ ′ = τ ′0
H
−→ τ ′1, the result of τ̂ ⊕r[`] τ̂

′ is τ ′0
{r[`]Bϕ[ψ〈H〉]}
−−−−−−−−−−→ (τ1 ⊕′

r[`] τ
′
1), where:

unit ⊕′
r[`] unit = unit

(τ0
ϕ[ψ〈•〉]
−−−−−→ τ1) ⊕′

r[`] (τ
′
0
H
−→ τ ′1) = (τ0 ⊕′

r[`] τ
′
0)

{r[`]Bϕ[ψ〈H〉]}
−−−−−−−−−−→ (τ1 ⊕′

r[`] τ
′
1)

Note that combining functional types does not affect the type of the argument.
This reflects the intuition that the type of the argument to be passed to the
selected service cannot be constrained by the request.

Example 6 (cont.). The request type τr is composed with the service types
in Srv as follows:

τr ⊕r[`1] τ`1 = (τ
h1−→ τ)

{r[`1]Bϕ[α1·h1]}
−−−−−−−−−−−→ (τ

{r[`1]Bψ〈β1〉}
−−−−−−−−−→ τ)

τr ⊕r[`2] τ`2 = (τ
h2−→ τ)

{r[`2]Bϕ[α2·h2]}
−−−−−−−−−−−→ (τ

{r[`2]Bψ〈β2〉}
−−−−−−−−−→ τ)

Eventually, the operator d combines the types obtained by combining the

request type with the service types. Given two compatible types τ̂ = τ0
H
−→ τ1

and τ̂ ′ = τ ′0
H′

−−→ τ ′1, the result of τ̂ d τ̂ ′ is τ ′′0
H∪H′

−−−−→ (τ1σ d′ τ ′1σ), where σ unifies
τ0 and τ ′0 (i.e. τ0σ = τ ′0σ = τ ′′0 ), and:

unit d′ unit = unit

(τ0
H
−→ τ1) d′ (τ ′0

H′

−−→ τ ′1) = (τ0 d′ τ ′0)
H∪H′

−−−−→ (τ1 d′ τ ′1)

Example 6 (cont.). Now, we can unify the combination of the request type
τr with the service types, obtaining:

τ ′ = (τ
h
−→ τ)

{r[`1]Bϕ[α1·h], r[`2]Bϕ[α2·h]}
−−−−−−−−−−−−−−−−−−−→ (τ

{r[`1]Bψ〈β1〉, r[`2]Bψ〈β2〉}
−−−−−−−−−−−−−−−−−→ τ)

where σ = {h1/h, h2/h} is the selected unifier between τ
h1−→ τ and τ

h2−→ τ .

The following example further illustrates how requests and services are typed.

Example 7. Let e and Srv as in Example 6, and consider the expression
(e(λ.γ))∗. Note that applying (any service resulting from) the request to the
function λ.γ yields a new function, which we eventually apply to the value ∗.
We have the following typing derivation, where we omit the component Γ = ∅:

ε ` e : τ ′ ε ` (λ.γ) : τ
γ
−→ τ

{r[`1] B ϕ[α1 · γ], r[`2] B ϕ[α2 · γ]} ` e(λ.γ) : τ
{r[`1]Bψ〈β1〉, r[`2]Bψ〈β2〉}
−−−−−−−−−−−−−−−−−→ τ

{r[`1] B ϕ[α1 · γ], r[`2] B ϕ[α2 · γ]} · {r[`1] B ψ〈β1〉, r[`2] B ψ〈β2〉} ` (e(λ.γ))∗ : τ

Evaluating the resulting history expression H with the plan π = r[`1] yields:

JHKπ = J{r[`1] B ϕ[α1 · γ], r[`2] B ϕ[α2 · γ]}Kπ · J{r[`1] B ψ〈β1〉, r[`2] B ψ〈β2〉}Kπ

= ({ϕ[α1γ]} ∪ ⊥) · ({ψ〈β1〉} ∪ ⊥) = {ϕ[α1γ] ψ〈β1〉}
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A plan is well-typed if, when it associates a service to a request reqrτ , then the
type of the service is compatible with the type of the request:

π = r[`] | π′ ∧ e` : τ` ∈ Srv =⇒ τ` ≈ τ

The next theorem states that our type and effect system over-approximates the
actual run-time histories, for a given expression and a given service repository
Srv. If H is the effect of e, then the histories η generated when evaluating e
under the plan π are the prefixes of the histories in JHKπ, stripped of all the
framing events, i.e. η ∈ (JHKπ)[∂ . As usual, precision is lost when reducing
the conditional construct to non-determinism, and when dealing with recursive
functions (see Example 5). Additionally, we over-approximate the set of services
satisfying the calling requirements.

Theorem 1. Given a service repository Srv, if Γ, H `Srv e : τ and ε, e→∗
π η, e

′

(with π well-typed), then η ∈ (JHKπ)[∂ .

Example 8. Let e = α0;ϕ[if b thenα1 elseα2], with ϕ requiring “never α2”.
Assume that the guard b always evaluates to true. Then, for any plan π, we
have the following computation:

ε, e→π α0, ϕ[if b thenα1 elseα2] →π α0, ϕ[α1] →π α0α1, ϕ[∗] →π α0α1, ∗

The history expression extracted from e is H = α0 · ϕ[α1 + α2]. Then, for all
plans π, JHKπ = {α0[ϕα1]ϕ, α0[ϕα2]ϕ}, and:

((JHKπ)[)∂ = {α0α1, α0α2}
∂ = {ε, α0, α0α1, α0α2}

which (strictly) contains all the run-time histories in the computation above.

We can now state the type safety property. A plan π is viable for e when the
reduction of e with plan π does not go wrong, i.e. ε, e→∗

π η
′, e′, and either e′ is a

value, or there exists a transition η′, e′ →π η
′′, e′′ for some η′′, e′′. For example,

a computation goes wrong when attempting to execute an event forbidden by a
currently active policy, or when the plan π offers no choices for a request.

Theorem 2 (Type Safety). Given a service repository Srv, let Γ, H `Srv e : τ ,
with e closed. If H is π-valid for some well-typed plan π, then π is viable for e.

Example 9. Let e and Srv as in Example 6, and let e`i = λx. (αi; (x∗); (λ.βi))
for i ∈ 1..2. Assume the constraints ϕ, ψ on the service request in e are such
that ϕ is true, and ψ requires “eventually β1”. Consider now the expression
e′ = ϕ0[(e(λ.γ))∗], where ϕ0 requires “never α2”. Let π = r[`1]. The history
expression ϕ0[H ] of e′ (where H has been inferred for (e (λ.γ))∗ in Example 7)
is π-valid, because Jϕ0[H ]Kπ = {ϕ0[ϕ[α1γ]ψ〈β1〉]} contains exactly one valid
history. We have exactly one computation of e′ with plan π, and, as predicted
by Theorem 2, it does not go wrong:

ε, ϕ0[(e(λ.γ))∗] →π ε, ϕ0[(e`1(λ.γ))∗] →π ε, ϕ0[(α1; (λ.γ)∗; (λ.β1))∗]

→π α1, ϕ0[(λ.γ)∗; (λ.β1))∗] →π α1, ϕ0[(γ; (λ.β1))∗]

→π α1γ, ϕ0[(λ.β1)∗] →π α1γ, ϕ0[β1] →π α1γβ1, ϕ0[∗]

→π α1γβ1, ∗
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Consider now the plan π′ = r[`2]. Then H is not π′-valid, because e.g. the event
α2 violates ϕ0. In this case the computation of e′:

ε, ϕ0[(e(λ.γ))∗] →π′ ε, ϕ0[(e`2(λ.γ))∗] →π′ ε, ϕ0[(α2; (λ.γ)∗; (λ.β1))∗]

is correctly aborted, because α2 6|= ϕ0. So, π′ is not viable for e′.

Validity of history expressions also guarantees an additional correctness
property about the “liveness” of a service. Roughly, it says that if ψ〈e〉 has
a valid effect, then e will eventually escape the liveness framing, i.e. the policy
ψ will be eventually obeyed. We need the notion of evaluation context C(•),
defined by the following grammar: • | v C(•) | C(•) e | ϕ[C(•)] | ψ〈C(•)〉. Ad-
ditionally, a λ-abstraction λzx. e is guarded if e = α; e′ for some event α and
expression e′.

Theorem 3. Let Γ, H `Srv e : τ , with e closed, and H valid for some well-
typed plan π. Let ε, e →∗

π η, C(ψ〈e′〉), with e′ having guarded λ-abstractions
only. Then, there exists k such that, for each computation:

η, C(ψ〈e′〉) →π η1, e1 →π · · · →π ηk, ek

there exists n ≤ k such that en = C(ψ〈e′′〉) and ηn |= ψ.

Intuitively, if a computation is long enough (i.e. at least k steps), it will
always escape all liveness framings in a finite number of steps n ≤ k — because,
by rule (E-LF2), ηn, C(ψ〈e′′〉) →π ηn, C(e′′).

Example 10. Consider the expressions e1 = ψ〈(λzx. if b then β elseα;β; zx)∗〉
and e2 = ψ〈(λzx. if b then β elseα; zx;β)∗〉, where ψ ask “eventually β”. Let
H1 = ψ〈µh. α ·β ·h+β〉 and H2 = ψ〈µh. α ·h ·β+β〉 be the history expressions
associated with e1 and e2, respectively. Since H1 is valid, Theorem 3 guaran-
tees that all the computations of e1 will satisfy the policy ψ. Instead, since H2

is not valid, the expression e2 might never obey ψ, as shown by the following
computation (where b = ff and Z = λzx. if b then β elseα; zx;β):

ε, e2 →π ε, ψ〈if b then β elseα;Z∗;β〉

→π ε, ψ〈α;Z∗;β〉 →π α, ψ〈Z∗;β〉

→π α, ψ〈if b then β elseα;Zx;β;β〉

→π α, ψ〈α;Z∗;β;β〉 →π αα, ψ〈Z∗;β;β〉 →π · · ·

Note however that, since our notion of validity is extensional rather than
intensional, we still do not have a decision procedure to tell us for which plans
π (if any) a history expression is π-valid. This problem is addressed by the
planning and verification methods presented in Sections 6 and 7.

6 Planning service composition

Once extracted a history expression H from an expression e, we have to analyse
H to find if there is any viable plan for the execution of e. This issue is not trivial,
because the effect of selecting a given service for a request is not confined to the
execution of that service. For instance, the history generated while running a
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service may later on violate a policy that will become active after the service has
returned, as shown in Example 11 below. Since each service selection affects
the whole execution of a program, we cannot simply devise a viable plan by
selecting services that satisfy the constraints imposed by the requests, only.

Example 11. Let e = ϕ[(λx. (reqr2τ2)x) ((reqr1τ1)∗)], where ϕ requires “never
γ after α”, τ = unit , τ1 = τ −→ (τ −→ τ) and τ2 = (τ −→ τ) −→ τ . Intuitively,
the service selected upon the request r1 returns a function, which is then passed
as an argument to the service selected upon r2. Assume the repository Srv

comprises exactly the following four services:

e`1 : τ
α
−→ (τ

β
−→ τ) e`2 : (τ

h
−→ τ)

h·γ
−−→ τ

e`′1 : τ
α′

−→ (τ
β′

−→ τ) e`′2 : (τ
h
−→ τ)

ϕ′[h]
−−−→ τ

where ϕ′ requires “never β′”. Since the request type τ1 imposes no constraints
and matches the types of e`1 and e`′1 , both these services can be selected for the
request r1. Similarly, both e`2 and e`′2 can be chosen for r2. Therefore, we have
to consider four possible plans when evaluating the history expression H of e:

H = ϕ[{r1[`1] B α, r1[`
′
1] B α′}·

{r2[`2] B {r1[`1] B β, r1[`
′
1] B β′} · γ, r2[`

′
2] B ϕ′[{r1[`1] B β, r1[`

′
1] B β′}]}]

Consider first the plan π1 = r1[`1] | r2[`2]. Then, JHKπ1 = ϕ[αβγ] is not
valid and π1 is not viable for e, because the policy ϕ is violated. Consider
now π2 = r1[`

′
1] | r2[`

′
2]. Then, JHKπ2 = ϕ[α′ϕ′[β′]] is not valid and π2 is not

viable for e, because the policy ϕ′ is violated. Instead, the remaining two plans,
r1[`1] | r2[`′2] and r1[`

′
1] | r2[`2] are viable for e.

As shown above, the tree-shaped structure of planned selections makes it
difficult to determine the plans π under which a history expression is valid.
Things become easier if we “linearize” such a tree structure into a set of history
expressions, forming an equivalent planned selection {π1BH1 · · ·πkBHk}, where
no Hi has further selections. E.g., the linearization of H in Example 11 is:

{r1[`1] | r2[`2] B ϕ[α · β · γ], r1[`1] | r2[`
′
2] B ϕ[α · ϕ′[β]],

r1[`
′
1] | r2[`2] B ϕ[α′ · β′ · γ], r1[`

′
1] | r2[`

′
2] B ϕ[α′ · ϕ′[β′]]}

Formally, we say that H is equivalent to H ′ (H ≡ H ′ in symbols) when
JHKπρ = JH ′Kπρ , for each ρ and plan π. The following properties of ≡ hold.

Theorem 4. The relation ≡ is a congruence, and it satisfies the equations
between planned selections displayed in the following table.
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Equational properties of planned selections

H ≡ {0 BH} (1)

{πi BHi}i∈I · {π
′
j BH ′

j}j∈J ≡ {πi | π
′
j BHi ·H

′
j}i∈I,j∈J (2)

{πi BHi}i∈I + {π′
j BH ′

j}j∈J ≡ {πi | π
′
j BHi +H ′

j}i∈I,j∈J (3)

ϕ[{πi BHi}i∈I ] ≡ {πi B ϕ[Hi]}i∈I (4)

ψ〈{πi BHi}i∈I〉 ≡ {πi B ψ〈Hi〉}i∈I (5)

µh. {πi BHi} ≡ {πi B µh.Hi}i∈I (6)

{πi B {π′
i,j BHi,j}j∈J}i∈I ≡ {πi | π

′
i,j BHi,j}i∈I,j∈J (7)

Example 12. Consider again the history expression computed in Example 7:

H = {r[`1] B ϕ[α1 · γ], r[`2] B ϕ[α2 · γ]} · {r[`1] B ψ〈β1〉, r[`2] B ψ〈β2〉}

Applying the equation (2) of Theorem 4, we obtain:

H ≡ {r[`1] | r[`1] B ϕ[α1 · γ] · ψ〈β1〉, r[`1] | r[`2] B ϕ[α1 · γ] · ψ〈β2〉,

r[`2] | r[`1] B ϕ[α2 · γ] · ψ〈β1〉, r[`2] | r[`2] B ϕ[α2 · γ] · ψ〈β2〉}

= {r[`1] B ϕ[α1 · γ] · ψ〈β1〉, r[`2] B ϕ[α2 · γ] · ψ〈β2〉}

In the last step, we have used idempotency of |, and we have purged the resulting
selection from the plan r[`1] | r[`2], which is not injective.

Example 13. Let H = µh. {r[`1] B α1, r[`2] B α2} · h. Then, using equations
(1), (2) and (6) of Theorem 4, and the identity of the plan 0, we obtain:

H ≡ µh. {r[`1] B α1, r[`2] B α2} · {0 B h}

≡ µh. {r[`1] | 0 B α1 · h, r[`2] | 0 B α2 · h}

= µh. {r[`1] B α1 · h, r[`2] B α2 · h}

≡ {r[`1] B µh. α1 · h, r[`2] B µh. α2 · h}

Note that the original H can choose a service among `1 and `2 at each iteration
of the loop. Instead, in the linearization of H , the request r will be resolved
into the same service at each iteration.

Example 14. Consider again the history expression of Example 2. Applying
equations (1), (2) and (7) of Theorem 4, we obtain:

H = {r[`1] B α1 · {r
′[`′1] B β1, r

′[`′2] B β2}, r[`2] B α2}

≡ {r[`1] B {0 B α1} · {r
′[`′1] B β1, r

′[`′2] B β2}, r[`2] B α2}

≡ {r[`1] B {0 | r′[`′1] B α1 · β1, 0 | r′[`′2] B α1 · β2}, r[`2] B α2}

= {r[`1] B {r′[`′1] B α1 · β1, r
′[`′2] B α1 · β2}, r[`2] B α2}

≡ {r[`1] | r
′[`′1] B α1 · β1, r[`1] | r

′[`′2] B α1 · β2, r[`2] B α2}

We say that a history expressionH is linear when H = {π1BH1 · · ·πkBHk},
the plans are pairwise independent (i.e. πi 6= πj |π for all i 6= j and π) and no
Hi has planned selections.
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Given a history expression H , we obtain its linearization in three steps.
First, we apply the first equation of Theorem 4 to each event, variable and ε in
H . Then, we orient the equations of Theorem 4 from left to right, obtaining a
rewriting system that is easily proved finitely terminating and confluent – up
to the equational laws of the algebra of plans. The resulting planned selection
H ′ = {π1 BH1 · · ·πk BHk} has no further selections in Hi, but there may be
non-independent plans πi v πj (recall that we discard πi B Hi when πi is not
injective). In the third linearization step, for each such pairs, we update H ′ by
inserting πi BHi +Hj , and removing πj BHj .

The following result enables us to detect the viable plans for service composi-
tion: executions driven by any of them will never violate the security constraints
on demand.

Theorem 5. If H = {π1 BH1 · · ·πk BHk} is linear, and Hi is valid for some
i ∈ 1..k, then H is πi-valid.

Summing up, we extract from an expression e a history expression H , we
linearize it into {π1BH1 · · ·πkBHk}, and if someHi is valid, then we can deduce
that H is πi-valid. By Theorem 2, the plan πi safely drives the execution of e,
without resorting to any run-time monitor. It remains then to verify the validity
of history expressions that, like the Hi above, have no planned selections.

7 Verifying validity

The last step in our technical development mechanically verifies the validity of
history expressions with no planned selections. Our technique is based on model
checking Basic Process Algebras (BPAs) with Finite State Automata (FSA).
The standard decision procedure for verifying that a BPA process p satisfies a
ω-regular property ϕ amounts to constructing the pushdown automaton for p
and the Büchi automaton for the negation of ϕ. Then, the property holds if it
is empty the (context-free) language accepted by the conjunction of the above,
which is still a pushdown automaton. This problem is known to be decidable,
and several algorithms and tools show this approach feasible [22]. Since our
histories are always finite, it turns out that we can use Finite State Automata
instead of Büchi Automata.

Recall however that, as it is, our notion of validity is non-regular, because
of the arbitrary nesting of framings. As an example, consider again the history
expression H = µh. α + h · h + ϕ[h]. The language JHKπ is context-free and
non-regular, because it contains unbounded pairs of balanced [ϕ and ]ϕ (for
all plans π, as H contains no planned selections, due to Theorem 5). Since
context-free languages are not closed under intersection, the emptiness problem
is undecidable. To apply the procedure sketched above, we will first manipulate
history expressions in order to make validity a regular property.

7.1 Redundant framings

History expressions can generate histories with redundant framings, i.e. nesting
of the same framing. For example, the history η = αϕ[α′ϕ′[ϕ[α′′]]] has an inner
redundant safety framing ϕ around α′′. Since α′′ is already under the scope of
the outermost ϕ-framing, it happens that η is valid if and only if αϕ[α′ϕ′[α′′]]
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is valid. Formally, the S-sets of η comprise ϕ[{α, αα′, αα′α′′}] for the outer
framing, and ϕ[{αα′, αα′α′′}] for the inner one. Validity requires that all the
histories in {α, αα′, αα′α′′} and {αα′, αα′α′′} obey ϕ. Since the second set is
strictly included in the first one, then the inner safety framing is redundant.

Similarly, consider the history η′ = αψ〈α′ψ〈α′′〉〉. The L-sets of η′ are
ψ[{α, αα′, αα′α′′}] for the outer framing and ψ[{αα′, αα′α′′}] for the inner one.
Since the first set includes the second one, and validity requires that there exists
a history in the L-set satisfying ψ, then the outer framing is redundant.

Removing redundant framings from a history preserves its validity. But
one needs the expressive power of a pushdown automaton, because framings
openings and closings are to be matched in pairs. For example, consider the
following history:

η = α

n
︷ ︸︸ ︷

[ϕ · · · [ϕ

m
︷ ︸︸ ︷

]ϕ · · · ]ϕ [ϕ

The last [ϕ is redundant if n > m, and is not if n = m.
As a matter of fact, it turns out that it is possible to regularize the safety side

of validity, by removing the redundant safety framings. For the liveness side, this
approach seems not feasible, but, surprisingly enough, a tailored construction
of finite state automata suffices.

7.2 Regularization of safety framings

Below, we define a transformation that, given a history expression H , yields a
H ′ that does not generate redundant safety framings, and H ′ is valid if and only
if H is such. Recall that there is no need for regularizing planned selections,
because, by Theorem 5, we will always verify the validity of history expressions
with no selections.

Let H̃ be a history expression with a hole •, and let H = H̃{H ′/•} be a
history expression, for some H ′. We say that H ′ is guarded by ϕ in H when
ϕ ∈ guard(H̃), defined as the smallest set satisfying the following equations.

Guards

guard(H0 ·H1) = guard(Hi) if • ∈ Hi

guard(H0 +H1) = guard(Hi) if • ∈ Hi

guard(ϕ[H ]) = {ϕ} ∪ guard(H)

guard(ψ〈H〉) = guard(H)

guard(µh. H) = guard(H)

Example 15. LetH = ϕ[α·h0 ·ϕ′[α′+h1]]·h2, and let H̃ = ϕ[α·h0 ·ϕ′[α′+•]]·h2.
Then, H = H̃{h1/•}, and so h1 is guarded by guard(H̃) = {ϕ, ϕ′}. Similarly,
h0 is guarded by {ϕ}, and h2 is unguarded (i.e. guarded by ∅).

