

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-07-03

Efficient Subtyping for
Unordered XML Types

Dario Colazzo
Laboratoire de Recherce en Informatique (LRI)

Bat 490 - Université Paris Sud
91405 Orsay Cedex France

dario.colazzo@lri.fr

Carlo Sartiani
Dipartimento di Informatica - Università di Pisa

Largo B. Pontecorvo 3
56127 - Pisa - Italy
sartiani@di.unipi.it

February 2, 2007
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Efficient Subtyping for Unordered XML Types

Dario Colazzo
Laboratoire de Recherce en Informatique (LRI)

Bat 490 - Université Paris Sud
91405 Orsay Cedex France

dario.colazzo@lri.fr

Carlo Sartiani
Dipartimento di Informatica - Università di Pisa

Largo B. Pontecorvo 3
56127 - Pisa - Italy
sartiani@di.unipi.it

February 2, 2007

Abstract

While XML is an ordered data format, many applications outside the
document processing area just drop ordering and manipulate XML data
as they were unordered. In these contexts, hence, XML is essentially
used as a way for representing unordered, unranked trees. The wide use
of unordered XML data should be coupled with a careful and detailed
analysis of their theoretical properties.

One of the operations that is mostly affected by the presence of a global
ordering relation is semantic subtype-checking, i.e., language inclusion. In
an unordered context, inclusion has been proved to be inherently more
complex than in the ordered case: in particular, subtype-checking for
ordered single-type EDTDs is in PSPACE, while the same operation for
single-type EDTDs with unordered types is in EXPSPACE (the same
complexity result holds for unordered DTDs). Comparing two unordered
XML types for inclusion, hence, is very expensive; as a consequence, it
becomes very important to identify restrictions defining type classes for
which inclusion is tractable or, at least, less complex.

This paper identifies two large subclasses of unordered XML types
for which inclusion can be computed by an EXPTIME and a PTIME
algorithm, respectively. These classes are defined by restrictions on the
use of element, repetition, and union types, and comprise many DTDs
and XML Schemas used in practice.

1 Introduction

The last few years have seen an increasing diffusion of the eXtensible Markup
Language (XML). Given its ability to represent both structured and unstruc-
tured data, XML is currently being used in several contexts: data integration

and data exchange systems, where XML is exploited for reconciling data com-
ing from multiple and heterogeneous (both in the structure and in the data
model) data sources; document processing applications, where XML flexibility
is essential for manipulating complex documents; and, more generally, any data
interchange process between heterogeneous applications, e.g., a spreadsheet and
a DBMS. XML is an inherently ordered data representation format, as it im-
poses a global ordering relation among elements; this reflects on the XML data
model and schema language (XML Schema [18, 4]), which are ordered, as well as
on query and transformation languages for XML, like XSLT [7] and XQuery [5],
which strongly take ordering into account. As a consequence, many theoretical
studies about XML focus on the ordered nature of XML.

While XML is an ordered data format, many applications outside the doc-
ument processing area just drop ordering and manipulate XML data as they
were unordered. In these contexts, hence, XML is essentially used as a way
for representing unordered, unranked trees: for instance, in data integration
or data exchange scenarios, where multiple and autonomous data sources are
combined together, no global order relation can be imposed on the combined
(virtual) data, as local order relations cannot be reconciled. Hence, it is worth
to deeply analyze the theoretical properties of unordered XML data.

One of the operations that is mostly affected by the presence of a global
ordering relation is semantic subtype-checking, i.e., language inclusion. While
ordered and unordered semantic subtyping share the same definition, their for-
mal properties are quite different, in particular for what concerns computational
complexity. In the ordered context, subtype-checking among ordered XML types
has been widely studied: for single-type extended DTDs (an abstraction captur-
ing XML Schemas), subtype-checking has been proved to be in PSPACE [17],
and several “optimized” algorithms, based on special-purpose heuristics, have
been designed in the context of the XDuce [16] and CDuce [2] projects, as well
as in some XQuery implementations [12].

In an unordered context, instead, inclusion has been proved to be inherently
more complex than in the ordered case (see [10] and [14]): in particular, subtype-
checking for single-type EDTDs with unordered types is in EXPSPACE (the
same complexity result holds for unordered DTDs). Comparing two unordered
XML types for inclusion, hence, is very expensive; as a consequence, it becomes
very important to identify restrictions defining type classes for which inclusion
is tractable or, at least, less complex.

Our Contribution This paper identifies two large subclasses of unordered
XML types for which inclusion can be decided in EXPTIME and PTIME, re-
spectively. We first impose a restriction on the use of tree and repetition types
inside type regular expressions, so to define a class of types with (at most) EX-
PTIME inclusion; this restriction is met by many practical DTDs and XML
Schemas, hence it does not represent a severe limitation for the applicability
of the whole approach. For types in this class, subtyping can be captured, in
a correct and complete way, by a symbolic, simulation-based relation, which is
then used for deriving an efficient algorithm; this algorithm, inspired by the
type projection algorithm shown in [9], has a worst case EXPTIME complexity.
It is worth to notice that the same result holds when this restriction is met by
the right hand-side of the inclusion only; in other words, when comparing T and

U for inclusion, T can be an arbitrary type.
By imposing a further restriction on the grammar of types (both on the right

and the left hand-side of the comparison), we identify a second class of types, for
which the proposed approach is in PTIME. This class is described by a property
that requires union types to be guarded by repetition types or by element types,
and that is satisfied by a large fragment of DTDs used in practice (see [3]).

We chose a simulation-based approach for a twofold reason. First of all, we
found simulation a convenient way for discovering critical aspects of subtyping,
in particular for what concerns backtracking issues. Furthermore, the axioma-
tization of subtyping allows for an easy implementation of subtyping, which is
usually quite hard to implement.