Let H be a (possibly non-closed) history expression. Without loss of gener-
ality, assume that all the variables in H have distinct names. We define below
H ↓Φ,Ω, the history expression produced by the regularization of H against a
set of policies Φ and a mapping Ω from variables to history expressions.

21



Regularization of safety framings

ε↓Φ,Ω = ε h↓Φ,Ω = h α↓Φ,Ω = α

(H ·H ′)↓Φ,Ω = H ↓Φ,Ω · H ′ ↓Φ,Ω (H +H ′)↓Φ,Ω = H ↓Φ,Ω + H ′ ↓Φ,Ω

ϕ[H ]↓Φ,Ω =

{

H ↓Φ,Ω if ϕ ∈ Φ

ϕ[H ↓Φ∪{ϕ},Ω] otherwise

ψ〈H〉↓Φ,Ω =

{

H ↓Φ,Ω if ψ ∈ Φ

ψ〈H ↓Φ,Ω〉 otherwise

(µh.H)↓Φ,Ω = µh. (H ′σ′ ↓Φ,Ω{(µh.H)Ω/h} σ)

where H = H ′{h/hi}i, hi fresh, h 6∈ fv(H ′), and

σ(hi) = (µh.H)Ω↓Φ∪guard(H′{•/hi}),Ω

σ′(hi) =

{

h if guard(H ′{•/hi}) ⊆ Φ

hi otherwise

Intuitively, H↓Φ,Ω results from H by eliminating all the redundant safety fram-
ings, and all the framings in Φ. The environment Ω is needed to deal with free
variables in the case of nested µ-expressions. We feel free to omit the component
Ω when unneeded, and, when H is closed, we abbreviate H ↓∅,∅ with H ↓.

The last three regularization rules would benefit from some explanation.
Consider first a history expression of the form ϕ[H ] to be regularized against a
set of policies Φ. To eliminate the redundant safety framings, we must ensure
that H has neither ϕ-framings, nor redundant safety framings itself. This is
accomplished by regularizing H against Φ ∪ {ϕ}.

A history expression ψ〈H〉 is dealt with by removing the liveness framing
if ψ ∈ Φ (because there is an outer safety framing enforcing ψ), otherwise the
framing remains. Note that we could end up with redundant liveness framings,
but they will not prevent us from verifying validity of history expressions.

Consider a history expression of the form µh.H . Its regularization against
Φ and Ω proceeds as follows. Each free occurrence of h in H guarded by some
Φ′ 6⊆ Φ is unfolded and regularized against Φ ∪ Φ′. The substitution Ω is used
to bind the free variables to closed history expressions. Technically, the i-th
free occurrence of h in H is picked up by the substitution {h/hi}, for hi fresh.
Note also that σ(hi) is computed only if σ′(hi) = hi. As a matter of fact,
regularization is a total function, and its definition above can be easily turned
into a finitely terminating rewriting system.

Example 16. Consider the history expression H0 = µh.H , where H = α+ h ·
h+ϕ[h]. Then,H can be written asH ′{h/hi}i∈0..2, whereH ′ = α+h0·h1+ϕ[h2].
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Since guard(H ′{•/h2}) = guard(α+ h0 · h1 + ϕ[•]) = {ϕ} 6⊆ ∅, then:

H0 ↓∅ = µh.H ′{h/h0, h/h1}↓∅ {H0 ↓ϕ/h2}

= µh. α+ h · h+ ϕ[H0 ↓ϕ]

To compute H0 ↓ϕ, note that no occurrence of h is guarded by Φ 6⊆ {ϕ}. Then:

H0 ↓ϕ = µh. (α+ h · h+ ϕ[h])↓ϕ = µh. α+ h · h+ h

Since JH0 ↓ϕK = {α}∗ has no ϕ-framings, we have that JH0 ↓K =
(
{α}∗ϕ[{α}∗]

)∗

has no redundant framings.

Example 17. Let H0 = µh.H1, where H1 = µh′. H2, and H2 = α + h · ϕ[h′].
Since guard(H1{•/h}) = ∅, we have that:

H0 ↓∅,∅ = µh. (H1 ↓∅,{H0/h})

Note that H2 can be written as H ′
2{h/h0}, where H ′

2 = α + h · ϕ[h0]. Since
guard(H ′

2{•/h0}) = {ϕ} 6⊆ ∅, it follows that:

H1 ↓∅,{H0/h} = µh′. H ′
2 ↓∅,{H0/h,H1{H0/h}/h′} {H1{H0/h}↓ϕ,{H0/h} /h0}

= µh′. α+ h · ϕ[h0] {(µh
′. α+H0 · ϕ[h′])↓ϕ,{H0/h} /h0}

= µh′. α+ h · ϕ[H3 ↓ϕ,{H/h}]

= α+ h · ϕ[H3 ↓ϕ,{H/h}]

whereH3 = µh′. α+H0 ·ϕ[h′], and the last step is possible because the outermost
µ binds no variable. Since guard(α +H0 · ϕ[•]) = {ϕ} ⊆ {ϕ}:

H3 ↓ϕ = µh′. (α+H0 · ϕ[h′])↓ϕ = µh′. α+H0 ↓ϕ ·h′

Since {ϕ} contains both guard(H1{•/h}) = ∅, and guard(H2{•/h′}) = {ϕ}:

H0 ↓ϕ = µh. (µh′. α+ h · ϕ[h′])↓ϕ = µh. µh′. (α+ h · ϕ[h′])↓ϕ

= µh. µh′. α+ h · h′

Summing up, we have that:

H0 ↓∅ = µh. α+ h · ϕ[H3 ↓ϕ]

H3 ↓ϕ = µh′. α+
(
µh. µh′. α+ h · h′

)
· h′

We now establish the following basic properties of regularization, stating its
correctness.

Theorem 6. For any history expression H :

• H ↓ has no redundant safety framings.

• H ↓ is valid if and only if H is valid.
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7.3 From history expressions to Basic Process Algebras

Basic Process Algebras [5] (BPAs) provide a natural characterization of histo-
ries. A BPA process is given by the following abstract syntax, where ε denotes
the terminated process, α ∈ Ev ∪ Frm, · denotes sequential composition, +
represents (nondeterministic) choice, and X is a variable.

Syntax of BPA processes

p, p′ ::= ε | α | p · p′ | p+ p′ | X

A BPA process p is guarded if each variable occurrence in p is within a
subexpression α · q of p. We assume a finite set ∆ = {X , p} of definitions: for
each variable X , there exists a single, guarded p such that {X , p} ∈ ∆. As
usual, we consider the process ε · p to be equivalent to p.

The operational semantics of BPAs is given by the following labelled tran-
sition system, in the SOS style. We denote with Jp0,∆K the set of the strings

that label finite computations, i.e. {(ai)i |p0
a1−→ · · ·

ai−→ pi }. Note that we only
consider finite computations, since our histories are always such.

Operational Semantics of BPA processes

α
α
−→ ε

p
α
−→ p′

p+ q
α
−→ p′

q
α
−→ q′

p+ q
α
−→ q′

p
α
−→ p′

p · q
α
−→ p′ · q

p
α
−→ p′ X , p ∈ ∆

X
α
−→ p′

We now introduce a mapping from history expressions to BPAs, in the line
of [4, 42]. Again, note that there is no need for transforming planned selections
into BPAs, because we are only interested in the validity of history expressions
with no selections.

The mapping takes as input a history expressionH and an injective function
Θ from history variables h to BPA variables X , and it outputs a BPA process
p and a finite set of definitions ∆. Without loss of generality, we assume that
all the variables in H have distinct names.

The rules that transform history expressions into BPAs are rather natural.
Events, variables, concatenation and choice are mapped into the corresponding
BPA counterparts. A history expression ϕ[H ] is mapped to the BPA for H ,
surrounded by the opening and closing of the ϕ-framing; similarly for ψ〈H〉. A
history expression µh.H is mapped to a fresh BPA variable X , bound to the
translation of H in the set of definitions ∆. To avoid the problem of unguarded
BPA processes, we assume a standard preprocessing step, that inserts a dummy
event before each unguarded occurrence of a variable in a history expression.
Dummy events are eventually discarded before the verification phase.
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Mapping history expressions to BPAs

BPA(ε,Θ) = (ε, ∅)

BPA(α,Θ) = (α, ∅)

BPA(h,Θ) = (Θ(h), ∅)

BPA(H0 ·H1,Θ) = (p0 · p1,∆0 ∪ ∆1),where BPA(Hi,Θ) = (pi,∆i)

BPA(H0 +H1,Θ) = (p0 + p1,∆0 ∪ ∆1),where BPA(Hi,Θ) = (pi,∆i)

BPA(ϕ[H ],Θ) = ([ϕ · p · ]ϕ,∆),where BPA(H,Θ) = (p,∆)

BPA(ψ〈H〉,Θ) = (〈ψ · p · 〉ψ,∆),where BPA(H,Θ) = (p,∆)

BPA(µh.H,Θ) = (X,∆ ∪ {X , p}),where BPA(H,Θ{X/h}) = (p,∆)

We now state the correspondence between history expressions and BPAs.
The prefixes of the histories generated by a history expression H (i.e. JHK

∂
,

where we omit the plan π because immaterial) are all and only the strings that
label the finite computations of BPA(H).

Lemma 7. JHK
∂

= JBPA(H)K.

7.4 Finite State Automata for validity

Given a policy ϕ, we are interested in defining a formula ϕ[ ] and a formula ϕ〈〉

to be used in verifying the validity of a history η with respect to security policies
within their framings.

As mentioned above, since our histories are always finite and our properties
are regular, FSA suffice for defining the safety and liveness properties we are
using. As an example, let ϕ be the policy saying that no event αc can occur
after an αr (see Section 2). The finite state automata Aϕ and Aϕ[ ]

are shown
below, which define ϕ and ϕ[ ], respectively. It is immediate checking that the
history [ϕαr]ϕαc is accepted by Aϕ[ ]

, while αr[ϕαc]ϕ is not.

q0

αrαc

q1
αr

αc

αr, αc
q2

q1 q2
αrq0

[ϕ ]ϕ[ϕ ]ϕ

αr

αr

αrαc

αc

αc

αr, αc

q̇0 q̇1

Intuitively, the automaton Aϕ[ ]
is partitioned into two layers. The first layer

is a copy of Aϕ, where all the states are final. This models the fact that we
are outside the scope of ϕ, i.e. the history leading to any state in this layer has
balanced safety framings of ϕ (or none). The second layer is reachable from
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the first one when opening a safety framing for ϕ, while closing the framing
gets back. The transitions in the second layer are a copy of those connecting
final states in Aϕ. Consequently, the states in the second layer are exactly the
final states in Aϕ. Since Aϕ[ ]

is only concerned with the verification of ϕ, the
transitions for opening and closing safety framings ϕ′ 6= ϕ, as well as those for
liveness framings ψ, are rendered as self-loops.

We require that the history η to be verified against ϕ[ ] has no redundant
safety framings, i.e. η has been regularized. Hereafter, let the formula ϕ be
defined by the finite state automaton Aϕ = (Σ, Q, q0, ρ, F ), which we assume
to have a distinguished non-final sink state. Then, the property ϕ[ ] is defined
through the finite state automaton Aϕ[ ]

defined below.

Finite state automaton for ϕ[ ]

Aϕ[ ]
= (Σ′, Q′, q0, ρ

′, F ′)

Σ′ = Σ ∪ { [ϕ′ , ]ϕ′ , 〈ψ , 〉ψ | ϕ′, ψ ∈ Pol }

Q′ = F ′ = Q ∪ { q̇ | q ∈ F }

ρ′ = ρ ∪ { (q, [ϕ, q̇) | q ∈ F } ∪ { (q̇, ]ϕ, q) | q ∈ Q }

∪ { (q̇i, α, q̇j) | (qi, α, qj) ∈ ρ ∧ qj ∈ F }

∪ { (q, [ϕ′ , q) ∪ (q, ]ϕ′ , q) | q ∈ Q′ ∧ ϕ′ 6= ϕ }

∪ { (q, 〈ψ , q) ∪ (q, 〉ψ , q) | q ∈ Q′ }

Likewise, we introduce in a while the finite state automaton Aψ〈〉
that defines

the property ψ〈 〉. However, in this case we allow histories to have redundant
framings. As an example, let ψ be the policy saying that αsgn eventually occurs
with no subsequent αrvk (see Section 2). The finite state automata Aψ and
Aψ〈 〉

for ψ and ψ〈 〉, respectively, are shown below. The history αrvk〈ψαsgn〉ψ is
accepted by Aψ〈 〉

, while αsgnαrvk〈ψαrvk〉ψ is not. Also, note that 〈ψαsgnαrvk〉ψ
is accepted, and indeed it represents a computation that leaves the liveness
framing as soon as αsgn has occurred.

q0 q1

αrvk αsgn

αsgn

αrvk

q0 q1

αsgn

αrvk

〈ψ

αsgn

αrvk
q̇0 q̇1

αrvk

αsgn

q̈0 q̈1

〈ψ , αsgn

〈ψ , αsgn〈ψ, αrvk

〉ψ〉ψ

〈ψ

αrvk

〈ψ

αrvk, 〉ψ αsgn, 〉ψ

The automaton Aψ〈 〉
consists of three layers. The first layer is a copy of Aψ,

and it represents being outside of the liveness framing ψ〈· · ·〉. The second and
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the third layer model being inside the framing. If you are in the second layer,
then you have already found a history that satisfies the property ψ, while if you
are in the third layer, you are still looking for. Suppose now that a new framing
ψ〈· · ·〉 is opened when you are in the second layer, so this is a redundant liveness
framing. If you were in a state that was final in Aψ, then you remain in the
second layer; otherwise, you go to the corresponding state in the third layer. If
the redundant framing is opened when you are in the third layer, then you stay
there. If a framing is closed when you are in the second layer, then you can go
back to the first layer, but if you are in the third layer, then you get stuck. The
automaton Aψ〈 〉

is defined in the following table.

Finite state automaton for ψ〈 〉

Aψ〈 〉
= (Σ′, Q′, q0, ρ

′, F ′)

Σ′ = Σ ∪ { [ϕ, ]ϕ, 〈ψ′ , 〉ψ′ | ϕ, ψ′ ∈ Pol }

Q′ = F ′ = Q ∪ { q̇, q̈ | q ∈ Q }

ρ′ = ρ ∪ { (q, 〈ψ, q̇) | q ∈ F } ∪ { (q, 〈ψ, q̈) | q 6∈ F }

∪ { (q̇, 〈ψ , q̇) | q ∈ F } ∪ { (q̇, 〈ψ, q̈) | q 6∈ F } ∪ { (q̈, 〈ψ , q̈) | q ∈ Q }

∪ { (q̇i, α, q̇j) | (qi, α, qj) ∈ ρ }

∪ { (q̈i, α, q̇j) | (qi, α, qj) ∈ ρ ∧ qj ∈ F }

∪ { (q̈i, α, q̈j) | (qi, α, qj) ∈ ρ ∧ qj 6∈ F }

∪ { (q̇, 〉ψ , q), (q, 〉ψ , q) | q ∈ Q }

∪ { (q, 〈ψ′ , q), (q, 〉ψ′ , q) | q ∈ Q′ ∧ ψ′ 6= ψ }

∪ { (q, [ϕ, q), (q, ]ϕ, q) | q ∈ Q′ }

Although the policies enforced by the security framings can always inspect
the whole past history, we can easily limit the scope from the side of the past. It
suffices to mark in the history the point in time βϕ from which checking a policy
ϕ has to start. The corresponding automaton ignores all the events before βϕ,
and then behaves like the standard automaton enforcing ϕ.

We now relate validity of histories with the formulae ϕ[ ] and ψ〈〉 for the
policies ϕ, ψ spanning over η.

Lemma 8. Let η be a history with no redundant safety framings. Then, η is
valid if and only if η |= ϕ[ ] and η |= ψ〈〉 for all ϕ, ψ such that [ϕ, 〈ψ∈ η.

Since finite state automata are closed under intersection, a valid history η is
accepted by the intersection of the automata Aϕ[ ]

and Aψ〈〉
, for all ϕ, ψ in η.

Validity of a closed history expression H with no planned selections can
be decided by showing that the BPA generated by the regularization of H
satisfies the given regular formula. Together with Theorem 2, the execution of
an expression in our calculus never violates security if its effect is verified valid.
Thus we are dispensed from using an execution monitor to enforce the safety
properties, and we additionally guarantee the liveness properties on demand.
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Theorem 9. A history expression H with no planned selections is valid iff:

JBPA(H ↓)K |=
∧

ϕ∈H

ϕ[ ] ∧
∧

ψ∈H

ψ〈 〉

8 Discussion

The essence of the SOC approach resides in a programming paradigm where
loosely coupled, reusable components can be invoked and composed by clients.
A key aspect is the use of the “WS-*” standards, e.g. WSDL for service de-
scription, WS-BPEL for service orchestration, WS-CDL for choreography, WS-
Security for security policies, etc. All these standards feature a call-by-name
mechanism for service invocation. Recent initiatives aim at relaxing this a priori
agreement on the syntax of service interactions, and instead rely on an informal
semantics, based on ontologies. The semantic-web initiative is an example of
this approach [6].

Our type and effects for services extend the WSDL notion of published
interfaces. Besides the standard WSDL attributes, our effects add semantic
information about a service behaviour, in the spirit of WSLA proposal [31].
This additional attribute, namely a history expression, formally is a context-
free grammar that over-approximates the run-time behaviour of services. Also,
this extension impacts on service discovery and selection. In the current Web
service technology, these operations use UDDI registries of services or match-
making algorithms based on semantic ontologies. Our notion of call-by-contract
suggests instead to select a service with a matchmaking algorithm based on
formal semantic abstractions.

Call-by-contract makes the picture complex, because several components
need to cooperate in a trusted manner. First, registries are assumed to be
trusted, in that they certify the agreement between a published type and effect
and the actual behaviour of the service considered. Formally, a registry stati-
cally analyses service code to infer its interface, by the type and effect system
of Section 5. Also, the infrastructure running services must only execute the
published ones, and code updates require certification before use. The actual
mechanism to enforce these aspects of trust are outside the scope of the present
paper, which instead concentrates on certification and planning. In our abstract
model we assume the interconnecting network is reliable, and we do not address
here the classical security problem of confidentiality, identity and availibility.

Our proposal for a semantically-based orchestration outlines the design of an
infrastructure for secure service composition. The call-by-contract invocation
mechanism adds a further layer to the standard remote procedure call. Before
starting the execution of a service, the orchestrator collects the relevant compo-
nents, by inquiring the (possibly distributed) registries. The plans provided by
the orchestrator resolve all the requests in the initiator service, as well as those
in the invoked services. This mechanism differs from the standard one, e.g. WS-
BPEL, with the advantage of offering a way to enforce all the security policies
imposed. The trustfulness of the orchestrator (Theorem 10) follows from our
formal approach, in particular from the soundness of the type and effect system
(Theorem 2), and the correctness of planning (Theorem 4) and of verification
(Theorem 9).
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9 Related work

Process calculi techniques have been used to study the foundation of services.
The main goal of some of these proposals, e.g. [23, 15, 28, 33] is to formalise
various aspects of standards for the description, execution and orchestration of
services (WSDL, SOAP and WS-BPEL). The Global Calculus [18] addresses the
problem of relating orchestration and choreography. As a matter of fact, our
λreq builds over the standard service infrastructure the above calculi formalise.
Indeed, our call-by-contract supersedes standard invocation mechanisms and
allows for verified planning.

The secure composition of components has been the main concern underlying
the design of Sewell and Vitek’s box-π [41], an extension of the π-calculus that
allows for expressing safety policies in the form of security wrappers. These
are programs that encapsulate a component to control the interactions with
other (possibly untrusted) components. The calculus is equipped with a type
system that statically captures the allowed causal information flows between
components. Our safety framings are closely related to wrappers, but in [41]
there is no analog of our liveness framings.

Gorla, Hennessy and Sassone [27] consider a calculus for mobile agents which
may migrate between sites in a controlled manner. Each site has a membrane,
representing both a security policy and a classification of external sites with
respect to their levels of trust. A membrane guards the incoming agents before
allowing them to execute. Three classes of membranes are studied, the most
complex being the class of policies enforceable by finite state automata. When
an agent comes from an untrusted site, all its code must be checked. Instead,
an agent coming from a trusted site must only provide the destination site with
a digest of its behaviour, so allowing for more efficient checks.

A different approach is Cook and Misra’s Orc [36], a programming model
for structured orchestration of services. The basic computational entities or-
chestrated by Orc expressions are sites. A site computation can start other
orchestrations, locally store the effects of a computation, and make them visible
to clients. Orc provides three basic composition operators, that can be used to
model some common workflow patterns, identified by Van der Aalst et al. [21].

Another solution to planning service composition has been proposed in [34],
where the problem of achieving a given composition goal is expressed as a con-
straint satisfaction problem.

From a technical point of view, the work of Skalka and Smith [42] is the
closest to this paper. We share with them the use of a type and effect system
and that of model checking validity of effects. In [42], a static approach to
history-based access control is proposed. The λ-calculus is enriched with access
events and local checks on the past event history. Local checks make validity a
regular property, so regularization is unneeded. The programming model and
the type system of [42] allow for access events parametrized by constants, and
for let-polymorphism. We have omitted these features for simplicity, but they
can be easily recovered by using similar techniques.

A related line of research addresses the issue of modelling and analysing
resource usage. Igarashi and Kobayashi [30] introduce a type systems to check
whether a program accesses resources according to a user-defined usage pol-
icy. Our model is less general than the framework of [30], but we provide a
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static verification technique, while [30] does not. Colcombet and Fradet [19]
and Marriot, Stuckey and Sulzmann [35] mix static and dynamic techniques to
transform programs in order to make them obey a given safety property. Besson,
de Grenier de Latour and Jensen [7] tackle the problem of characterizing when
a program can call a stack-inspecting method while respecting a global secu-
rity policy. Compared to [19, 35, 7], our programming model allows for local
policies, while the other only considers global ones.

Recently, increasing attention has been devoted to express service contracts
as behavioural (or session) types. These synthetise the essential aspects of the
interaction behaviour of services, while allowing for efficient static verification
of properties of composed systems. Session types [29] have been exploited to
formalize compatibility of components [45] and to describe adaptation of web
services [17]. Security issues have been recently considered in terms of session
types, e.g. in [13], which proves the decidability of type-checking in an exten-
sion of the π-calculus with session types and correspondence assertions [50].
Our λreq has no explicit primitive for sessions. However, they can be suitably
encoded, via higher-order functions.

Other papers have proposed type-based methodologies to check security
properties of distributed systems. For instance, Gordon and Jeffrey [26] use
a type and effect system to prove authenticity properties of security protocols.
Web service authentication has been recently modelled and analysed in [8, 9]
through a process calculus enriched with cryptographic primitives. In partic-
ular, [10] builds security libraries using the WS-Security policies of [3]. These
libraries are then mechanically analysed with ProVerif [11].

10 Conclusions

We have enriched the λ-calculus with primitives to express service composition
under security constraints, as a first step towards the design of programming
constructs to publish, select and compose services on top of a semantic theory.
The security requirements are safety and liveness properties over (an abstraction
of) execution histories. These properties have a local scope, possibly nested.

We have used a type and effect system to extract from a given program a
history expression, i.e. a safe approximation of its run-time behaviour that also
includes plans, i.e. which services can be selected to serve requests. Indeed,
plans drive service composition, so to achieve the task assigned while respecting
the security constraints. A history expression is valid (under a plan π) when
it represents execution histories (driven by π) that never violate the security
policies within their scope.

To verify the validity of history expressions, we have exploited model check-
ing over Basic Process Algebras and Finite State Automata. However, nesting
of scopes makes validity non-regular, and has required us to transform history
expressions (technically, to linearize and regularize them) so that model check-
ing is feasible. When a history expression of a program e is verified valid under
a plan π, then e will never go wrong. Therefore, at run-time it suffices to fol-
low the plan π to enforce the required safety and liveness properties without
resorting to any run-time monitoring.

The main result of this paper is resumed by the following theorem:
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Theorem 10. Let Γ, H ` e : τ , for e closed, and let H ′ = {π1 BH1 · · ·πkBHk}
be the linearization of H . If Hi is verified valid for some i ∈ 1..k, then the
execution of e with plan πi will never go wrong.
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A Proofs

B Type safety

To prove that our type and effect system for λreq is correct, it is convenient to
define a variant of λreq where explicit framing events replace safety and liveness
framings. Indeed, λreq only generates plain event histories, while the semantic
interpretation of history expressions comprises histories with framing events.

This new language is called λ]. Its syntax is much the same as λreq, the only
differences being that there are no policy framings, and events β may belong to
Ev∪Frm∪{ 〉〉ψ | ψ ∈ Pol }. The special framing event 〉〉ψ delimits an expression
that has already fulfilled a liveness requirement ψ, but it has not exited from the
framing ψ〈· · ·〉 yet. The small-step operational semantics of λ] is given below.
The rules are similar to those of λreq , with the difference that in λ] a transition
is possible only if the new history is valid. Since execution starts from the empty
history (which is valid), then validity is preserved by evaluation. Note that, for
simplicity, we allow λ] to generate also non well-formed histories (i.e. histories
that are not prefixes of balanced ones). However, we define below the encoding ]
of λreq in λ], which ensures that, for all e ∈ λreq , the histories generated during
the evaluation of e] are always well-formed. The set Cls below denotes all the
events that close the scope of a framing, i.e. Cls = { ]ϕ, 〉ϕ, 〉〉ϕ | ϕ ∈ Pol}.

Operational semantics of λ]

η, e1 �π η
′, e′1 |= η′ (e2 6=〉ψ or 6|= η〉ψ)

η, e1e2 �π η
′, e′1e2

(E]-App1)

η, e2 �π η
′, e′2 |= η′ e2 6∈ Cls

η, v e2 �π η
′, v e′2

(E]-App2)

η, (λzx.e)v �π η, e{v/x, λzx.e/z} (E]-AbsApp)

|= ηβ

η, β �π ηβ, ∗
(E]-Ev) η, if b then ett else eff �π η, eB(b) (E]-If)

|= η ]ϕ

η, v]ϕ �π η ]ϕ, v
(E]-SF)

e` : τ` ∈ Srv
] τ` ≈ τ π = r[`] | π′

η, (reqrτ)v �π η, e`v
(E]-Req)

|= η〉ψ

η, e〉ψ �π η, e〉〉ψ
(E]-LF1) η, v〉〉ψ �π η 〉ψ, v (E]-LF2)

We now define an encoding ] of λreq in λ]. It will be used in Lemma 12 to prove
that the behaviour of a λreq expression e is equivalent (in a sense that will be
formalized later) to the behaviour of its encoding e]. Note that the repository

Srv
] in the rule (E]-LF2) comprises all the services e]` : τ ′` such that e` : τ` ∈ Srv

(types are computed by the type systems for λ], given below). The mapping ]
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is defined inductively as follows:

x] = x α] = α (if b then e0 else e1)
] = if b then e]0 else e

]
1

(λzx. e)
] = λzx. e

] (e0 e1)
] = e]0 e

]
1

ϕ[e]] = [ϕ; e]]ϕ ψ〈e〉] = 〈ϕ; e]〉ϕ (reqrτ)
] = reqrτ

Note that a safety framing ϕ[e] is mapped to the expression [ϕ; e]]ϕ. This is
justified by looking at the following computation of ϕ[e]]:

η, [ϕ; e]]ϕ � η[ϕ, e
]]ϕ �∗ η[ϕη

′, v]ϕ � η[ϕη
′]ϕ, v

Note that translating ϕ[e] to [ϕ; e; ]ϕ is incorrect, because the computation of
ϕ[e]] would have the following form:

η, [ϕ; e]; ]ϕ � η[ϕ, e
]; ]ϕ �∗ η[ϕη

′, v; ]ϕ � η[ϕη
′, ]ϕ

and thus the value v would be incorrectly discarded.

It is convenient to characterize the λ] expressions that are obtained by en-
coding λreq expressions. This will be used later, together with Lemma 11 below,
when establishing our type safety result. The following well-formedness crite-
rion, telling that a closing framing event may only occur as the second term of
an application, will suffice for our purposes.

Definition 1. We say that a λ] expression e is well-formed when:

• e = ∗, e = x, e = α, e = reqrτ , e ∈ Frm \ Cls, or

• e = λzx.e
′, and e′ is well-formed, or

• e = if b then e0 else e1, and both e0 and e1 are well-formed, or

• e = e0e1, e0 is well-formed, and either e1 is well-formed or e1 ∈ Cls.

Note that not all well-formed λ] expressions (e.g. α]ϕ) are encodings of λreq

expressions. However, the following lemma states that the converse is true:
the encoding of a λreq expression is well-formed. Moreover, well-formedness is
preserved by the semantics of λ].

Lemma 11. For each e0 ∈ λreq , well-formed e ∈ λ], and history η:

(11a) e]0 is well-formed.

(11b) if η, e �π η
′, e′, then e′ is well-formed.

Proof. For (11a), we proceed by induction on the structure of e0. The only
interesting cases are e0 = ϕ[e1] and e0 = ψ〈e1〉. In the fist case, we have that

e]0 = [ϕ; e]1 ]ϕ = (λ.e]1 ]ϕ) [ϕ is well-formed, because both [ϕ and e]1 are such. The
second case is similar.

For (11b), we proceed by induction on the depth of the proof of η, e �π η
′, e′.

The base cases are trivial. For the inductive case, we have to consider the last
rule applied in the derivation.
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• case (E]-App1). Let e = e0e1, and e′ = e′0e1. Then:

η, e0 �π η
′, e′0 |= η′ (e1 6=〉ψ or 6|= η〉ψ)

η, e0e1 �π η
′, e′0e1

By definition, either e1 is well-formed, or e1 ∈ Cls. By the induction
hypothesis, e′0 is well-formed. Then, e′ = e′0e1 is well-formed, too.

• case (E]-App2). Let e = ve1, and e′ = ve′1. Then:

η, e1 �π η
′, e′1 e1 6∈ Cls |= η′

η, v e1 �π η
′, v e′1

Since e = ve1 is well-formed and e1 6∈ Cls, then both v and e1 are well-
formed. By the induction hypothesis, e′1 is well-formed. Then, e′ = ve′1 is
well-formed, too.

• case (E]-SF).
|= η]ϕ

η, v]ϕ �ϕ η]ϕ, v

Since e = v]ϕ is well-formed, then e′ = v is well-formed, too.

• case (E]-LF1).
|= η〉ψ

η, e0〉ψ �π η, e0〉〉ψ

Since e = e0〉ψ is well-formed, then e0 is well-formed, and so also e′ = e0〉〉ψ.

• case (E]-LF2).
η, v〉〉ψ �π η 〉ψ, v

Since e = v〉〉ψ is well-formed, then e′ = v is well-formed, too.

• case (E]-AbsApp). Let e = (λzx.e0)v, and e′ = e0{v/x, λzx.e0/z}.

η, (λzx.e0)v �π η, e0{v/x, λzx.e0/z}

Since e is well-formed, then both e0 and v are such (note in passing that
it cannot be v =]ϕ or v =〉ϕ, because ]ϕ, 〉ϕ are not values). It is easy to
prove the following statement, by induction on the structure of e:

∀x, e, e′ ∈ λ]. e, e′ well-formed =⇒ e{e′/x} well-formed

Therefore, e′ = e0{v/x, λzx.e0/z} is well-formed.

• case (E]-If). Let e = if b then ett else eff , and e′ = eB(b).

η, if b then ett else eff �π η, eB(b)

Since e is well-formed, both ett and eff are well-formed, too.
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• case (E]-Req). Let e = reqrτ and e′ = e`. Then:

e` : τ` ∈ Srv
] τ` ≈ τ π = r[`] | π′

η, (reqrτ)v �π η, e
]
`v

Since e]` is well-formed by (11a), so is e]` v.

To establish the correspondence between λreq and λ], we introduce an alter-
native semantics for λreq, called policy-tracking semantics. This new seman-
tics is used as a bridge between the two languages, and it has transitions
η, e,Φ,Ψ →π η′, e′,Φ′,Ψ′ that explicitly record the sequences Φ/Ψ of the ac-
tive safety/liveness framings. To record entering a framing, we use the events
[ϕ and 〈ψ , i.e. ϕ[e] is rewritten as [ϕ;ϕ[e]. We record the fact that an expres-
sion e has succesfully exited the scope of ψ with the special framing ψ〈〈e〉〉,
i.e. η, ψ〈e〉 →π η, e is rendered as η, ψ〈e〉,Φ,Ψ →π η, ψ〈〈e〉〉,Φ,Ψ. Values v
can always exit from a framing ψ〈〈v〉〉. For well-typed expressions, the “policy-
tracking” semantics is equivalent to the “policy-framing” one, modulo the events
that tell when framings are entered, and the special framings ψ〈〈e〉〉.

We now define a backward translation [ from λ] to the policy-tracking λreq :

x[ = x α[ = α (if b then e0 else e1)
[ = if b then e[0 else e

[
1

[ϕ
[
= [ϕ 〈ψ

[
= 〈ψ (λzx. e)

[ = λzx. e
[ (e0 e1)

[ = e[0 e
[
1 (e1 6∈ Cls)

(e ]ϕ)[ = ϕ[e[] (e 〉ψ)[ = ψ〈e[〉 (e 〉〉ψ)[ = ψ〈〈e[〉〉 (reqrτ)
[ = reqrτ

Note that [ is not the direct inverse of ], but it becomes such when we consider
the policy-tracking λreq . For example, we have that ϕ[e]] = [ϕ; e]]ϕ, while
([ϕ; e]]ϕ)[ = [ [ϕ; (e]]ϕ)[ = [ϕ;ϕ[(e])[]. Recall that [ϕ;ϕ[e] is just the way a
standard framing ϕ[e] is encoded in the policy-tracking λreq .

The following lemma establishes the equivalence between λreq and λ]: each
transition in λ] may be mimicked by a (policy-tracking) transition in λreq , and
viceversa. The sequences Φ(η)/Ψ(η) contain the active safety/liveness policies
of η, and are defined as follows:

Φ(ε) = ε Φ(ηα) = Φ(η) Φ(η[ϕ) = Φ(η)ϕ

Φ(η〈ψ) = Φ(η) Φ(η〉ψ) = Φ(η) Φ(ηϕ[η′]) = Φ(η)

Ψ(ε) = ε Ψ(ηα) = Ψ(η) Ψ(η〈ψ) = Ψ(η)ψ

Ψ(η[ϕ) = Ψ(η) Ψ(η]ϕ) = Ψ(η) Ψ(ηψ〈η′〉) = Ψ(η)

Lemma 12. For all λ] expressions e0, e1, histories η and plans π:

ε, e0 �∗
π η, e1 =⇒ ε, e[0, ε, ε→

∗
π η

[, e[1,Φ(η),Ψ(η) (12a)

Moreover, for all λreq expressions e0, e1, histories η and plans π:

ε, e0, ε, ε→
∗
π η, e1,Φ,Ψ =⇒ ∃η̄, ē1 : ε, e]0 �∗

π η̄, ē1 (12b)

where η̄[ = η, ē1
[ = e1, Φ = Φ(η̄), and Ψ = Ψ(η̄).
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Operational semantics of λreq with active framings

η, e1,Φ,Ψ →π η
′, e′1,Φ

′,Ψ′

η, e1e2,Φ,Ψ →π η
′, e′1e2,Φ

′,Ψ′
(E2-App1)

η, e2,Φ,Ψ →π η
′, e′2,Φ

′,Ψ′

η, ve2,Φ,Ψ →π η
′, ve′2,Φ

′,Ψ′
(E2-App2)

η, (λzx.e)v,Φ,Ψ →π η, e{v/x, λzx.e/z},Φ,Ψ (E2-AbsApp)

η, α,Φ,Ψ →π ηα, ∗,Φ,Ψ (E2-Ev)

η, if b then ett else eff ,Φ,Ψ →π η, eB(b),Φ,Ψ (E2-If)

η |= ϕ

η, [ϕ,Φ,Ψ →π η, ∗,Φϕ,Ψ
(E2-SF1)

η, e,Φ,Ψ →π η
′, e′,Φ′,Ψ′ η′ |= ϕ

η, ϕ[e],Φ,Ψ →π η
′, ϕ[e′],Φ′,Ψ′

(E2-SF2)

η |= ϕ

η, ϕ[v],Φϕ,Ψ →π η, v,Φ,Ψ
(E2-SF3)

η, 〈ψ ,Φ,Ψ →π η, ∗,Φ,Ψψ (E2-LF1)

η, e,Φ,Ψ →π η
′, e′,Φ′,Ψ′ η′ 6|= ψ

η, ψ〈e〉,Φ,Ψ →π η
′, ψ〈e′〉,Φ′,Ψ′

(E2-LF2)

η |= ψ

η, ψ〈e〉,Φ,Ψ →π η, ψ〈〈e〉〉,Φ,Ψ
(E2-LF3)

η, e,Φ,Ψ →π η
′, e′,Φ′,Ψ′

η, ψ〈〈e〉〉,Φ,Ψ →π η
′, ψ〈〈e′〉〉,Φ′,Ψ′

(E2-LF4)

η, ψ〈〈v〉〉,Φ,Ψψ →π η, v,Φ,Ψ (E2-LF5)

e` : τ` ∈ Srv τ` ≈ τ π = r[`] | π′

η, (reqrτ)v →π η, e` v
(E2-Req)

Proof. For (12a), we proceed by induction on the number of steps. Assume
that ε, e0 �∗

π η1, e1. We prove that:

η1, e1 �π η2, e2 =⇒ η[1, e
[
1,Φ(η1),Ψ(η1) →

∗
π η

[
2, e

[
2,Φ(η2),Ψ(η2)

We further induce on the derivation of η1, e1 �π η2, e2. There are the following
exhaustive cases:
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• case (E]-Ev). Let e1 = β, e2 = ∗ and η2 = η1β. Then:

|= η1β

η1, β �π η1β, ∗

There are two cases. If β ∈ Ev, then η[2 = (η1β)[ = η[1β, Φ(η2) = Φ(η1),
Ψ(η2) = Ψ(η1), e

[
1 = β[ = β, and e[2 = ∗[ = ∗. Thus, by (E2-Ev):

η[1, β,Φ(η1),Ψ(η1) →π η
[
1β, ∗,Φ(η2),Ψ(η2)

Otherwise β ∈ Frm\Cls, because β is well-formed by Lemma 11. If β = [ϕ,
then η[2 = (η1[ϕ)[ = η[1, Φ(η2) = Φ(η1)ϕ, Ψ(η2) = Ψ(η1), e

[
1 = [ [ϕ= [ϕ,

e[2 = ∗[ = ∗. Then, by (E2-SF1):

η[1, [ϕ,Φ(η1),Ψ(η1) →
1
π η

[
1, ∗,Φ(η1)ϕ,Ψ(η1)

The case β = 〈ψ is similar, and it uses the rule (E2-LF1).

• case (E]-AbsApp): Let e1 = (λzx.e)v, e2 = e{v/x, λzx.e/z}, η2 = η1.

η1, (λzx.e)v �π η1, e{v/x, λzx.e/z}

Then, e[1 = (λzx.e
[)v[. By (E2-AbsApp), we have that:

η[, (λzx.e
[)v[,Φ(η1),Ψ(η1) →π η

[, e[{v[/x, λzx.e
[/z},Φ(η1),Ψ(η1)

The following statement can be easily proved by structural induction:

∀e0, e1 ∈ λ]. (e0{e1/x})
[ = e[0{e

[
1/x} (8)

By (8), e[2 = (e{v/x, λzx.e/z})[ = (e[{v[/x, λzx.e[/z}).

• case (E]-SF): Let e1 = v ]ϕ and e2 = v.

|= η1]ϕ

η1, v]ϕ �π η1]ϕ, v

Here e[1 = (v]ϕ)[ = ϕ[v[], e[2 = v[, Φ(η1]ϕ) = Φ for some Φ such that
Φ(η1) = Φϕ, and Ψ(η1) = Ψ(η1]ϕ). Since η1]ϕ is valid, then η[1 |= ϕ.
Then, by (E2-SF3):

η[1 |= ϕ

η[1, ϕ[v[],Φϕ,Ψ →π η
[
1, v

[,Φ,Ψ

• case (E]-LF1): Let e1 = e〉ψ and e2 = e〉〉ψ.

|= η1〉ψ

η1, e〉ψ �π η1, e〉〉ψ

Here e[1 = (e〉ψ)[ = ψ〈e[〉, and e[2 = (e〉〉ψ)[ = ψ〈〈e〉〉. Since η1〉ψ is valid,

then η[1 |= ψ (by construction, none of the past histories inside the framing
satisfies ψ). Then, by (E2-LF3):

η[1 |= ϕ

η[1, ϕ[v[],Φ,Ψ →π η
[
1, v

[,Φ,Ψ
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• case (E]-LF2): Let e1 = v〉〉ψ and e2 = v.

η1, v〉〉ψ �π η1〉ψ , v

Here e[1 = (v〉〉ψ)[ = ψ〈〈v[〉〉, e[2 = v[, Ψ(η1〉ψ) = Ψ for some Ψ such that
Ψ(η1) = Ψψ, and Φ(η1) = Φ(η1〉ϕ). Then, by (E2-LF5):

η[1, ψ〈〈v
[〉〉,Φ,Ψψ →π η

[
1, v

[,Φ,Ψ

• the cases (E]-App1), (E]-App2), (E]-If), (E]-Req) are straightforward.

For (12b), we prove that, for all λreq expressions e0, e1 and histories η:

ε, e0, ε, ε→
n
π η, e1,Φ,Ψ =⇒

∃η̄, ē1 : ē1
[ = e1, η̄

[ = η,Φ(η̄) = Φ,Ψ(η̄) = Ψ and ε, e]0 �n η̄, ē1

We proceed by induction on the number of steps in ε, e0, ε, ε →∗
π η, e1,Φ. For

the base case, we have that ε, e0, ε, ε→0
π ε, e0, ε, ε, and ε, e]0 �0

π ε, e
]
0. Then we

are done, because (e]0)
[ = e0. For the inductive case, assume that ε, e0, ε, ε→∗

π

η1, e1,Φ1,Ψ1. We prove the following inductive step:

η1, e1,Φ1,Ψ1 →π η2, e2,Φ2,Ψ2 =⇒

∃η̄2, ē2 : ē2
[ = e2, η̄2

[ = η2,Φ(η̄2) = Φ2,Ψ(η̄2) = Ψ2, and

η̄1, ē1 �π η̄2, ē2

We proceed by a further induction on the derivation of η1, e1,Φ1,Ψ1 → η2, e2,Φ2,Ψ2.
There are the following cases (the omitted ones are straightforward):

• case (E2-Ev). Let e1 = α, and e2 = ∗.

η1, α,Φ1,Ψ1 → η1α, ∗,Φ1,Ψ1

By the induction hypothesis (on the number of steps), ē1 = α, η̄1
[ = η1,

Φ(η̄1) = Φ1, Ψ(η̄1) = Ψ1 and η̄1 is valid. Choose ē2 = ∗ and η̄2 = η̄1α.
Then, ē2

[ = ∗ = e2, η̄2
[ = η̄1

[α = η1α = η2. Since η̄1 is valid, by
definition of Φ(), we have η1α |= ϕ for all ϕ ∈ Φ1. Thus, η̄1α is valid, and,
by (E]-Ev):

|= η̄1α

η̄1, α �π η̄1α, ∗

• case (E2-AbsApp). Let e1 = (λzx.e)v, and e2 = e{v/x, λzx.e/z}. Then:

η1, (λzx.e)v,Φ1 →π η1, e{v/x, λzx.e/z},Φ1

By the induction hypothesis (on the number of steps), we have η̄1 and ē1
such that η̄1

[ = η1, ē1
[ = e1, Φ(η̄1) = Φ1, and η̄1 is valid. By definition

of [, it follows that ē1 is of the form (λzx. ē)v̄, where ē[ = e and v̄[ = v.
Then, by (E]-AbsApp),

η̄1, (λzx.ē)v̄,�π η̄1, ē{v̄/x, λzx.ē/z}

By (8), (ē{v̄/x, λzx.ē/z})[ = ē [{v̄[/x, (λzx.ē)[/z} = e{v/x, λzx.ē [/z} =
e{v/x, λzx.e/z} = e2.
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• case (E2-SF1). Let e1 = [ϕ, e2 = ∗, then:

η1 |= ϕ

η1, [ϕ,Φ1,Ψ1 →π η1, ∗,Φ1ϕ,Ψ1

By the induction hypothesis (on the number of steps), ē1 = [ϕ, η̄1
[ = η1,

Φ(η̄1) = Φ1, Ψ(η̄1) = Ψ1 and η̄1 is valid. Choose ē2 = ∗ and η̄2 = η̄1[ϕ.
Then ē1

[ = [ϕ, ē2
[ = ∗, Φ(η̄2) = Φ(η̄1[ϕ) = Φ(η̄1)ϕ = Φ1ϕ, and Ψ(η̄2) =

Ψ(η̄1[ϕ) = Ψ1. Since η̄1
[ = η1 |= ϕ, then η̄1[ϕ is valid, and, by (E]-Ev):

|= η̄1[ϕ

η̄1, [ϕ�π η̄1[ϕ, ∗

• case (E2-SF2). Let e1 = ϕ[e3] and e2 = ϕ[e4].

η1, e3,Φ1,Ψ1 →π η2, e4,Φ2,Ψ2 η2 |= ϕ

η1, ϕ[e3],Φ1,Ψ1 →π η2, ϕ[e4],Φ2,Ψ2

By the induction hypothesis (on the derivation), there are η̄1, η̄2, ē3, ē4
such that η̄1

[ = η1, η̄2
[ = η2, ē3

[ = e3, ē4
[ = e4, Φ(η̄2) = Φ2, Ψ(η̄2) = Ψ2

and η̄1, ē3 �π η̄2, ē4, with η̄2 valid. Let ē1 = ē3]ϕ, and ē2 = ē4]ϕ. Then,
ē1
[ = ϕ[ē3

[] = ϕ[e3], and ē2
[ = ϕ[ē4

[] = ϕ[e4]. Thus, by (E]-App1):

η̄1, ē3 � η̄2, ē4 |= η̄2 ]ϕ 6=〉ψ

η̄1, ē3]ϕ � η̄2, ē4]ϕ

• case (E2-SF3). Let e1 = ϕ[v], and e2 = v.

η1, ϕ[v],Φϕ,Ψ →π η1, v,Φ,Ψ

By the induction hypothesis (on the number of steps), ē1 = v̄]ϕ with v̄ such
that v̄[ = v, η̄1

[ = η1, Φ(η̄1) = Φϕ, Ψ(η̄1) = Ψ, η1 |= ϕ and η̄1 is valid.
Choose ē2 = v̄. Then, ē1

[ = ϕ[v̄[] = ϕ[v], ē2
[ = v̄[ = v, Φ(η̄1]ϕ) = Φ,

Ψ(η̄1]ϕ) = Ψ. Choose η̄2 = η̄1]ϕ. So, η̄2 is valid and η̄2
[ = η1. By (E]-SF):

|= η̄1]ϕ

η̄1, v̄]ϕ �π η̄1]ϕ, v̄

• case (E2-LF1). Let e1 = 〈ψ, e2 = ∗, then:

η1, 〈ψ,Φ1,Ψ1 →π η1, ∗,Φ1,Ψ1ψ

By the induction hypothesis (on the number of steps), ē1 = 〈ϕ, η̄1
[ = η1,

Φ(η̄1) = Φ1, Ψ(η̄1) = Ψ1 and η̄1 is valid. Choose ē2 = ∗ and η̄2 = η̄1〈ψ.
Then ē1

[ = 〈ϕ, ē2
[ = ∗, Φ(η̄2) = Φ(η̄1〈ψ) = Φ1, and Ψ(η̄2) = Ψ(η̄1〈ψ) =

Ψ(η̄1)ψ = Ψ1ψ. Since η̄1
[ is valid, then η̄1〈ψ is valid, and, by (E]-Ev):

|= η̄1〈ψ

η̄1, 〈ϕ�π η̄1〈ϕ, ∗
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• case (E2-LF2). Let e1 = ψ〈e3〉 and e2 = ψ〈e4〉.

η1, e3,Φ1,Ψ1 →π η2, e4,Φ2,Ψ2 η2 6|= ϕ

η1, ϕ〈e3〉,Φ1,Ψ1 →π η2, ψ〈e4〉,Φ2,Ψ2

By the induction hypothesis (on the derivation), there are η̄1, η̄2, ē3, ē4
such that η̄1

[ = η1, η̄2
[ = η2, ē3

[ = e3, ē4
[ = e4, Φ(η̄2) = Φ2, Ψ(η̄2) = Ψ2

and η̄1, ē3 �π η̄2, ē4, with η̄2 valid. Let ē1 = ē3〉ψ , and ē2 = ē4〉ψ. Then,
ē1
[ = ψ〈ē3[〉 = ψ〈e3〉, and ē2

[ = ψ〈ē4[〉 = ψ〈e4〉. Since η2 6|= ψ, then η̄2〉ψ
is not valid. Thus, by (E]-App1):

η̄1, ē3 � η̄2, ē4 |= η̄2 6|= η̄2〉ψ

η̄1, ē3〈ψ〉 � η̄2, ē4〈ψ〉

• case (E2-LF3). Let e1 = ψ〈e〉 and e2 = ψ〈〈e〉〉.

η1 |= ψ

η1, ψ〈e〉,Φ1,Ψ1 →π η1, ψ〈〈e〉〉,Φ1,Ψ1

By the induction hypothesis (on the number of steps), we have ē1 and η̄1
such that ē1

[ = e1 and η̄1
[ = η1, with η̄1 valid. Then, ē1 = ē〉ψ for some ē

such that ē[ = e. Choose ē2 = ē〉〉ψ. Then, ē2
[ = (ē〉〉ψ)[ = ψ〈〈ē[〉〉 = ψ〈〈e〉〉.

Since η1 |= ψ and η̄1 is valid, then also η̄1〉ψ is valid. Then, by (E]-LF1):

|= η̄1〉ψ

η̄1, ē〉ψ �π η̄1, ē〉〉ψ

• case (E2-LF4). Let e1 = ψ〈〈e3〉〉 and e2 = ψ〈〈e4〉〉.

η1, e3,Φ1,Ψ1 →π η2, e4,Φ2,Ψ2

η1, ϕ〈〈e3〉〉,Φ1,Ψ1 →π η2, ψ〈〈e4〉〉,Φ2,Ψ2

Similarly to the case (E2-LF2), let ē1 = ē3〉ψ , and ē2 = ē4〉ψ . Then,
ē1
[ = ψ〈〈ē3[〉〉 = ψ〈〈e3〉〉, and ē2

[ = ψ〈〈ē4[〉〉 = ψ〈〈e4〉〉. Thus, by (E]-App1):

η̄1, ē3 � η̄2, ē4 |= η̄2

η̄1, ē3〉〉ψ � η̄2, ē4〉〉ψ

• case (E2-LF5). Let e1 = ψ〈〈v〉〉, and e2 = v.

η1, ψ〈〈v〉〉,Φ,Ψψ →π η1, v,Φ,Ψ

By the induction hypothesis (on the number of steps), ē1 is of the form
v̄〉〉ψ with v̄ such that v̄[ = v, η̄1

[ = η1, Φ(η̄1) = Φ, Ψ(η̄1) = Ψψ and η̄1

is valid. Choose ē2 = v̄. Then, ē1
[ = ψ〈〈v̄[〉〉 = ψ〈〈v〉〉, ē2[ = v̄[ = v,

Φ(η̄1〉ϕ) = Φ and Ψ(η̄1〉ϕ) = Ψ. Choose η̄2 = η̄1〉ψ. Then, η̄2
[ = η̄1

[ = η1,
and, by (E]-LF2):

η̄1, v̄〉〉ψ � η̄1〉ψ, v̄
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Type and effect system for λ]

Γ, ε `] ∗ : unit (T]-Unit) Γ, β `] β : unit (T]-Ev)

Γ, ε `] x : Γ(x) (T]-Var)
Γ;x : τ ; z : τ

H
−→ τ ′, H `] e : τ ′

Γ, ε `] λzx.e : τ
H
−→ τ ′

(T]-Abs)

Γ, H `] e : τ
H′′

−−→ τ ′ Γ, H ′ `] e′ : τ e′ 6∈ Cls

Γ, H ·H ′ ·H ′′ `] ee′ : τ ′
(T]-App)

Γ, H `] e : τ

Γ, H ·]ϕ `] e]ϕ : τ
(T]-SF)

Γ, H `] e : τ β ∈ {〉ψ, 〉〉ψ}

Γ, H ·〉ψ `] eβ : τ
(T]-LF)

Γ, H `] e : τ Γ, H `] e′ : τ

Γ, H `] if b then e else e′ : τ
(T]-If)

Γ, H `] e : τ

Γ, H +H ′ `] e : τ
(T]-Wkn)

τ ′ = d{ τ ⊕]r[`] τ` | e` : τ` ∈ Srv
] ∧ τ` ≈ τ }

Γ, ε ` reqrτ : τ ′
(T]-Req)

We now introduce a type and effect system for λ], that resembles that for λreq,
with the exception that it also deals with framing events. By (T]-Ev), an
opening framing event [ϕ is typed in the same way as standard access events. A
closing event ]ϕ cannot be typed alone: the only rule that deals such an event
is (T]-SF), which requires ]ϕ to be applied to an expression e. Roughly, this is
because our encoding of λreq in λ] maps a policy framing ϕ[e] to the expression
[ϕ; e]]ϕ (see the proof of the following lemma for details). The operator ⊕] acts
as ⊕, but it discards the constraints on the request type, e.g.:

(unit
ϕ[•]
−−→ unit) ⊕]r[`] (unit

α
−→ unit) = unit

{r[`]Bα}
−−−−−−→ unit

We now prove that typing a λreq expression and its encoding in λ] yields “equiv-
alent” history expressions. The only difference is in that constraints on request
types are maintained in λreq and discarded in λ]. For example, consider e =

(reqrunit
ϕ[•]
−−→ unit)∗ and e`1 = λ.α, with Srv

] = Srv = {e`1 : unit
α
−→ unit}.

Then, {r[`1] B ϕ[α]} ` e : unit , while {r[`1] B α} `] e : unit .

Lemma 13. If Γ, H ` e : τ , then there exist H ′, τ ′ such that (i) Γ, H ′ `] e] : τ ′,
(ii) (JHKπ)[ = (JH ′Kπ)[, and (iii) if H is π-valid, then H ′ is π-valid.

Proof. By induction on the depth of the proof of Γ, H ` e : τ . The only
interesting case is when the rules (T-SF) or (T-LF) have been applied. The
proofs are similar, so we only consider the first case. We have:

Γ, H ` e : τ

Γ, ϕ[H ] ` ϕ[e] : τ
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By definition of ], ϕ[e]] = [ϕ; e] ]ϕ = (λz .e
]]ϕ)[ϕ for z fresh. By the induction

hypothesis, Γ, H ′ `] e] : τ ′. It is easy to prove, by induction on the typing
derivation, the following weakening result:

Γ, H ′ `] e : τ =⇒ Γ;x : τ ′, H ′ `] e : τ if x 6∈ fv(e) (9)

Now let z : unit
H′·]ϕ
−−−→ τ ′. Then, Γ; z : unit

H′·]ϕ
−−−→, H ′ `] e] : τ ′, and we have

the following typing derivation:

Γ; z : unit
H′·]ϕ
−−−→ τ ′, H ′ `] e] : τ ′

Γ; z : unit
H′ ·]ϕ
−−−→ τ ′, H ′·]ϕ `] e] ]ϕ : τ ′

Γ, ε `] λz .e]]ϕ : unit
H′·]ϕ
−−−→ τ ′ Γ, [ϕ `] [ϕ: unit

Γ, [ϕ·H ′·]ϕ `] (λ.e]]ϕ) [ϕ: τ ′

The obtained history expression fulfils the lemma, because, by the induction
hypothesis, (J[ϕ·H ′·]ϕKπ)[ = (JH ′Kπ)[ = (JHKπ)[ = (Jϕ[H ]Kπ)[.

Note in passing that the case (T]-App) is trivial, because if e = e0e1, then

e] = e]0e
]
1 never takes the form e′]ϕ, by definition of the encoding ].

Subject reduction holds for λ]. It states that, if a λ] expression e0 is typable
with effect H0, and there is a transition η0, e0 �π η1, e1, then e1 is also typable,
with an effect H1 such that η1JH1K

π is more precise (i.e. it contains fewer histo-
ries) than η0JH0K

π . Note that we only admit well-formed expressions. As stated
in Lemma 11 above, this is not a restriction, because the transformation of a
λreq expression e under ] is always well-formed.

Lemma 14 (Subject Reduction). If Γ, H0 `] e0 : τ and η0, e0 �π η1, e1, for
e0 closed and well-formed, then there exists H1 such that Γ, H1 `] e1 : τ and
η1JH1K

π ⊆ η0JH0K
π.

Proof. By induction on the depth of the proof of Γ, H0 `] e0 : τ . For the base
case, note that neither (T]-Var) nor (T]-Unit) can be used, because the former
rule types variables x, which are not closed, while the latter rule types ∗, which
does not admit further transitions. Therefore, the base case involves the rule
(T]-Ev). Let e0 = β, and H0 = β. Then, by (T]-Ev):

Γ, β `] β : unit

Let e1 = ∗, and η1 = η0β. By (E]-Ev), we have that:

|= η0β

η0, β �π η0β, ∗

By (T]-Unit), Γ, ε `] ∗ : unit . Let H1 = ε. Then, η1JH1K = η0βε = η0JH0K.
For the inductive case, consider the last step of the typing derivation. We

only have the following cases:

• case (T]-App). Let e0 = ee′, with e′ 6∈ Cls, and H0 = H ·H ′ ·H ′′. Then:

Γ, H `] e : τ
H′′

−−→ τ ′ Γ, H ′ `] e′ : τ e′ 6∈ Cls

Γ, H ·H ′ ·H ′′ `] ee′ : τ ′

45



We have the following three further subcases, according to the rule used
to deduce η0, e0 �π η1, e1.

1. If (T]-App1) has been used, then:

η0, e �π η1, e
′′ |= η1

η0, ee
′ �π η1, e

′′e′

Let e1 = e′′e′. By the induction hypothesis, there exists H ′
1 such that

Γ, H ′
1 ` e′′ : τ

H′′

−−→ τ ′ and η1JH
′
1K ⊆ η0JHK. Then, by (T]-App):

Γ, H ′
1 `] e′′ : τ

H′′

−−→ τ ′ Γ, H ′ `] e′ : τ e′ 6∈ Cls

Γ, H ′
1 ·H

′ ·H ′′ `] e′′e′ : τ ′

LetH1 = H ′
1·H

′·H ′′. Then, η1JH1K = η1JH
′
1KJH

′ ·H ′′K ⊆ η0JHKJH ′ ·H ′′K =
η0JH ·H ′ ·H ′′K = η0JH0K.

2. If (E]-App2) has been used, then e = v, and:

η0, e
′ �π η1, e

′′ |= η1 e′ 6∈ Cls

η0, ve
′ �π η1, ve

′′

Let e1 = ve′′. By the induction hypothesis, there exists H ′
1 such that

Γ, H ′
1 ` e′′ : τ and η1JH

′
1K ⊆ η0JH

′K. Since e is a closed value, then
H = ε. By Lemma 11, e′′ is well-formed, so e′′ 6∈ Cls. Then, by (T]-App):

Γ, ε `] e : τ
H′′

−−→ τ ′ Γ, H ′
1 `] e′′ : τ e′′ 6= ]ϕ

Γ, ε ·H ′
1 ·H

′′ `] e′′e′ : τ ′

Let H1 = ε · H ′
1 · H ′′. Then, η1JH1K = η1JH

′
1KJH

′′K ⊆ η0JH
′KJH ′′K =

η0JH
′ ·H ′′K = η0H0.

3. If (E]-Req) has been used, then e = reqrτr, e
′ = v, and:

e` : τ` ∈ Srv τ` ≈ τr π = r[`] | π′

η0, (reqrτr)v �π η0, e
]
` v

By (T]-Req), it follows that:

τ
H′′

−−→ τ ′ = d{ τr ⊕
]
r[`′] τ`′ | e`′ : τ`′ ∈ Srv ∧ τr ≈ τ`′ }

Let e`1 . . . e`n be the services such that τr ≈ τ`i , and let τ`i = τi
Hi−−→ τ ′i for

i ∈ 1..n. Then, H = H ′ = ε, and H ′′ = {r[`1] BH1 · · · r[`n] BHn}. Since
τ` ≈ τr, there exists k ∈ 1..n such that ` = `k. By construction of Srv, we
have that e`k : τ`k ∈ Srv implies Hk ` e`k : τ`k . Let H1 = Hk. Then:

η0JH0K
π = η0Jε · ε · {r[`1] BH1 · · · r[`n] BHn}Kr[`k]|π

′

= η0JHkK
π = η0JH1K

π

• case (T]-SF). Let H0 = H ]ϕ and e0 = e]ϕ. Then:

Γ, H `] e : τ

Γ, H ·]ϕ `] e]ϕ : τ
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We have two further subcases, according to the rule used to deduce η0, e0 �π

η1, e1 (note that the rule (E]-App2) cannot be used, because it requires
e1 6∈ Cls). If (E]-App1) has been used, then:

η0, e �π η1, e
′ |= η1

η0, e]ϕ �π η1, e
′]ϕ

Let e1 = e′]ϕ. By the induction hypothesis, there exists H ′ such that
Γ, H ′ `] e

′ : τ , and η1JH
′K ⊆ η0JHK. Then, by (T]-SF):

Γ, H ′ `] e
′ : τ

Γ, H ′·]ϕ `] e′]ϕ : τ

Let H1 = H ′·]ϕ. Then, η1JH1K = η1JH
′K ]ϕ ⊆ η0JHK ]ϕ = η0JH0K.

Otherwise, if (E]-SF) has been used, then:

|= η0]ϕ

η0, v]ϕ �π η0]ϕ, v

Let e0 = v]ϕ, e1 = v, and η1 = η0]ϕ. As a premise of (T]-SF), we have
that Γ, H `] v : τ . Since v is a closed value, then H = ε, and hence
H = ε]ϕ = ]ϕ. Let H1 = ε. Then, η1JH1K = η0]ϕε = η0JH0K.

• case (T]-LF). Let H0 = H〉ψ and e0 = eβ, with β ∈ {〉ψ, 〉〉ψ}. Then:

Γ, H `] e : τ

Γ, H ·〉ψ `] eβ : τ

We have the following three subcases, according to the event β and to the
rule used to deduce η0, e0 �π η1, e1 (note that the rule (E]-App2) cannot
be used, because it requires e1 6∈ Cls). If (E]-App1) has been used, then:

η0, e �π η1, e
′ |= η1 (β 6=〉ψ or 6|= η0〉ψ)

η0, eβ �π η1, e
′β

Let β =〉ψ and e1 = e′〉ϕ. Then, η′ 6|= ψ, and by the induction hypothesis,
there existsH ′ such that Γ, H ′ `] e′ : τ , and η1JH

′K ⊆ η0JHK. By (T]-LF):

Γ, H ′ `] e
′ : τ

Γ, H ′·〉ψ `] e′〉ψ : τ

Let H1 = H ′·〉ϕ. Then, η1JH1K = η1JH
′K 〉ψ ⊆ η0JHK 〉ϕ = η0JH0K.

Otherwise, if β =〉ψ and (E]-LF1) has been used, then:

|= η0〉ψ

η0, e〉ψ �π η0, e〉〉ψ

Let e0 = e〉ψ, e1 = e〉〉ψ, and η1 = η0. By (T]-LF):

Γ, H `] e : τ

Γ, H ·〉ψ `] e〉〉ψ : τ
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Let H1 = H0. Then, η1JH1K = η0JH0K.

The last subcase is when β = 〉〉ψ and (E]-LF2) has been applied:

η0, v〉〉ψ �π η0〉ψ , v

Let e0 = v〉〉ψ, e1 = v, and η1 = η0〉ψ. As a premise of (T]-LF), we have
that Γ, H `] e : τ . Since v is a closed value, then H = ε. Thereby,
H = ε〉ψ = 〉ψ. Let H1 = ε. Then, η1JH1K = η0〉ψε = η0JH0K.

• case (T]-If). Let e0 = if b then ett else eff , then:

Γ, H0 `] ett : τ Γ, H0 `] eff : τ

Γ, H0 `] if b then ett else eff : τ

Then, by (E]-If):

η0, if b then ett else eff �π η0, eB(b)

Let η1 = η0 and H1 = H0. Then, η1JH1K = η0JH0K.

• case (T]-Wkn). Let H0 = H +H ′. Then:

Γ, H `] e0 : τ

Γ, H +H ′ `] e0 : τ

By the induction hypothesis, there exists H1 such that Γ, H1 `] e1 : τ
and η1JH1K ⊆ η0JHK. Then, η1JH1K ⊆ η0JHK ⊆ η0JHK ∪ η0JH

′K =
η0JH +H ′K = η0JH0K.

Theorem 15. If Γ, H ` e : τ and ε, e→∗
π η, e

′, then η ∈ (JHKπ)[∂ .

Proof. By Lemma 13, Γ, H] `] e] : τ , with (JH]Kπ)[ = (JHKπ)[. By Lemma 12,
ε, e] �∗

π η̄, ē, with η̄ [ = η and ē [ = e′. We now prove the following statement:

Γ, H] `] e : τ ∧ ε, e �∗
π η, e

′ =⇒ η ∈ (JH]Kπ)∂ (10)

This follows by Lemma 14, using a straightforward inductive argument. In
particular, Lemma 14 ensures that Γ, H ′ `] e′ : τ and εJH]Kπ ⊇ ηJH ′Kπ , for
some H ′. Thus, η̄ ∈ (η̄JH ′Kπ)∂ ⊆ (JH]Kπ)∂ , and:

η = η̄[ ∈
(
(JH]Kπ)∂

)[
=

(
(JH]Kπ)[

)∂
= (JHKπ)[∂

The following lemma states that a well-typed λ] expression with a valid effect
is never stuck, i.e. either it is a value or it can take a transition. This propery
if usually referred to as progress, and it will be used together with subject
reduction to prove that our type and effect system enjoys type safety.

Lemma 16 (Progress). Let Γ, H `] e : τ , for e closed, and let ηH be π-valid
for some η, π. Then, either e is a value, or there exists a transition η, e �π η

′, e′.

Proof. By induction on the depth of the proof of the typing derivation. We
only have to consider the following cases:
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• case (T]-Ev). Let e = β, and H = β. Then:

Γ, β `] β : unit

Since ηH = ηβ is valid, then, by (E]-Ev):

|= ηβ

η, β �π ηβ, ∗

• case (T]-App). Let e = e0e1, and H = H0 ·H1 ·H2. Then:

Γ, H0 `] e0 : τ
H2−−→ τ ′ Γ, H1 `] e1 : τ e1 6∈ Cls

Γ, H0 ·H1 ·H2 `] e0e1 : τ ′

There are four further subcases.

1. If e0 is not a value, then, by induction hypothesis, η, e0 �π η
′, e′0 for

some η′ and e′0. By Lemma 14, Γ, H ′ ` e′0 : τ for some H ′ such that
η′JH ′K ⊆ ηJH0K. Since ηJH0 ·H1 ·H2K is valid, and validity is prefix-
closed, then ηJH0K is also valid. Then, η′JH ′K is valid, as well as its prefix
η′. By (E]-App1):

η, e0 �π η
′, e′0 |= η′

η, e0e1 �π η
′, e′0e1

2. If e0 is a (closed) value and e1 is not a value, then H0 = ε. By the
induction hypothesis, η, e1 �π η

′, e′1 for some η′ and e′1. By Lemma 14,
Γ, H ′ ` e′1 : τ for some H ′ such that η′JH ′K ⊆ ηJH1K. Since ηJε ·H1 ·H2K
is valid, then ηJH1K is also valid, as well as its subset η′JH ′K and its prefix
η′. Then, by (E]-App2):

η, e1 �π η
′, e′1 |= η′ e1 6∈ Cls

η, e0e1 �π η
′, e0e

′
1

3. If e0 = λzx. e
′′ and e1 is a closed value, then H0 = H1 = ε. Since

ηJH0 ·H1 ·H2K = ηJε · ε ·H2K is valid, then η is valid. By (E]-AbsApp):

η, (λzx.e
′′)e1 �π η, e

′′{e1/x, λzx.e
′′/z}

4. If e0 = reqrτr and e1 is a closed value, then H0 = H1 = ε, and:

τ
H2−−→ τ ′ = d{ τr ⊕r[`] τ` | e` : τ` ∈ Srv

] ∧ τr ≈ τ` }

Let e`1 . . . e`n be the services such that τr ≈ τ`i , and let τ`i = τi
Ki−−→ τ ′i

for i ∈ 1..n. Then, H2 = {r[`1] BK1 · · · r[`1] BKn}. By contradiction, if
π is not of the form r[`i] | π′ for any π′ and i ∈ 1..k, then JH2K

π = ⊥.
Thereby, H0 ·H1 ·H2 would not be π-valid. Then, π = r[`i] | π

′ for some
i and π′. By (E]-Req):

e`i : τ`i ∈ Srv
] τ`i ≈ τr π = r[`i] | π

′

η, (reqrτr)e1 �π η, e
]
`i
e1
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• case (T]-SF). Let e = e′]ϕ, and H = H ′·]ϕ. Then:

Γ, H ′ `] e′ : τ

Γ, H ′·]ϕ `] e′]ϕ : τ

Since ηJH ′·]ϕK is valid, then ηJH ′K is valid, too. There are two subcases.

If e′ is not a value, then, by the induction hypothesis, η, e′ � η′, e′′ for
some η′ and e′′. By Lemma 14, Γ, H ′′ `] e′′ : τ for some H ′′ such that
η′′JH ′′K ⊆ ηJH ′K. Since ηJH ′K contains only valid histories, then all the
histories in η′JH ′′K are valid, and η′ is valid, too, because validity is prefix-
closed. Thus, by (E]-App1):

η, e′ �π η
′, e′′ η′ valid

η, e′]ϕ �π η
′, e′′]ϕ

Otherwise, if e′ is a (closed) value v, then H ′ = ε, and ηJH ′·]ϕK = η ]ϕ is
valid. Thus, by (E]-SF):

η]ϕ valid

η, v]ϕ �π η]ϕ, v

• case (T]-LF). Let e = e′β, β ∈ {〉ψ, 〉〉ψ} and H = H ′·〉ψ.

Γ, H ′ `] e′ : τ β ∈ {〉ψ, 〉〉ψ}

Γ, H ′·〉ψ `] e′β : τ

Since ηJH ′·〉ψK is valid, then ηJH ′K is valid. By the induction hypothesis,
if e′ is not a value, then η, e′ �π η

′, e′′ with η′ valid. We have the following
four subcases.

1. If e′ is not a value, β =〉ψ and η〉ψ is not valid, then, by (E]-App1):

η, e′ �π η
′, e′′ |= η′ 6|= η〉ψ

η, e′〉ψ �π η
′, e′′〉ψ

2. If β =〉ψ and η〉ψ is valid, then, by (E]-LF1):

|= η〉ψ

η, e′〉ψ �π η, e
′〉〉ψ

3. If e′ is not a value and β = 〉〉ψ, then, by (E]-App1):

η, e′ �π η
′, e′′ |= η′

η, e′〉〉ψ �π η
′, e′′〉〉ψ

4. If e′ is not a value v and β = 〉〉ψ, then, by (E]-LF2):

η, v〉〉ψ �π η 〉ψ, v
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• case (T]-If). Let e = if b then ett else eff . Then:

Γ, H `] ett : τ Γ, H `] eff : τ

Γ, H `] if b then ett else eff : τ

Then, by the rule (E]-If):

η, if b then ett else eff �π η, eB(b)

• case (T]-Wkn). Let H = H0 +H1. Then:

Γ, H0 `] e : τ

Γ, H0 +H1 `] e : τ

Since ηH = η(H0 + H1) is valid, and ηJH0K ⊆ ηJHK, then ηH0 is valid.
Then, by the induction hypothesis, η, e �π η

′, e′ for some η′ and e′.

Theorem 17 (Type Safety). If Γ, H ` e : τ , with e closed. If H is π-valid,
then the plan π is viable for e.

Proof. By contradiction, let ε, e→∗
π η, e0, and let η, e0 be a stuck configuration,

i.e. e0 is not a value, and there is no outgoing transition from η, e0. Since e is
well-typed, there exists an equivalent policy-tracking computation ε, e, ε, ε →∗

π

η, e′0,Φ,Ψ. By Lemma 12b, there exists η̄ and ē0 such that ε, e] � η̄, ē0, with
η̄[ = η and ē0

[ = e′0. By Lemma 13, H ′ `] ē : τ ′ for some π-valid H ′. By
Lemma 14, H̄ `] ē0 : τ ′, for some H̄ such that η̄JH̄K ⊆ JH ′K. Since H ′ is π-
valid, then η̄JH̄Kπ is valid, and η̄ is valid, too, because validity is prefix-closed.
By Lemma 12a, since η, e0 is stuck, then also η̄, ē0 is stuck. Then, by Lemma 16,
ē0 must be a value. By definition of [, since ē0

[ = e′0, then e′0 would be a value,
and so also e0: this contradicts the hypothesis that η, e0 is stuck.

Theorem 3. Let Γ, H `Srv e : τ , with e closed, and H valid for some well-typed
plan π. Let ε, e →∗

π η, C(ψ〈e′〉), with e′ having guarded λ-abstractions only.
Then, there exists k such that, for each computation:

η, C(ψ〈e′〉) →π η1, e1 →π · · · →π ηk, ek

there exists n ≤ k such that en = C(ψ〈e′′〉) and ηn |= ψ.

Proof. Let H ′ be the effect of C(ψ〈e′〉). Since C is an evaluation context, H ′

has the form ψ〈H0〉 · H1, for some H0 and H1. By Lemma 14, ηJH ′K ⊆ JHK,
and so the validity of H implies that of η ·H ′. Therefore, for each H ∈ ηJH ′K =
ηJψ〈H0〉KJH1K, there exists a history η′ in ηJH0K obeying ψ. Now consider a
computation:

η, C(ψ〈e′〉) →π η1, e1 →π · · ·

By Theorem 15, all ηηi ∈ JH ′K. Thus, there exists n such that ηηn |= ψ.

Note that the condition on guarded abstractions is needed to ensure that
the effect of any recursive functions has the form µh.H . If an abstraction (with
no events) were not guarded, it would be possible to assign it a non-recursive,
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arbitrary effect — possibly valid w.r.t. any liveness policy ψ. This would clearly
invalidate the statement of Theorem 3.

However, since all the λ-abstractions in e′ are guarded (say by an event α),
the effect H of ψ〈e′〉 has the form H = ψ〈H0 ·(µh. α ·H ′) ·H1〉, where H0 has no
recursion. Indeed, by rule (T-Abs), the typing of a guarded recursive function
λzx. α; e requires to equate the actual effect α ·H ′′ of the function body with the
latent effect of the function — and this can only be obtained by folding α ·H ′′

into µh. α ·H ′, where H ′′ = H ′{µh. α ·H ′/h}.

C Planning

Definition 2. A plan π is less defined than π′ (π v π′) when π′ = r[`] | π.
Two plans π, π′ are dependent when π v π′ or π′ v π.

Lemma 18. If π′ v π, then J{π′ BH}Kπρ = JHKπρ .

Proof. Straightforward, by induction on the structure of π′.

Lemma 19. Let H = {π1 BH1 · · ·πk BHk}. Then, for all plans π:

JHKπ =
⋃

{ JHiK
π | πi v π }

Proof. By Lemma 18:

JHKπ = J{π1 BH1 · · ·πk BHk}Kπ =
⋃

i∈1..k

J{πi BHi}Kπ

=
⋃

{ JHiK
π | πi v π }

Lemma 20. The relation ≡ is a congruence.

Proof. Let C( ) be a history expression with a hole. We must prove that
C(H) ≡ C(H ′) whenever H ≡ H ′. We proceed by induction on the structure of
C. The base cases C = ε, C = α, C = h and C = are trivial. For the inductive
case, we have the following subcases:

• if C( ) = C1( ) · C2( ) then, by the induction hypothesis:

JC(H)Kπρ = JC1(H) · C2(H)Kπρ = JC1(H)Kπρ JC2(H)Kπρ

= JC1(H
′)Kπρ JC2(H

′)Kπρ = JC1(H
′) · C2(H

′)Kπρ = JC(H ′)Kπρ

• if C( ) = {π′ B C1( )}, then we have the following subcases, according to
the structure of π′:

– if π′ = 0, then, by the induction hypothesis:

J{0 B C1(H)}Kπρ = JC1(H)Kπρ = JC1(H
′)Kπρ = J{0 B C1(H

′)}Kπρ
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– if π′ = π0 | π1, we have two further subcases. If π0 | π1 v π, then,
by the induction hypothesis and by Lemma 18:

J{π0 | π1 B C1(H)}Kπρ = J{π0 B C1(H)}Kπρ ∪⊥ J{π1 B C1(H)}Kπρ

= JC1(H)Kπρ ∪⊥ JC1(H)Kπρ

= JC1(H
′)Kπρ ∪⊥ JC1(H

′)Kπρ

= J{π0 B C1(H
′)}Kπρ ∪⊥ J{π1 B C1(H

′)}Kπρ

= J{π0 | π1 B C1(H
′)}Kπρ

Otherwise, if π is not compatible with either π0 or π1:

J{π0 | π1 B C1(H)}Kπρ = J{π0 B C1(H)}Kπρ ∪⊥ J{π1 B C1(H)}Kπρ

= ⊥ = J{π0 B C1(H
′)}Kπρ ∪⊥ J{π1 B C1(H

′)}Kπρ

= J{π0 | π1 B C1(H
′)}Kπρ

– if π′ = r[`], then we have two further subcases. If π = r[`] | π′′, then:

J{r[`] B C1(H)}Kπρ = JC1(H)Kπρ = JC1(H
′)Kπρ = J{r[`] B C1(H

′)}Kπρ

Otherwise, JC(H)Kπρ = ⊥ = JC(H ′)Kπρ .

• if C( ) = µh. C1( ), then recall that:

JC(H)Kπρ =
⋃

n∈ω

fn(⊥) f(X) = JC1(H)Kπρ{X/h}

JC(H ′)Kπρ =
⋃

n∈ω

gn(⊥) g(X) = JC1(H
′)Kπρ{X/h}

By induction on n, we prove that fn(⊥) = gn(⊥) for all n. The base case
n = 0 is trivial: f0(⊥) = ⊥ = g0(⊥). For the inductive case, we have:

fn+1(⊥) = f(fn(⊥)) = JC1(H)Kπρ{fn(⊥)/h} = JC1(H)Kπρ{gn(⊥)/h}

= JC1(H
′)Kπρ{gn(⊥)/h} = g(gn(⊥)) = gn+1(⊥)

• the cases C( ) = C1( ) + C2( ), C( ) = ϕ[C1( )], and C( ) = ψ〈C1( )〉 are
similar to the first case.

Lemma 21. H ≡ {0 BH}

Proof. By definition, J{0 BH}Kπρ = JHKπρ .

Lemma 22.

{π0 BH0}+ {π1 BH1 · · ·πk BHk} ≡

{π0 | π1 BH0 +H1 · · ·π0 | πk BH0 +Hk}

Proof. Let H and H ′ be the left term and the right term of the equation above,
respectively. Let π be the evaluation plan, and let I ⊆ 1..k be the set of indexes
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i such that πi v π. Then, by Lemma 18:

JHKπρ = J{π0 BH0}Kπρ ∪⊥ J{π1 BH1 · · ·πk BHk}Kπρ

= J{π0 BH0}Kπρ ∪⊥

⋃

i∈1..k

J{πi BHi}Kπρ

= J{π0 BH0}Kπρ ∪⊥

⋃

i∈I

JHiK
π
ρ

JH ′Kπρ =
⋃

i∈1..k

J{π0 | πi BH0 +Hi}Kπρ

=
⋃

i∈1..k

(

J{π0 BH0 +Hi}Kπρ ∪⊥ J{πi BH0 +Hi}Kπρ

)

=
⋃

i∈I

(

J{π0 BH0 +Hi}Kπρ ∪⊥ JH0 +HiK
π
ρ

)

If π0 v π, then it follows that:

JHKπρ = JH0K
π
ρ ∪⊥

⋃

i∈I

JHiK
π
ρ =

⋃

i∈I

JH0K
π
ρ ∪⊥ JHiK

π
ρ =

⋃

i∈I

JH0 +HiK
π
ρ

=
⋃

i∈I

(

JH0 +HiK
π
ρ ∪⊥ JH0 +HiK

π
ρ

)

= JH ′Kπρ

Otherwise, we have that J{π0 BH0}K
π
ρ = ⊥ = J{π0 BH0 ·Hi}K

π
ρ , thus:

JHKπρ = ⊥ ∪⊥

⋃

i∈I

JHiK
π
ρ = ⊥

JH ′Kπρ =
⋃

i∈I

(

⊥ ∪⊥ JH0 +HiK
π
ρ

)

=
⋃

i∈I

⊥ = ⊥

Lemma 23. {π0 BH0} · {π1 BH1 · · ·πk BHk} ≡ {π0|π1 BH0 ·H1 · · ·π0|πk BH0 ·Hk}

Proof. Let H and H ′ be the left term and the right term of the equation above,
respectively. Let π be the evaluation plan, and let I ⊆ 1..k be the set of indexes
i such that πi v π. Then, by Lemma 18:

JHKπρ = J{π0 BH0}Kπρ J{π1 BH1 · · ·πk BHk}Kπρ

= J{π0 BH0}Kπρ
⋃

i∈1..k

J{πi BHi}Kπρ

= J{π0 BH0}Kπρ
⋃

i∈I

JHiK
π
ρ

JH ′Kπρ =
⋃

i∈1..k

J{π0 | πi BH0 ·Hi}Kπρ

=
⋃

i∈1..k

(

J{π0 BH0 ·Hi}Kπρ ∪⊥ J{πi BH0 ·Hi}Kπρ

)

=
⋃

i∈I

(

J{π0 BH0 ·Hi}K
π
ρ ∪⊥ JH0 ·HiK

π
ρ

)
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If π0 v π, then it follows that:

JHKπρ = JH0K
π
ρ

⋃

i∈I

JHiK
π
ρ =

⋃

i∈I

JH0K
π
ρ JHiK

π
ρ =

⋃

i∈I

JH0 ·HiK
π
ρ

=
⋃

i∈I

(

JH0 ·HiK
π
ρ ∪⊥ JH0 ·HiK

π
ρ

)

= JH ′Kπρ

Otherwise, we have that J{π0 BH0}Kπρ = ⊥ = J{π0 BH0 ·Hi}Kπρ , thus:

JHKπρ = ⊥
⋃

i∈I

JHiK
π
ρ = ⊥

JH ′Kπρ =
⋃

i∈I

(

⊥ ∪⊥ JH0 ·HiK
π
ρ

)

=
⋃

i∈I

⊥ = ⊥

Lemma 24. {π1 BH1 · · ·πkBHk} ·{πBH} ≡ {π1|πBH1 ·H · · ·πk|πBHk ·H}

Proof. Similar to the proof of Lemma 23.

Lemma 25. ϕ[{π1 BH1 · · ·πk BHk}] ≡ {π1 B ϕ[H1] · · ·πk B ϕ[Hk]}

Proof. Let π be the evaluation plan, and let I ⊆ 1..k be the set of indexes i
such that πi v π. Then, by Lemma 18:

Jϕ[{π1 BH1 · · ·πk BHk}]Kπρ = ϕ[J{π1 BH1 · · ·πk BHk}Kπρ ]

= ϕ[
⋃

i∈1..k

J{πi BHi}K
π
ρ ] = ϕ[

⋃

i∈I

JHiK
π
ρ ]

=
⋃

i∈I

ϕ[JHiK
π
ρ ] =

⋃

i∈I

Jϕ[Hi]K
π
ρ =

⋃

i∈1..k

Jϕ[Hi]K
π
ρ

= J{π1 B ϕ[H1] · · ·πk B ϕ[Hk]}Kπρ

Lemma 26. ψ〈{π1 BH1 · · ·πk BHk}〉 ≡ {π1 B ψ〈H1〉 · · ·πk B ψ〈Hk〉}

Proof. Similar to the proof of Lemma 25.

Lemma 27. µh. {π1 BH1 · · ·πk BHk} ≡ {π1 B µh.H1 · · ·πk B µh.Hk}

Proof. By definition, we have that:

Jµh. {π1 BH1 · · ·πk BHk}Kπρ =
⋃

n∈ω

fn(⊥)

J{π1 B µh.H1 · · ·πk B µh.Hk}K
π
ρ =

⋃

i∈1..k

J{πi B µh.Hi}K
π
ρ

where f(X) = J{π1 BH1 · · ·πk BHk}Kπρ{X/h}. Let fi(X) = J{πi BHi}Kπρ{X/h}.

Then, f(X) =
⋃

i∈1..k fi(X). Let I ⊆ 1..k be the set of indexes i such that
πi v π. Then, by Lemma 18 it follows that, for each i ∈ I :

J{πi BHi}Kπρ{X/h} = JHiK
π
ρ{X/h}

J{πi B µh.Hi}Kπρ = Jµh.HiK
π
ρ =

⋃

n∈ω

gni (⊥), where gi(X) = JHiK
π
ρ{X/h}
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By induction on n, we prove that fni (⊥) = gni (⊥), for each n ∈ ω and i ∈ I .

fn+1
i (⊥) = fi(f

n
i (⊥)) = JHiK

π
ρ{fn

i
(⊥)/h} = JHiK

π
ρ{gn

i
(⊥)/h} = gn+1

i (⊥)

Summing up, we have that:

Jµh. {π1 BH1 · · ·πk BHk}Kπρ =
⋃

n∈ω

⋃

i∈1..k

fni (⊥) =
⋃

n∈ω

⋃

i∈I

fni (⊥)

=
⋃

n∈ω

⋃

i∈I

gni (⊥) =
⋃

i∈I

⋃

n∈ω

gni (⊥)

=
⋃

i∈I

J{πi B µh.Hi}K
π
ρ =

⋃

i∈1..k

J{πi B µh.Hi}K
π
ρ

= J{π1 B µh.H1 · · ·πk B µh.Hk}Kπρ

Lemma 28. {π0 B {π1 BH1 · · ·πk BHk}} ≡ {π0 | π1 BH1 · · ·π0 | πk BHk}

Proof. By induction on the structure of π0. Let H (resp. H ′) be the left (resp.
right) term in the equation above, and π be the evaluation plan. Then:

• if π0 = 0, then:

JH ′Kπρ = J{0 | π1 BH1 · · · 0 | πk BHk}Kπρ =
⋃

i∈1..k

J{0 | πi BHi}Kπρ

=
⋃

i∈1..k

(

J{0 BHi}Kπρ ∪⊥ J{πi BHi}Kπρ

)

=
⋃

i∈1..k

J{πi BHi}Kπρ

= J{π1 BH1 · · ·πk BHk}Kπρ = J{0 B {π1 BH1 · · ·πk BHk}}Kπρ

= JHKπρ

• if π0 = r[`], we have two subcases. If r[`] v π, then:

JH ′Kπρ = J{r[`] | π1 BH1 · · · r[`] | πk BHk}Kπρ =
⋃

i∈1..k

J{r[`] | πi BHi}Kπρ

=
⋃

i∈1..k

(

J{r[`] BHi}Kπρ ∪⊥ J{πi BHi}Kπρ

)

=
⋃

i∈1..k

J{πi BHi}Kπρ

= J{π1 BH1 · · ·πk BHk}Kπρ = J{r[`] B {π1 BH1 · · ·πk BHk}}Kπρ

= JHKπρ

Otherwise, if π and π0 are not compatible, then:

JH ′Kπρ =
⋃

i∈1..k

(

J{r[`] BHi}Kπρ ∪⊥ J{πi BHi}Kπρ

)

=
⋃

i∈1..k

(

⊥ ∪⊥ J{πi BHi}Kπρ

)

=
⋃

i∈1..k

⊥ = ⊥ = JHKπρ
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• if π0 = π′
0 | π′′

0 , then, by the induction hypothesis:

JH ′Kπρ = J{(π′
0 | π′′

0 ) | π1 BH1 · · · (π′
0 | π′′

0 ) | πk BHk}Kπρ

=
⋃

i∈1..k

J{(π′
0 | πi) | (π′′

0 | πi) BHi}Kπρ

=
⋃

i∈1..k

(

J{(π′
0 | πi) BHi}Kπρ ∪⊥ J{(π′′

0 | πi) BHi}Kπρ

)

=
⋃

i∈1..k

J{(π′
0 | πi) BHi}Kπρ ∪⊥

⋃

i∈1..k

J{(π′′
0 | πi) BHi}Kπρ

)

= J{π′
0 | π1 BH1 · · ·π′

0 | πk BHk}Kπρ ∪⊥

J{π′′
0 | π1 BH1 · · ·π′′

0 | πk BHk}Kπρ

= J{π′
0 B {π1 BH1 · · ·πk BHk}}Kπρ ∪⊥

J{π′′
0 B {π1 BH1 · · ·πk BHk}}Kπρ

= JHKπρ

To prove Theorem 4, it suffices to generalize the above lemmas to the case
where both the operand are planned selections with an arbitrary number of
choices. To give the flavour of the proof, consider the case of a sequence of
planned selections {πi BHi}i∈1..k · {π′

j BH ′
j}j∈1..p, with k = p = 2. Then:

{π1 BH1, π2 BH2} · {π
′
1 BH ′

1, π
′
2 BH ′

2}

≡{0 B {π1 BH1, π2 BH2}} · {π
′
1 BH ′

1, π
′
2 BH ′

2}

≡{0 | π′
1 B {π1 BH1, π2 BH2} ·H

′
1, 0 | π′

2 B {π1 BH1, π2 BH2} ·H
′
2}

≡{π′
1 B {π1 BH1, π2 BH2} · {0 BH ′

1}, π
′
2 B {π1 BH1, π2 BH2} · {0 BH ′

2}}

≡{π′
1 B {π1 BH1 ·H

′
1, π2 BH2 ·H

′
1}, π

′
2 B {π1 BH1 ·H

′
2, π2 BH2 ·H

′
2}}

≡{π′
1 | π1 BH1 ·H

′
1, π

′
1 | π2 BH2 ·H

′
1, π

′
2 B π1 BH1 ·H

′
2, π

′
2 B π2 BH2 ·H

′
2}

Theorem 4. If H = {π1 BH1 · · ·πk BHk} is linear, and Hi is valid for some
i ∈ 1..k, then H is πi-valid.

Proof. Let Hi be valid. Since for all j 6= i, πi and πj are independent, by
Lemma 19 we have that JH ′Kπi = JHiK

πi . Since Hi has no planned selections,
then JHiK

πi = JHiK
0. Since Hi is 0-valid, then H is πi-valid.

D Verification

Theorem 29. H ↓ is defined, for all H .

Proof. We prove a stronger result: for each history expressionH , set of policies
Φ and mapping Ω from variables to history expressions, H ↓Φ,Ω is defined. Let
Φ0 be the set of all policies contained in Φ, H and Ω. We proceed by induction
on |Φ0| − |Φ|. The base case is when |Φ| = |Φ0|: since Φ ⊆ Φ0, it must be
Φ = Φ0. By induction on the structure of H , we have the following cases:

• if H = ε, H = h, H = α are trivial.
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• if H = H0 · H1, then H ↓Φ0,Ω= H0 ↓Φ0,Ω ·H1 ↓Φ0,Ω. By the structural
induction hypothesis, both H0 ↓Φ0,Ω and H1 ↓Φ0,Ω are defined.

• if H = H0 +H1, similar.

• if H = ϕ[H ′], then H ↓Φ0,Ω= H ′ ↓Φ0,Ω, because ϕ ∈ Φ0. By the structural
induction hypothesis, H ′ ↓Φ0,Ω is defined.

• if H = ψ〈H ′〉, then H ↓Φ0,Ω= H ′ ↓Φ0,Ω, because ψ ∈ Φ0. By the structural
induction hypothesis, H ′ ↓Φ0,Ω is defined.

• if H = µh.H ′, then H ↓Φ0,Ω= µh. (H ′ ↓Φ0,Ω), because there is no occur-
rence of h ∈ fv(H ′) guarded by some ϕ 6∈ Φ0. By the structural induction
hypothesis, H ′ ↓Φ0,Ω is defined.

For the inductive case, let |Φ| = k, and assume that the statement holds for sets
of policies with size greater than k. We proceed by induction on the structure
of H . The cases ε, h, α,H0 ·H1 and H0 +H1 are treated similarly to the base
case. The other cases follow:

• if H = ϕ[H ′], then there are two further subcases. If ϕ ∈ Φ, then
H ↓Φ,Ω= H ′ ↓Φ,Ω, which is defined by the structural induction hypoth-
esis. Otherwise, if ϕ 6∈ Φ, then H ↓Φ,Ω= ϕ[H ′ ↓Φ∪ϕ,Ω]. Since |Φ∪ϕ| > |Φ|,
then H ′ ↓Φ∪ϕ,Ω is defined by the induction hypothesis on |Φ0| − |Φ|.

• if H = ψ〈H ′〉, then there are two further subcases. If ψ ∈ Φ, then
H ↓Φ,Ω= H ′ ↓Φ,Ω, which is defined by the structural induction hypothesis.
Otherwise, if ψ 6∈ Φ, then H ↓Φ,Ω= ψ〈H ′ ↓Φ,Ω〉, and H ′ ↓Φ,Ω is defined by
structural the induction hypothesis.

• ifH = µh.H ′, thenH ↓Φ,Ω= µh.(H ′′σ′ ↓Φ,Ω{(µh.H′)Ω/h}), whereH ′′, σ and
σ′ are as in the definition of regularization. When σ′(hi) = h, the value of
σ(hi) immaterial, thus σ(hi) = (µh.H ′) ↓Φ∪guard(H′′),Ω needs to be com-
puted only if guard(H ′′) 6⊆ Φ. Then, the induction hypothesis on |Φ0|−|Φ|
ensures that (µh.H ′) ↓Φ∪guard(H′′),Ω is defined. By the structural induc-
tion hypothesis, H ′ ↓Φ,Ω{(µh.H′)Ω/h} is defined. Since the substitution σ′

just replaces some free variable hi for h, then also H ′′σ′ ↓Φ,Ω{(µh.H′)Ω/h}

is defined.

The semantics of a closed history expression always contains histories with
balanced framings. Also, the semantics of history expressions is preserved under
substitution. Indeed, the following two lemmas hold. They can be proved by a
straightforward structural induction.

Lemma 30. For each closed H and η ∈ JHK, η has balanced framings.

Lemma 31 (Substitution lemma). Let H ′ be an history effect such that
JH ′Kρ is defined. Then, for each history effect H , JH{H ′/h}Kρ = JHK

ρ{JH ′Kρ/h}

We now characterize when a history expression has ϕ-framings. Note that
the following definition in not a complete characterization, e.g. it does not tell us
that ϕ[α] has ϕ-framings. However, this will suffice for the subsequent technical
development. A complete characterization of ϕ-framings can be easily obtained
by replacing variables for events in history expressions. For instance, Jϕ[α]Kρ
has ϕ-framings if and only if Jϕ[h]Kρ{∅/h} has.
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Lemma 32. JHKρ has ϕ-framings, if one of the following cases occurs:

(32a) for some h ∈ fv (H), ρ(h) has ϕ-framings.

(32b) some h is guarded by Φ in H , and ϕ ∈ Φ.

Proof. We proceed by induction on the structure of H . The base cases H = ε,
H = α and H = h are trivial. The inductive cases follow:

• if H = H0 ·H1, then for (32a) assume that h ∈ fv (H0) (resp. h ∈ fv(H1)),
and ρ(h) has ϕ-framings. By the induction hypothesis, JH0Kρ (resp. JH1Kρ)
has ϕ-framings. Then, JHKρ = JH0KρJH1Kρ has ϕ-framings. For (32b),
assume that the occurrence of h is in H0 (the other case is similar). Then,
h is guarded by Φ in H0. By the induction hypothesis, JH0Kρ has ϕ-
framings. Then, JHKρ = JH0KρJH1Kρ has ϕ-framings.

• if H ′ = H0 +H1, similar.

• if H = ϕ[H0], then for (32a) assume that ρ(h) has ϕ′-framings, for some
h ∈ fv(H) = fv (H0). By the induction hypothesis, JH0Kρ has ϕ′-framings,
and JHKρ = ϕ[JH0Kρ] has ϕ′-framings. For (32b), assume that some h is
guarded by Φ in H . Then, Φ = {ϕ} ∪ Φ0, and h is guarded by Φ0 in
H0. By the induction hypothesis, JH0Kρ has ϕ′-framings for all ϕ′ ∈ Φ0.
Then, JHKρ = ϕ[JH0Kρ] has ϕ-framings, and ϕ′-framings for all ϕ′ ∈ Φ0.
In conclusion, JHKρ has ϕ′-framings for all ϕ′ ∈ Φ.

• ifH = µh.H0, then JHKρ =
⋃

n∈ωXn, whereX0 = ∅,Xn+1 = JH0Kρ{Xn/h}.

For (32a), let h′ ∈ fv(H) = fv(H0) \ {h}, and let ρ(h′) have ϕ-framings.
By the induction hypothesis, X1 = JH0Kρ{∅/h} has ϕ-framings, as well

as JHKρ ⊇ X1. For (32b), assume first that h′ ∈ fv (H) is guarded by
Φ in H . Then, h′ is guarded by Φ in H0. By the induction hypothesis,
X1 = JH0Kρ{∅/h} has ϕ-framings, for all ϕ ∈ Φ, so it does JHKρ ⊇ X1.

Now assume that h′ = h is guarded by Φ in H , and let ϕ ∈ Φ. Then,
there exists a free occurrence of h guarded by {ϕ} ∪ Φ′ in H0, for some
Φ′. By the induction hypothesis , X1 = JH0Kρ{∅/h} has ϕ-framings, and

so it does JHKρ ⊇ X1.

The previous lemma helps in establishing when a history expression has
redundant framings. Again, we do not give a complete characterization (e.g. it
does not tell us that ϕ[ϕ[α]] has redundant framings), because completeness is
unneeded in the subsequent technical development.

Lemma 33. JHKρ has redundant framings, if one of the following cases occurs:

(33a) for some h ∈ fv (H), ρ(h) has redundant framings.

(33b) for some h ∈ fv (H) guarded by {ϕ} ∪ Φ in H , ρ(h) has ϕ-framings.

(33c) H = µh.H ′, and some free occurrence of h is guarded in H ′

Proof. We proceed by induction on the structure of H . The base cases H = ε,
H = α and H = h are trivial. The inductive cases follow:
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• if H = H0 ·H1, assume that the free occurrence of h is in H0 (the other
case is similar). For (33a), if ρ(h) has redundant framings, then, by the
induction hypothesis, JH0Kρ has redundant framings. For (33b)), if h is
guarded by {ϕ} ∪ Φ in H and ρ(h) has ϕ-framings, then h is guarded
by {ϕ} ∪ Φ in H0. By the induction hypothesis, JH0Kρ has redundant
framings. In both cases, JHKρ = JH0KρJH1Kρ has redundant framings.

• if H ′ = H0 +H1, similar.

• if H = ϕ[H0], then h ∈ fv (H) is also free in H0. For (33a), if ρ(h)
has redundant framings, then, by the induction hypothesis, JH0Kρ has
redundant framings. For (33b), let h be guarded by Φ in H . Then, Φ =
{ϕ} ∪ Φ0, where h is guarded by Φ0 in H . Let ρ(h) have ϕ′-framings, for
some ϕ′ ∈ Φ. If ϕ′ = ϕ, then by (32a), JH0Kρ has ϕ-framings. Otherwise, if
ϕ′ ∈ Φ0, then, by the induction hypothesis, JH0Kρ has redundant framings.
In both cases, JHKρ = ϕ[JH0Kρ] has redundant framings.

• ifH = µh.H0, then JHKρ =
⋃

n∈ωXn, whereX0 = ∅,Xn+1 = JH0Kρ{Xn/h}.

For (33a), let h′ ∈ fv (H) = fv (H0) \ {h} be such that ρ(h′) has redundant
framings. By the induction hypothesis, X1 = JH0Kρ{∅/h} has redundant

framings, and so it does JHKρ ⊇ X1. For (33b), let h′ be guarded by
Φ in H0 and let ρ(h′) have ϕ-framings, for some ϕ ∈ Φ. By the in-
duction hypothesis, X1 = JH0Kρ{∅/h} has redundant framings, and so it

does JHKρ ⊇ X1. For (33c), let Φ be the union of all the sets guard(H ′)
such that h ∈ fv (H ′). By (32a), X1 = JH0Kρ{∅/h} has framings in Φ.

Since Φ 6= ∅, let ϕ ∈ Φ. Then, there exists an occurrence of h guarded
in H0 by {ϕ} ∪ Φ′, for some Φ′. By the induction hypothesis of (33b),
X2 = JH0Kρ{X1/h}

has redundant framings. Then, X2 has redundant

framings, and so JHKρ ⊇ X2.

The following lemma, though a little contrived, will be very important while
proving that our algorithm for regularizing history expressions does indeed pro-
duce histories with no redundant framings. It states that you can change the
name of variables in history expressions and (under certain assumptions) the
evaluation environment, while preserving the property of having ϕ-framings,
and that of having no redundant framings.

Lemma 34. Let H,H ′ be history effects such that H = H ′{h/h′}. Then:

(34a) if JHKρ has no framings in Φ for some ρ, then JH ′Kρ′ has no framings in
Φ, for all ρ′ such that ρ′(h′′) has no framings in Φ, for each h′′ ∈ fv(H ′).

(34b) if JHKρ has no redundant framings for some ρ, then JH ′Kρ′ has no redun-
dant framings, for all ρ′ such that ρ′(h′′) has no redundant framings, and
no framings in guard(H ′), for each h′′ ∈ fv (H ′).

Proof. By induction on the structure of H . The base cases H = ε and H = α
are trivial. If H = h, then H ′ = h′, and Jh′Kρ′ = ρ′(h′) has neither framings in
Φ nor redundant framings, by the hypotheses on ρ′. The inductive cases follow:

• if H = H0 ·H1, then H = H ′{h/h′} implies H ′ = H ′
0 ·H

′
1 for some H ′

0, H
′
1

such that H0 = H ′
0{h/h

′}, H1 = H ′
1{h/h

′}.
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Assume that JHKρ = JH0KρJH1Kρ has no framings in Φ. This implies
that neither JH0Kρ nor JH1Kρ have framings in Φ. Let ρ′ be such that
ρ′(h) has no framings in Φ for all h ∈ fv(H ′) = fv (H ′

0) ∪ fv (H ′
1). By the

induction hypothesis, neither JH ′
0Kρ′ nor JH ′

1Kρ′ have framings in Φ. Then,
JH ′Kρ′ = JH ′

0Kρ′JH
′
1Kρ′ , has no framings in Φ. This proves (34a).

Now assume that JHKρ has no redundant framings. Then, neither JH0Kρ
nor JH1Kρ have redundant framings. Let ρ′ be such that ρ′(h′′) has no
redundant framings and no framings in guard(H ′) for all the occurrences
of h′′ ∈ fv (H ′). If h′′ ∈ fv (H ′

0) (resp. H ′
1), then guard(H ′) = guard(H ′

0)
(resp. H ′

1). By the induction hypothesis, neither JH ′
0Kρ′ nor JH ′

1Kρ′ have
redundant framings. Then, JH ′Kρ′ = JH ′

0Kρ′JH
′
1Kρ′ has no redundant fram-

ings. This proves (34b).

• if H = H0 +H1, similar.

• if H = ϕ[H0], then H ′ = ϕ[H ′
0] for some H ′

0 such that H0 = H ′
0{h/h

′}.

For (34a), assume that JHKρ = ϕ[JH0Kρ] has no framings in Φ (clearly,
ϕ 6∈ Φ), and let ρ′ be such that ρ′(h′′) has no framings in Φ for all h′′ ∈
fv(H ′) = fv (H ′

0). By the induction hypothesis, JH ′
0Kρ′ has no framings in

Φ. Then, JH ′Kρ′ = ϕ[JH ′
0Kρ′ ] has no framings in Φ.

For (34b), assume that JHKρ has no redundant framings. Then, JH0Kρ has
neither ϕ-framings nor redundant framings. Let ρ′ be such that ρ′(h′′) has
no redundant framings and no framings in guard(H ′) = {ϕ} ∪ guard(H ′

0)
for all h′′ ∈ fv (H ′) = fv (H ′

0). By the induction hypothesis, JH ′
0Kρ′ has nei-

ther ϕ-framings nor redundant framings. Then, JH ′Kρ′ has no redundant
framings.

• if H = µh0.H0, then H ′ = µh0.H
′
0, for someH ′

0 such that H0 = H ′
0{h/h

′}.
Let X0 = Y0 = ∅, Xn+1 = JH0Kρ{Xn/h0}

, and Yn+1 = JH ′
0Kρ′{Yn/h0}

.

Then, JHKρ =
⋃

n∈ωXn, and JH ′Kρ′ =
⋃

n∈ω Yn.

Assume that JHKρ has no framings in Φ: this means that all the approx-
imants Xn have no framings in Φ. Let ρ′ be such that ρ′(h′′) has no
framings in Φ for all h′′ ∈ fv (H ′) = fv(H ′

0) \ {h0}. We prove (34a) by
induction on n. The base case Y0 = ∅ is trivial. For the inductive case,
assume that Yn has no framings in Φ. By the structural induction hypoth-
esis, the approximant Yn+1 = JH ′

0Kρ′{Yn/h0}
has no framings in Φ. Since

this holds for all the approximants Yn, then JH ′Kρ′ has no framings in Φ.

For (34b), assume that JHKρ has no redundant framings. Then, no approx-
imant Xn has redundant framings. By lemma (33c), guard(H) = ∅, i.e.
all the occurrences of h0 in H ′

0 are unguarded. Let ρ′ be such that ρ′(h′′)
has neither redundant framings nor framings in guard(H ′) = guard(H ′

0)
for all h′′ ∈ fv (H ′) = fv(H ′

0) \ {h0}. We prove that no approximant Yn
has redundant framings. The base case Y0 = ∅ is trivial. For the induc-
tive case, assume that Yn has no redundant framings. By the structural
induction hypothesis (recall that Yn has no framings in guard(H ′

0) = ∅),
Yn+1 = JH ′

0Kρ′{Yn/h0}
has no redundant framings.

Theorem 35. For each closed H , H ↓ has no redundant safety framings.
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Proof. We prove the following, stronger, result. Let H , Φ, Ω, ρ be such that
(i) JHKρ is defined, (ii) JΩ(h)K∅ is defined for all h ∈ dom(Ω) = fv(H), and (iii)
ρ(h) has no safety framings for each h ∈ fv(H). Then, JH ↓Φ,ΩKρ has neither
safety framings in Φ, nor redundant safety framings.

Let Φ0 be the set of policies contained in Φ, H and ρ. We proceed by
induction on |Φ0| − |Φ|. The base case is when |Φ| = |Φ0|: since Φ ⊆ Φ0, it
must be Φ = Φ0. In this case, we prove that JH ↓ΦKρ has no framings (and,
consequently, no redundant framings). By induction on the structure of H , we
have the following cases:

• if H = ε, then Jε↓ΦKρ = JεKρ = ε has no framings. Similarly for H = α.

• if H = h, then Jh↓ΦKρ = JhKρ = ρ(h) has no framings by hypothesis (iii).

• if H = H0 ·H1, then:

J(H0 ·H1)↓ΦKρ = JH0 ↓Φ ·H1 ↓ΦKρ = JH0 ↓ΦKρ JH1 ↓ΦKρ

By the structural induction hypothesis, JH0 ↓ΦKρ and JH1 ↓ΦKρ have no
framings, as well as JH0 ↓ΦKρ JH1 ↓ΦKρ.

• if H = H0 +H1, similar.

• if H = ϕ[H0], since Φ = Φ0, then ϕ ∈ Φ. Thus, ϕ[H0]↓Φ= H0 ↓Φ, and, by
the structural induction hypothesis, JH0 ↓ΦKρ has no framings.

• if H = ψ〈H0〉, since Φ = Φ0, then ψ ∈ Φ. Thus, ψ〈H0〉 ↓Φ= H0 ↓Φ, and,
by the structural induction hypothesis, JH0 ↓ΦKρ has no framings.

• if H = µh.H0, then (µh.H0)↓Φ,Ω= µh. (H0 ↓Φ,Ω{HΩ/h}), since there is no
h ∈ fv(H0) guarded by ϕ /∈ Φ = Φ0. Then, JH ↓Φ,ΩKρ =

⋃

n∈ωXn, where
X0 = ⊥, and Xn+1 = JH0 ↓Φ,Ω{HΩ/h}Kρ{Xn/h}. We prove, by induction
on n, that each Xn has no framings. The base case X0 = ⊥ is trivial.
For the inductive case, assume that Xn has no framings. Then, by the
structural induction hypothesis, JH0 ↓Φ,Ω{HΩ/h}Kρ{Xn/h} has no framings.

For the inductive case, let |Φ| = k, and assume that the statement holds for sets
of policies with size greater than k. We proceed by induction on the structure
of H . The cases ε, α, h,H0 ·H1 and H0 +H1 are treated similarly to the base
case. The other cases follow:

• if H = ϕ[H0], then we have the following two subcases. If ϕ ∈ Φ, then
ϕ[H0] ↓Φ= H0 ↓Φ. By the structural induction hypothesis, JH0 ↓ΦKρ has
neither framings in Φ, nor redundant framings. Otherwise, if ϕ /∈ Φ,
then ϕ[H0] ↓Φ= ϕ[H0 ↓Φ∪{ϕ}]. Since |Φ ∪ {ϕ}| = |Φ| + 1, by induction
on |Φ0| − |Φ|, JH0 ↓Φ∪{ϕ}Kρ has no ϕ-framings, no framings in Φ, and no
redundant framings. Therefore, Jϕ[H0 ↓Φ∪{ϕ}]Kρ = ϕ[JH0 ↓Φ∪{ϕ}Kρ] has
neither framings in Φ, nor redundant framings.

• if H = ψ〈H0〉, then we have the following two subcases. If ψ ∈ Φ, then
ψ〈H0〉 ↓Φ= H0 ↓Φ. By the structural induction hypothesis, JH0 ↓ΦKρ has
neither safety framings in Φ, nor redundant safety framings. Otherwise, if
ψ /∈ Φ, then ψ〈H0〉↓Φ= ψ〈H0 ↓Φ〉. By the induction hypothesis, JH0 ↓ΦKρ
has no safety framings and no redundant safety framings. Therefore,
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Jψ〈H0 ↓Φ〉Kρ = ψ〈JH0 ↓ΦKρ〉 has neither safety framings in Φ, nor redun-
dant safety framings.

• if H = µh.H0, let H0 = H ′{h/hi}i, where the hi are fresh and h 6∈ fv (H ′).
Let Φi = guard(H ′), σ(hi) = HΩ ↓Φ∪Φi,Ω, and σ′(hi) = h if Φi ⊆ Φ,
otherwise σ′(hi) = hi. Then, H ↓Φ,Ω= µh. (H ′σ′ ↓Φ,Ω{HΩ/h} σ). Consider
the history effect HΩ. By hypothesis, JHKρ is defined, and JΩ(h′)K∅ is
defined for all h′ ∈ dom(Ω). Then, lemma 31 ensures that JHΩKρ is
defined. For all i such that hi ∈ dom(σ), let Hi = JHΩ↓Φ∪Φi,ΩKρ. By
lemma 31:

JH ↓Φ,ΩKρ = Jµh.H ′σ′ ↓Φ,Ω{HΩ/h} σKρ

= Jµh.H ′σ′ ↓Φ,Ω{HΩ/h}Kρ{Hi/hi}i

=
⋃

n∈ωXn

whereX0 = ⊥, and Xn+1 = JH ′σ′ ↓Φ,Ω{HΩ/h}Kρ{Hi/hi,Xn/h}i
. We proceed

by induction on n. The base case X0 = ⊥ is trivial. For the inductive
case, assume that Xn has neither framings in Φ, nor redundant framings.
By hypothesis, ρ(h′) has no framings for all h′ ∈ fv(H) = fv(H0) \ {h}.
Since Ω(h′) is closed for all h′ ∈ dom(Ω), and fv(H) = dom(Ω), then HΩ
is closed, and fv(H0) = fv (H) ∪ {h} = dom(Ω) ∪ {h} = dom(Ω{HΩ/h}).
Therefore, by the structural induction hypothesis, JH0 ↓Φ,Ω{HΩ/h}Kρ{∅/h}
has neither framings in Φ, nor redundant framings.

Consider the histories Hi = JHΩ↓Φ∪Φi,ΩKρ, and let h′ ∈ fv (HΩ). Since
Ω(h′) is closed, then h′ ∈ fv (H) \ dom(Ω), and ρ(h′) has no framings by
hypothesis. Since Φi 6⊆ Φ, then |Φ ∪ Φi| > |Φ|, and, by the induction
hypothesis on |Φ0|−|Φ|, Hi has neither framings in Φ∪Φi, nor redundant
framings. Note thatH0 = (H ′σ′){h/hi}i: then, by lemma (34a),Xn+1 has
no framings in Φ. Let ρ′ = ρ{Hi/hi, Xn/h}i. Consider a free occurrence
of some h′ ∈ fv(H ′σ′) guarded by Φ′. If h′ = h, then ρ′(h) = Xn has
neither redundant framings nor framings in Φ. Since Φ′ ⊆ Φ by definition
of σ′, then ρ′(h) has no framings in Φ′. If h′ = hi, then ρ′(h′) = Hi has
neither redundant framings, nor framings in Φ∪Φi, and then no framings
in Φi. If h′ 6∈ {h, hi}i, then ρ′(h′) = ρ(h′) has no framings by hypothesis.
By lemma (34b), Xn+1 has no redundant framings.

Regularization preserves validity. To show that, it is convenient to introduce a
normal form for histories. It permits to compare the histories produced by an
expressionH with those of the regularization of H . Note that normalization is a
non-regular transformation: constructing the normal form of a history requires
counting the framing openings and closings.

Normalization of histories

ε⇓Φ = ε α⇓Φ = (
∧

Φ) [α]

(HH′)⇓Φ = H⇓Φ H′⇓Φ (H ∪H′)⇓Φ = H⇓Φ ∪ H′⇓Φ

ϕ[H]⇓Φ = H⇓Φ∪{ϕ} ψ〈H〉⇓Φ = ψ〈H⇓Φ〉
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Intuitively, normalization transforms safety framings into local checks. Indeed,
η⇓Φ is intended to record that each event in η must obey to all the policies in
Φ. This is apparent in the second and in the last equation above. We abbreviate
H⇓∅ with H⇓. Note that H⇓∅ is defined if and only if H has balanced framings.

Example 18. Consider the history η = αϕ[α′ϕ′[α′′]]. Its normal form is:

η⇓ = α⇓ (ϕ[α′ϕ′[α′′]])⇓ = α (α′ϕ′[α′′])⇓ϕ = α (α′⇓ϕ) (ϕ′[α′′])⇓ϕ

= α ϕ[α′] (α′′⇓ϕ,ϕ′) = α ϕ[α′] (ϕ ∧ ϕ′)[α′′]

Lemma 36. H⇓Φ⇓Φ= H⇓Φ, for all H and Φ (i.e. normalization is idempotent).

Proof. By induction on the structure of H. The base case ε is trivial, as well
as the cases H = H0 H1, H = H0 ∪ H1 and H = ψ〈H0〉, which are dealt with a
straightforward use of the induction hypothesis. If H = α, then:

α⇓Φ⇓Φ = (
∧

Φ)[α]⇓Φ = α⇓Φ∪{
V

Φ} = (
∧

Φ ∧
∧

Φ)[α] = (
∧

Φ)[α] = α⇓ϕ

Otherwise, if H = ϕ[H′], then:

ϕ[H]⇓Φ⇓Φ = H⇓Φ∪{ϕ}⇓Φ = H⇓Φ⇓{ϕ}⇓Φ = H⇓Φ⇓Φ⇓{ϕ} = H⇓Φ⇓{ϕ} = ϕ[H]⇓Φ

where the next-to-last equality is implied by the induction hypothesis.

The following technical lemma helps in proving Theorem 38. Roughly, it
states that normalization is preserved by substitution of a history variable, pro-
vided that the new evaluation enviroment maps that variable to a suitably
normalized set of histories.

Lemma 37. Let h ∈ fv (H). Then, for all Φ, ρ and Φ′ ⊆ Φ:

JHKρ⇓Φ = JHKρ{ρ(h)⇓Φ′/h}
⇓Φ = JHKρ{ρ(h)⇓Φ∪guard(H)/h}

⇓Φ

Proof. By induction on the structure of H . The base cases H = ε and H = α
are trivial. If H = h, then guard(h) = ∅, and:

JhKρ⇓Φ = ρ(h)⇓Φ = ρ(h)⇓Φ′ ⇓Φ = JhKρ{ρ(h)⇓Φ′/h}
⇓Φ

JhKρ⇓Φ = ρ(h)⇓Φ = ρ(h)⇓Φ⇓Φ = JhKρ{ρ(h)⇓Φ/h}
⇓Φ

The inductive cases follow.

• if H = H0 ·H1, let ρ′ = ρ{ρ(h)⇓Φ′ /h}. Then, for the first equation:

JH0 ·H1Kρ⇓Φ = (JH0Kρ JH1Kρ)⇓Φ

= JH0Kρ⇓Φ JH1Kρ⇓Φ

= JH0Kρ′ ⇓Φ JH1Kρ′ ⇓Φ

= (JH0Kρ′ JH1Kρ′)⇓Φ

= JH0 ·H1Kρ{ρ(h)⇓Φ/h}
⇓Φ

where the third step is justified by the induction hypothesis. For the sec-
ond equation, let h ∈ fv(H0) (the case h ∈ fv(H1) is similar). Then,
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guard(H) = guard(H0). Let ρ′ = ρ{ρ(h)⇓Φ∪guard(H0) /h}. By the induc-
tion hypothesis, we have that:

JH0 ·H1Kρ⇓Φ = (JH0Kρ JH1Kρ)⇓Φ

= JH0Kρ⇓Φ JH1Kρ⇓Φ

= JH0Kρ′ ⇓Φ JH1Kρ⇓Φ

= JH0Kρ′ ⇓Φ JH1Kρ′ ⇓Φ

= (JH0Kρ′ JH1Kρ′)⇓Φ

= JH0 ·H1Kρ′ ⇓Φ

= JH0 ·H1Kρ{ρ(h)⇓Φ∪guard(H)/h}
⇓Φ

• if H ′ = H0 +H1, similar.

• if H = ϕ[H0], then, for the first equation:

Jϕ[H ]Kρ⇓Φ = ϕ[JHKρ]⇓Φ = JHKρ⇓Φ∪{ϕ}

= JHKρ{ρ(h)⇓Φ′/h}
⇓Φ∪{ϕ}

= ϕ[JHKρ{ρ(h)⇓Φ′/h}
]⇓Φ

= Jϕ[H ]Kρ{ρ(h)⇓Φ′/h}
⇓Φ

For the second equation, guard(ϕ[H ]) = {ϕ} ∪ guard(H). Then:

Jϕ[H ]Kρ⇓Φ = ϕ[JHKρ]⇓Φ = JHKρ⇓Φ∪{ϕ}

= JHKρ{ρ(h)⇓Φ∪{ϕ}∪guard(H)/h}
⇓Φ∪{ϕ}

= ϕ[JHKρ{ρ(h)⇓Φ∪{ϕ}∪guard(H)/h}
]⇓Φ

= Jϕ[H ]Kρ{ρ(h)⇓Φ∪guard(ϕ[H])/h}
⇓Φ

• if H = µh′.H ′, then guard(H) = guard(H ′) (note that h 6= h′). Let
ρ′ = ρ{ρ(h)⇓Φ′ /h}, ρ′′ = ρ{ρ(h)⇓Φ∪guard(H′) /h}, Jµh′.H ′Kρ ⇓Φ=

⋃
Xn,

Jµh′.H ′Kρ′ ⇓Φ=
⋃
Yn, and Jµh′.H ′Kρ′′ ⇓Φ=

⋃
Zn, where X0 = Y0 = Z0 =

⊥, Xn+1 = JH ′Kρ{Xn/h′} ⇓Φ, Yn+1 = JH ′Kρ′{Yn/h′} ⇓Φ, and Zn+1 =

JH ′Kρ′′{Zn/h′} ⇓Φ. We prove by induction on n that Xn = Yn = Zn,
for all n. By the structural induction hypotheses, we have that:

Xn+1 = JH ′Kρ{Xn/h′}⇓Φ

= JH ′Kρ{Yn/h′}⇓Φ

= JH ′Kρ{Yn/h′,ρ(h)⇓Φ′/h}
⇓Φ

= Yn+1

Xn+1 = JH ′Kρ{Xn/h′}⇓Φ

= JH ′Kρ{Zn/h′}⇓Φ

= JH ′Kρ{Zn/h′,ρ(h)⇓Φ∪guard(H′)/h}
⇓Φ

= Zn+1
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The following theorem establishes that a history expression H and its regu-
larization H ↓ have the same normal form. Together with Theorem 39, this will
lead to proving that validity is preserved by regularization.

Theorem 38. JH ↓K⇓ = JHK⇓, for each H closed.

Proof. We prove a stronger result, i.e.: JHKρ⇓Φ ⊆ JH ↓Φ,ΩKρ⇓Φ ⊆ JHΩKρ⇓Φ

for all H,Φ, ρ and Ω such that ρ(h) ⊆ JΩ(h)K for all h ∈ fv(H) ∩ dom(Ω). Let
Φ0 be the set of all policies contained in Φ, H and ρ. We proceed by induction
on |Φ0| − |Φ|. The base case is when |Φ| = |Φ0|: since Φ ⊆ Φ0, it must be
Φ = Φ0. By induction on the structure of H , we have the following cases:

• if H ∈ {ε, α}, then H ↓Φ,Ω = H = HΩ, and so the three terms are equal.

• if H = h, then h↓Φ,Ω = h proves the first inclusion. For the second one, let
h ∈ dom(Ω) (otherwise hΩ = h and the statement holds trivially). Then,
JhKρ = ρ(h) ⊆ JΩ(h)K = JhΩK.

• if H = H0 ·H1, then, by the induction hypotheses:

JH0 ·H1Kρ⇓Φ = (JH0Kρ JH1Kρ)⇓Φ

= JH0Kρ⇓Φ JH1Kρ⇓Φ

⊆ JH0 ↓ΦKρ⇓Φ JH1 ↓ΦKρ⇓Φ

= (JH0 ↓ΦKρ JH1 ↓ΦKρ)⇓Φ

= JH0 ↓Φ ·H1 ↓ΦKρ⇓Φ

= J(H0 ·H1)↓ΦKρ⇓Φ

J(H0 ·H1)↓ΦKρ⇓Φ = JH0 ↓Φ ·H1 ↓ΦKρ⇓Φ

= (JH0 ↓ΦKρ JH1 ↓ΦKρ)⇓Φ

= JH0 ↓ΦKρ⇓Φ JH1 ↓ΦKρ⇓Φ

⊆ JH0ΩKρ⇓Φ JH1ΩKρ⇓Φ

= (JH0ΩKρ JH1ΩKρ)⇓Φ

= J(H0 ·H1)ΩKρ⇓Φ

• if H = H0 +H1, similar.

• if H = ϕ[H ′], then ϕ ∈ Φ = Φ0, and, by the induction hypotheses:

Jϕ[H ′]↓ΦKρ⇓Φ = JH ′ ↓ΦKρ⇓Φ ⊇ JH ′Kρ⇓Φ = ϕ[JH ′Kρ]⇓Φ = Jϕ[H ′]Kρ⇓Φ

Jϕ[H ′]↓ΦKρ⇓Φ = JH ′ ↓ΦKρ⇓Φ ⊆ JH ′ΩKρ⇓Φ = ϕ[JH ′ΩKρ]⇓Φ = Jϕ[H ′]ΩKρ⇓Φ

• if H = ψ〈H ′〉, similar to the previous case.

• if H = µh.H0, then (µh.H0) ↓Φ,Ω= µh. (H0 ↓Φ,Ω{HΩ/h}), since there is
no h ∈ fv (H0) guarded by ϕ /∈ Φ = Φ0, and HΩ = µh.H0Ω0, where
Ω0(h

′) = Ω(h′) if h′ 6= h. Let:

JHKρ =
⋃
Xn X0 = ⊥ Xn+1 = JH0Kρ{Xn/h} Xn⇓Φ= X ′

n

JH ↓Φ,ΩKρ =
⋃
Yn Y0 = ⊥ Yn+1 = JH0 ↓Φ,Ω{HΩ/h}Kρ{Yn/h} Yn⇓Φ= Y ′

n

JHΩKρ =
⋃
Zn Z0 = ⊥ Zn+1 = JH0Ω0Kρ{Zn/h} Zn⇓Φ= Z ′

n
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We prove, by induction on n, that X ′
n ⊆ Y ′

n ⊆
⋃
Z ′
n for all n. The base

case is trivial. For the inductive case, by the induction hypotheses:

Y ′
n+1 = JH0 ↓Φ,Ω{HΩ/h}Kρ{Y ′

n/h}
⇓Φ

⊇ JH0 ↓Φ,Ω{HΩ/h}Kρ{X′
n/h}

⇓Φ (ind. hyp.)

= JH0 ↓Φ,Ω{HΩ/h}Kρ{Xn/h}⇓Φ (Lemma 37)

⊇ JH0Kρ{Xn/h}⇓Φ (ind. hyp.)

= X ′
n+1

Y ′
n+1 = JH0 ↓Φ,Ω{HΩ/h}Kρ{Y ′

n/h}
⇓Φ

⊆ JH0 ↓Φ,Ω{HΩ/h}K
ρ{JHΩKρ⇓Φ/h}

⇓Φ (ind. hyp.)

= JH0 ↓Φ,Ω{HΩ/h}K
ρ{JHΩKρ/h}

⇓Φ (Lemma 37)

⊆ JH0Ω{HΩ/h}K
ρ{JHΩKρ/h}

⇓Φ (ind. hyp.)

= JH0Ω0K
ρ{JHΩKρ/h}

⇓Φ (ind. hyp.)

= JHΩKρ⇓Φ

For the inductive case, let |Φ| = k, and assume that the statement hold for sets
of policies with size greater than k. We proceed by induction on the structure
of H . The cases ε, α, h,H0 ·H1 and H0 +H1 are treated similarly to the base
case. The inductive cases follow:

• if H = ϕ[H0], and ϕ 6∈ Φ, then, by the induction hypothesis:

Jϕ[H ′]↓Φ,ΩKρ⇓Φ = Jϕ[H ′ ↓Φ∪{ϕ},Ω]Kρ⇓Φ = ϕ[JH ′ ↓Φ∪{ϕ},ΩKρ]⇓Φ

= JH ′ ↓Φ∪{ϕ},ΩKρ⇓Φ∪{ϕ} ⊇ JH ′Kρ⇓Φ∪{ϕ}

= ϕ[JH ′Kρ]⇓Φ = Jϕ[H ′]Kρ⇓Φ

Jϕ[H ′]↓Φ,ΩKρ⇓Φ = Jϕ[H ′ ↓Φ∪{ϕ},Ω]Kρ⇓Φ = ϕ[JH ′ ↓Φ∪{ϕ},ΩKρ]⇓Φ

= JH ′ ↓Φ∪{ϕ},ΩKρ⇓Φ∪{ϕ} ⊆ JH ′ΩKρ⇓Φ∪{ϕ}

= ϕ[JH ′ΩKρ]⇓Φ = Jϕ[H ′Ω]Kρ⇓Φ = Jϕ[H ′]ΩKρ⇓Φ

The case ϕ ∈ Φ is similar to the base case.

• if H = ψ〈H0〉, similar to the previous case.

• if H = µh.H0, then HΩ = µh.H0Ω0, where Ω0(h
′) = Ω(h′) if h′ 6= h. Let:

JHKρ =
⋃
Xn X0 = ⊥ Xn+1 = JH0Kρ{Xn/h} Xn⇓Φ= X ′

n

JH ↓Φ,ΩKρ =
⋃
Yn Y0 = ⊥ Yn+1 = JH ′σ′ ↓Φ,Ω{HΩ/h}Kρ{Yn/h,Hi/hi}

Yn⇓Φ= Y ′
n

JHΩKρ =
⋃
Zn Z0 = ⊥ Zn+1 = JH0Ω0Kρ{Zn/h} Zn⇓Φ= Z ′

n

where H = H ′{h/hi}i, hi fresh, Φi = guard(H ′), Hi = HΩ ↓Φ∪Φi,Ω, and
σ′(hi) = h if Φi ⊆ Φ, otherwise σ′(hi) = hi. We prove by induction
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that X ′
n ⊆ Y ′

n ⊆
⋃
Z ′
n for all n (this works because normalization ⇓ is

continuous on (2Ev
∗

,⊆)).

Y ′
n+1 = JH ′σ′ ↓Φ,Ω{HΩ/h}Kρ{Y ′

n/h,Hi/hi}
⇓Φ

⊇ JH ′σ′ ↓Φ,Ω{HΩ/h}Kρ{X′
n/h,Hi/hi}

⇓Φ (ind. hyp.)

= JH ′σ′ ↓Φ,Ω{HΩ/h}Kρ{X′
n/h,Hi⇓Φ∪Φi

/hi}
⇓Φ (Lemma 37)

= JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{X′

n/h,JHΩ ↓Φ∪ΦiKρ ⇓Φ∪Φi
/hi}

⇓Φ (def. Hi)

⊇ JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{X′

n/h,JHΩKρ⇓Φ∪Φi
/hi}

⇓Φ (ind. hyp.)

= JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{Xn/h,JHΩKρ/hi}

⇓Φ (Lemma 37)

⊇ JH ′σ′Ω{HΩ/h}K
ρ{Xn/h,JHΩKρ/hi}

⇓Φ (ind. hyp.)

= JH ′σ′Ω0K
ρ{JHΩKρ/h,JHΩKρ/hi}

⇓Φ (def. Ω0)

= JH0Ω0K
ρ{JHΩKρ/h}

⇓Φ (def. σ′)

= JH0Ω0K
ρ{JHKρ/h}

⇓Φ (hyp. on ρ)

⊇ JH0Ω0Kρ{Xn/h}⇓Φ

= Xn+1

Y ′
n+1 = JH ′σ′ ↓Φ,Ω{HΩ/h}Kρ{Y ′

n/h,Hi/hi}
⇓Φ

⊆ JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{JHΩKρ ⇓Φ/h,Hi/hi}

⇓Φ (ind. hyp.)

= JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{JHΩKρ ⇓Φ/h,JHΩ↓Φ∪ΦiKρ/hi}

⇓Φ (def. Hi)

= JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{JHΩKρ ⇓Φ/h,JHΩ↓Φ∪ΦiKρ⇓Φ∪Φi

/hi}
⇓Φ (Lemma 37)

⊆ JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{JHΩKρ ⇓Φ/h,JHΩΩKρ ⇓Φ∪Φi

/hi}
⇓Φ (ind. hyp.)

= JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{JHΩKρ ⇓Φ/h,JHΩKρ ⇓Φ∪Φi

/hi}
⇓Φ (Ω closed)

= JH ′σ′ ↓Φ,Ω{HΩ/h}K
ρ{JHΩKρ/h,JHΩKρ/hi}

⇓Φ (Lemma 37)

⊆ JH ′σ′Ω{HΩ/h}K
ρ{JHΩKρ/h,JHΩKρ/hi}

⇓Φ (ind. hyp.)

= JH ′σ′Ω0K
ρ{JHΩKρ/h,JHΩKρ/hi}

⇓Φ (def. Ω0)

= JH0Ω0K
ρ{JHΩKρ/h}

⇓Φ (def. σ′)

= JHΩKρ⇓Φ

The next theorem states that normalization preserves the validity of histo-
ries. Summing up, we can conclude that a history expression H is valid if and
only if its regularization H ↓ is valid. To do that, it is convenient to restate the
notion of validity. Let Φ(η) be the set of policies ϕ such that the number of [ϕ
is greater than the number of ]ϕ in η. We say that a history η = β1 · · ·βn is safe
when (β1 · · ·βk)[ |=

∧
Φ(β1 · · ·βk), for all k ∈ 1..n.
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Example 19. Consider the history η = αr[ϕαc]ϕ, where ϕ is the property
saying that no αc occurs after αr. Then, η is not safe, because (αr[ϕαc)

[ = αrαc
does not satisfy

∧
Φ(αr[ϕαc) =

∧
{ϕ} = ϕ.

Equivalently, a history η is safe if and only if η(k) |= ϕ(k), for all k ∈ 1..n, where
η(k) is sequence of the first k access events in η (i.e. the first k events in η[),
and ϕ(k) =

∧
{Φ(β1 · · ·βi) | (β1 · · ·βi)[ = η(k) }.

Example 20. Let ϕ be the policy of the previous example. Then, the history
η = [ϕαr]ϕαc is valid: η(1) = αr satisfies ϕ(1) =

∧
(Φ([ϕαr) ∪ Φ([ϕαr]ϕ)) = ϕ,

and η(2) = αrαc satisfies
∧

Φ([ϕαr]ϕαc) =
∧
∅ = tt .

Validity of a history η can then be restated, by requiring that η is safe, and
that, for each live set ψ〈H〉 of η, there exists η′ ∈ H such that η′ |= ψ.

Theorem 39. A history η is valid if and only if η⇓ is valid.

Proof. We prove the following, stronger result: for each η and Φ such that

η ⇓Φ is defined, (η ⇓Φ)(k) = η(k) and ϕ
(k)
η⇓Φ

= (
∧

Φ) ∧ ϕ
(k)
η . We proceed by

induction on the structure of η. The base case η = ε is trivial. If η = α, then

η ⇓Φ= (
∧

Φ)[α], η ⇓
(1)
Φ = α = η(1), ϕ

(1)
η = tt , and ϕ

(1)
η⇓Φ

=
∧

Φ. The inductive
cases follow.

• if η = η0η1, let η0, η1 have balanced framings (otherwise η⇓Φ is undefined).
Then, η⇓Φ= (η0⇓Φ)(η1⇓Φ). Let k be the number of access events in η0.

ϕ(i)
η =

{

ϕ
(i)
η0 if i ∈ 1..k

ϕ
(i)
η1 otherwise

ϕ
(i)
η⇓Φ

=

{

ϕ
(i)
η0⇓Φ

if i ∈ 1..k

ϕ
(i)
η1⇓Φ

otherwise

By the induction hypothesis, (η0 ⇓Φ)(i) = η
(i)
0 and ϕ

(i)
η0⇓Φ

= (
∧

Φ) ∧ ϕ
(i)
η0

for i ∈ 1..k, while (η1 ⇓Φ)(i) = η
(i)
1 and ϕ

(i)
η0⇓Φ

= (
∧

Φ) ∧ ϕ
(i)
η1 for i > k.

Then, (η⇓Φ)(i) = η(i), and ϕ
(i)
η⇓Φ

= (
∧

Φ) ∧ ϕ
(i)
η .

• if η = ϕ[η′], then η⇓Φ= η′⇓Φ∪{ϕ} and ϕ
(i)
η = ϕ∧ϕ

(i)
η′ for i < |η|−1. By the

induction hypothesis, (η′⇓Φ)(i) = η′(i), and ϕ
(i)
η′⇓Φ∪{ϕ}

=
∧

(Φ∪{ϕ})∧ϕ
(i)
η′ .

Then, (η⇓Φ)(i) = η(i), and:

ϕ
(i)
η⇓Φ

= ϕ
(i)
η′⇓Φ∪{ϕ}

= (
∧

Φ) ∧ ϕ ∧ ϕ
(i)
η′ = (

∧
Φ) ∧ ϕ

(i)
η

• if η = ψ〈η′〉, then η ⇓Φ= ψ〈η′ ⇓Φ〉 and ϕ
(i)
η = ϕ

(i)
η′ for i < |η| − 1. By the

induction hypothesis, (η′ ⇓Φ)(i) = η′(i), and ϕ
(i)
η′⇓Φ

= (
∧

Φ) ∧ ϕ
(i)
η′ . Then,

(η⇓Φ)(i) = η(i), and:

ϕ
(i)
η⇓Φ

= ϕ
(i)
η′⇓Φ

= (
∧

Φ) ∧ ϕ
(i)
η′ = (

∧
Φ) ∧ ϕ

(i)
η

In the following, we say that a history η is safe when, for all ϕ[H] ∈ S(η),
each η′ ∈ H obeys ϕ. Similarly, η is live when, for all ψ〈H〉 ∈ L(η), there exists
η′ ∈ H such that η′ |= ψ. The proof of Theorem 9 is then split in two parts.
First, we show that η is safe iff η ∈ L(Aϕ[ ]

) for all ϕ occurring in η. Second, we
show that η is live iff η ∈ L(Aψ〈 〉

) for all ψ occurring in η.
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Lemma 40. A history η with no redundant safety framings is safe if and only
if η |= ϕ[ ], for all ϕ such that [ϕ∈ η.

Proof. The statement holds trivially for η = ε, because S(ε) = ∅ and ε |= ϕ[ ].
So, let η = η′β, where η′ = β1 · · ·βn.

For the “if” part, we proceed by induction on the length of η. Assume that
η |= ϕ[ ] for each ϕ present in η. Since the only non-final state in Aψ[ ]

is the
sink, then also η′ |= ψ[ ]. Therefore, by the induction hypothesis, η′ is safe. We
have the following cases:

• if β ∈ Ev, then consider a safe-set ϕ[H] ∈ S(η). If ϕ[H] corresponds
to a safety framing that is already balanced in η, i.e. η = η0ϕ[η1]η2 and
H = η[0(η

[
1)
∂ , then ϕ[H] ∈ S(η′). Since η′ is safe, then all the histories in H

obey ϕ. Otherwise, ϕ[H] corresponds to a non-balanced safety framing,
i.e. η = η0[ϕη1β and H = η[0(η

[
1β)∂ . Then, S(η′) comprise the safe-set

ϕ[H′], where H′ = η[0(η
[
1)
∂ . Let η̄ = η[0η

[
1β. Since η′ is safe, it suffices to

prove that η̄ |= ϕ. By hypothesis, η = η0[ϕη1β |= ϕ[ ], i.e. the automaton

Aϕ[ ]
has an accepting run q(0)

β1
−→ · · ·

βn
−−→ q(n) β

−→ q. A run in Aϕ on η̄
can be constructed from the run in Aϕ[ ]

on η. Since the scope of ϕ has

been entered but not exited, q(n) is in the second layer of Aϕ[ ]
. Then, the

transition (q(n), β, q) in Aϕ[ ]
requires a corresponding transition in Aϕ.

The states in the second layer in Aϕ[ ]
are final in Aϕ. Thus, we have

found an accepting run in Aϕ on η̄, and so η̄ |= ϕ. Since this can be done
for all ϕ occurring in η, then η is safe.

• if β = [ϕ, then S(η) = S(η′) ∪ ϕ[(η′)[]. Since η′ is safe, it suffices to
prove that (η′)[ |= ϕ. Since η |= ϕ[ ], the automaton Aϕ[ ]

has an accepting

run q(0)
β1
−→ · · ·

βn
−−→ q(n) [ϕ

−→ q, for some state q that is the second-layer
counterpart of a final state in Aϕ. An accepting run of Aϕ on (η′)[ can
be constructed as in the previous case.

• if β = ]ϕ, then η is safe if η′ is such.

For the “only if” part it suffices to prove that, if η is safe and β = [ϕ for some ϕ,
then there is a run of Aϕ[ ]

on η′ that leads to the first-layer counterpart of some
final state in Aϕ. The remaining event [ϕ can be then consumed by Aϕ[ ]

, which
has a transition from the final states of the first layer to their counterparts in

the second layer. If ϕ occurs in η′, then an accepting run q(0)
β1
−→ · · ·

βn
−−→ q(n)

of Aϕ[ ]
on η′ can be easily extended to accept η. Instead, if ϕ does not occur

in η′, then S(η) = S(η′)[ϕ= S(η′)[ϕ ]ϕ = S(η′) ∪ ϕ[(η′)[]. Since η is safe, then
(η′)[ obeys ϕ, i.e. there exists an accepting run of Aϕ on (η′)[. It is possible to

construct an accepting run s(0)
β1
−→ · · ·

βn
−−→ s(n) of Aϕ[ ]

on η′ as follows.

At the first step, let s(0) = r(0). For the remaining steps, we will scan the
history η′ with the index i, (η′)[ with the index j, and at each step we will
define s(i). Let Q and Q̇ be respectively the states in the first and in the second
layer of Aϕ[ ]

. For each state q in Aϕ[ ]
, let q@Q and q@Q̇ be respectively the

projections of q on the first and on second layer of Aϕ[ ]
(recall that the first

layer of Aϕ[ ]
contains all the states of Aϕ). For the i-th step, there are the

following exhaustive cases:
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• if βi ∈ Ev, there are the following subcases:

– if s(i) ∈ Q, then s(i+1) = r(j+1).

– if s(i) ∈ Q̇, then r(j) must be final in Aϕ: otherwise, we have found
a safe-set ϕ[H′] for which some η̄ ∈ H′ is not accepted by Aϕ[ ]

.

Therefore, Aϕ has a transition (r(j), βi, r
(j+1)), that is rendered in

Aϕ[ ]
by the transition (s(i), βi, s

(i+1)), where s(i+1) = r(j+1)@Q̇.

• if βi = [ϕ, then it must be s(i) ∈ Q because η has no redundant safety
framings. Moreover, r(j) must be final in Aϕ: otherwise, we have found a
safe-set ϕ[H′] for which some η̄ ∈ H′ is not accepted by Aϕ[ ]

. Therefore,

Aϕ[ ]
has a transition (s(i), [ϕ, s

(i+1)), where s(i+1) = s(i)@Q̇.

• if βi = ]ϕ, then it must be s(i) ∈ Q̇. Therefore, Aϕ[ ]
has a transition

(s(i), ]ϕ, s
(i+1)), where s(i+1) = s(i)@Q.

• if βi = [ϕ′ or βi = ]ϕ′ for some ϕ′ 6= ϕ, then s(i+1) = s(i).

• if βi = 〈ψ or βi = 〉ψ for some ψ, then s(i+1) = s(i).

Lemma 41. A history η is live if and only if η |= ψ〈 〉, for all ψ such that 〈ψ∈ η.

Proof. The statement holds trivially for η = ε, because L(ε) = ∅ and ε |= ψ〈 〉.
So, let η = η′β, where η′ = β1 · · ·βn

For the “if” part, we proceed by induction on the length of η. Assume that
η |= ψ〈 〉 for each ψ occurring in η. Since the only non-final state in Aψ〈 〉

is the
sink, then also η′ |= ψ〈 〉. Therefore, by the induction hypothesis, η′ is live. We
have the following cases:

• if β ∈ Ev, then L(η) = L(η′β) = L(η′). Let ψ〈H〉 ∈ L(η). Since η′ is live
by the induction hypothesis, then there exists η′′ ∈ H such that η′′ |= ψ.

• if β = 〈ψ, then, similarly to the previous case, L(η) = L(η′〈ψ) = L(η′).

• if β = 〉ψ, then, since η is well-formed, it follows that η is of the form
η0〈ψη1〉ψ = η0ψ〈η1〉 for some well-formed η0 and balanced η1. Thus,
L(η) = L(η0η1) ∪ ψ〈η[0(η

[
1)
∂〉. Since η′ = η0〈ψη1, then L(η′) = L(η0η1).

Let H = η[0(η
[
1)
∂ . We have to prove that there exists some η′′ ∈ H such

that η′′ |= ψ. Let q(0)
β1
−→ · · ·

βn
−−→ q(n) 〉ψ

−→ q be an accepting run of Aψ〈 〉

on η. Then, q(n) cannot be in the third layer: by contradiction, if q(n) were
such, then no transition would exist from q(n) under the input symbol 〉ψ
– apart from that falling into the sink. Therefore, q(n) is in the first or in
the second layer.

If q(n) is in the second layer, let k be the greatest index such that q(k) is
not in the second layer and q(i) is in the second layer for all i ∈ k + 1..n.
There are two further subcases:

– if q(k) is in the first layer, then βk+1 = 〈ψ and q(k) is final in Aψ. Let
η′′ = (β1 · · ·βk+1)

[. We can then determine an accepting run of Aψ
on η′′, i.e. η′′ |= ψ. Clearly, η′′ ∈ H, because q(i) stays in the second
layer for all i > k (so you do not leave the scope of ψ).
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– if q(k) is in the third layer, then βk+1 ∈ Ev and q(k+1) is final in Aψ.
Similarly to the previous case, there exists an accepting run Aψ on
(β1 · · ·βk+1)

[.

If q(n) is in the first layer, let k be the greatest index such that q(k) is
not in the second layer and q(k+1) is in the second layer. Such an index
must exist, because, upon 〉ψ , you can only reach the first layer by passing
through the second layer. Then, an accepting run of Aψ can be determined
as above.

For the “only if” part, it suffices to prove that, if η is live and β = 〉ψ for some
ψ, then there is a run of Aψ〈 〉

on η′ that does not lead to a state in the third
layer of Aψ〈 〉

. Indeed, this would be the only way for making η not accepted
by Aψ〈 〉

– recall that the copies of the sink state of Aψ comply with all the
events for which there is no explicit transition in Aψ. So, let η = η0ψ〈η1〉, and
η′ = η0〈ψη1, with η0 and η1 well-formed.

If η1 is balanced, then let H = η[0(η
[
1)
∂ . Otherwise, consider the rightmost

and innermost framing of ψ in η′, i.e. η′ = η0〈ψη2〈ψη3, where 〈ψ does not occur
in η3, and let H = η[0η

[
2(η

[
3)
∂ . In both cases, the live-set ψ〈H〉 belongs to L(η).

Since η is live, then η′ is live (as this property is prefix-closed), and so there exists
η̄ = α1 · · ·αk ∈ H such that η̄ |= ψ. In other words, there exists an accepting

run r(0)
α1−→ · · ·

αk−−→ r(k) of Aψ on η̄. We construct a run s(0)
β1
−→ · · ·

βn
−−→ s(n) of

Aψ〈 〉
on η′ as follows.

At the first step, let s(0) = r(0). For the remaining steps, we will scan the
history η′ with the index i, η̄ with the index j, and at each step we will define
s(i). Let Q, Q̇, Q̈ be respectively the states in the first, second and third layer
of Aψ〈 〉

. For each state q in Aψ〈 〉
, let q@Q, q@Q̇ and q@Q̈ be respectively the

projections of q on the first, second and third layer of Aψ〈 〉
. For the i-th step,

there are the following exhaustive cases:

• if βi ∈ Ev, there are the following subcases:

– if s(i) ∈ Q, then s(i+1) = r(j+1)@Q.

– if s(i) ∈ Q̇, then s(i+1) = r(j+1)@Q̇.

– if s(i) ∈ Q̈, then s(i+1) = r(j+1)@Q̇ if r(j+1) is final. Otherwise,
s(i+1) = r(j+1)@Q̈.

• if βi = 〈ψ, there are the following subcases:

– if s(i) ∈ Q, then s(i+1) = s(i)@Q̇ if r(j) ∈ F , o.w. s(i+1) = s(i)@Q̈.

– if s(i) ∈ Q̇, then s(i+1) = s(i) if r(j) ∈ F , otherwise s(i+1) = s(i)@Q̈.

– if s(i) ∈ Q̈, then s(i+1) = s(i).

• if βi = 〉ψ, there are the following subcases:

– if s(i) ∈ Q, then s(i+1) = s(i).

– if s(i) ∈ Q̇, then s(i+1) = s(i)@Q.

– if s(i) ∈ Q̈, then we have a contradiction, because ρ(s(i), 〉ψ) would
lead to the non-final sink state, and so we would have found a live-set
ψ〈H′〉 for which no history in H′ has acceptings runs in Aψ〈 〉

.
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• if βi = 〈ψ′ or βi =〉ψ′ for some ψ′ 6= ψ, then s(i+1) = s(i).

• if βi = [ϕ or βi =]ϕ for some ϕ, then s(i+1) = s(i).

Summing up, we have constructed an run of Aψ〈 〉
on a history η′′ such that

(η′′)[ = η̄. Since the event αk is final in Aψ, then the last state s(i) defined
above is in the first or in the second layer. The copies of the sink state of
Aψ ensure that all the remaining access events can be consumed by Aψ〈 〉

. For
the remaining framing events, recall that η3 does not contain further 〈ψ or 〉ψ.
Therefore, the remaining states s(i) cannot lead to the third layer.

Lemma 7. JHK
∂

= JBPA(H)K.

Theorem 9. A history expression H with no planned selections is valid iff:

JBPA(H ↓)K |=
∧

ϕ∈H

ϕ[ ] ∧
∧

ψ∈H

ψ〈 〉

Proof. By Theorem 39, JHK is valid if and only if JHK ⇓ is valid. By
Theorem 38, JHK⇓= JH ↓K⇓. By Theorem 39, JH ↓K⇓ is valid if and only
if JH ↓K is valid. By Theorem 35, JH ↓K has no redundant safety framings.

By definition, JH ↓K is valid if and only if JH ↓K∂ is valid. By Lemma 7,

JH ↓K
∂

= JBPA(H ↓)K. By Lemma 40 and Lemma 41, JBPA(H ↓)K is valid
if and only if JBPA(H ↓)K |=

∧

ϕ∈H ϕ[ ] ∧
∧

ψ∈H ψ〈 〉.
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