Paper Outline The paper is organized as follows. Section 2 describes the
reference type language and its semantics, and recalls the notion of semantic
subtyping. Section 3, then, introduces type compactness, a non-ambiguity prop-
erty enjoyed by many practical DTDs and XML Schemas; this property allows
for the definition of an EXPTIME correct and complete algorithm. This algo-
rithm is obtained by an axiomatization of subtyping, hence Section 4 illustrates
how semantic subtyping can be encoded into symbolic subtyping, and shows
that this encoding is correct and complete over compact types. Section 5, next,
presents our subtype-checking algorithm as well as its main properties. Section
6 describes element/star-guarded types (ESG types) and shows that inclusion
for unordered ESG types is in PTIME. In Sections 7 and 8, finally, we review
some related works and draw our conclusions.

2 Type Language

We represent an XML document as an unranked, unordered, node-labeled tree,
as shown by the following grammar.

f ::= () | b | l[f] | f, . . . , f

f is a forest that may comprise the empty sequence (()), base values (b), ele-
ment nodes (l[f]), as well as the concatenation of other forests (f, . . . , f); hence,
concatenation (f, . . . , f) is commutative, associative, and has () as neutral ele-
ment.

Our type language, based on XDuce [16] and XQuery [11] type languages, is
shown in Figure 1, where () is the type for the empty sequence value, B denotes
the type for base values (without loss of generality, we only consider string base
values), types T,U and T | U are, respectively, product and union types, T∗
is the type for 0-or-many repetitions, T+ is the type for 1-or-many repetitions,
and, finally, T? is the optional type. As we assume XML forests to be unordered,
our XML types are unordered too. Our type language, inspired by data-centric
applications, does not include recursive types (only repetition is permitted).
This is a significant difference from XDuce and XQuery type languages, where
types are ordered and recursion is allowed; however, our results can be easily
extended to the case of recursive types, where recursion is guarded by element
types and each type equation contains at most one recursion variable. Further-
more, early results based on sheaves automata [13] and NFA(&) automata [14]

Types T ::= () | B | l[T] |
T, T | T | T | T∗ |
T+ | T?

Base Type B ::= String

Figure 1: Type language

seem suggesting that vertical recursion is not a key issue in determining the
complexity of inclusion for type languages close to ours.

For the sake of simplicity, in the following we will consider B as equivalent
to B[()], i.e., an element type with a special purpose label B containing the
empty sequence as its only child. Therefore, any property or result related to
element types will be valid also for B.

As types are unordered, in the following we will consider a product type
T1, . . . , Tn as identical to all its possible permutations Tπ(1), . . . , Tπ(n), where
π is a permutation over {1, . . . n}. Moreover, as our types actually are XDuce
unordered types, we also have that T, () is identical to T , and that (T, T ′), T ′′ is
identical to T, (T ′, T ′′). This conforms to the corresponding laws over the data
model.

The semantics of types is standard: as usual, J K is the minimal function
from types to sets of forests that satisfies the following monotone equations:

J()K M= {()}
JBK M= {b | b is a base value}
Jl[T]K M= {l[f] | f ∈JT K}
JT1 | T2K

M= JT1K ∪ JT2K
JT1, T2K

M= {f1, f2 | fi∈JTiK}
JT∗K M= JT K∗

JT+K M= JT∗, T K
JT?K M= JT | ()K

In the following we will write f : T in place of f ∈ JT K, and we will write fT

to indicate a forest in JT K.
From the definition of type semantics, it follows an interesting property of

unordered, non-recursive regular expression types, that will be used later on in
the paper.

Lemma 2.1 Given two types T and U :

JT∗, U∗K = J(T | U)∗K

This property is a key issue in our work as it permits to restrict the subtype-
check to types with only one ∗ type at the top level, so to trim the possible cases
in the symbolic subtype comparison.

Subtyping is defined as language inclusion, as shown below.

Definition 2.2 (Subtyping) Given two types T1 and T2, we say that T1 is a
subtype of T2 iff the semantics of T1 is included in the semantics of T2:

T1 < T2 ⇐⇒ JT1K ⊆ JT2K

3 Type Compactness

Our study is based on a non-ambiguity property for XML unordered types,
that allows us to identify a large class of types for which subtype-checking can
be efficiently enforced. Before introducing type compactness, we need three
preliminary definitions, describing type contexts, top level type terms, and top
level tags, respectively.

Definition 3.1 (Type contexts) We denote as C[·] a one-hole type context
defined by following grammar:

C[·] = [·] | l[C[·]] | T,C[·] | T | C[·] | C[·]∗

Moreover, we say that C[·] is a light type context, and denote it as CL[·], if it
can be defined by the above grammar without using the case l[C ′[·]].

Light contexts are useful to define the set of top level terms of a type, i.e.,
subterms not occurring inside the content of an element type

Definition 3.2 (Top level type terms) Given a type T , Top(T) is the set of
terms occurring at the top level of T , and it is defined as follows.

Top(T) = {U | ∃CL[·]. T = CL[U]}

Definition 3.3 (Top level tags) Given a forest f , topLT (f) is the set of tags
occurring at the top level of f , and it is defined as follows.

topLT (f) = {l | f = f ′, l[f ′′], f ′′′}

topLT () can be extended in a natural way to types, as shown below.

Definition 3.4 Given a type T , topLT (T) is the set of tags occurring at the
top level of T , and it is defined as follows.

topLT (T) = {l | l[U] ∈ Top(T)}

Finally, in the following we will use symbols A,B, C to denote sequence of
tree types.

Given these preliminary notions, we can state our definition of compact types.

Definition 3.5 (Pre-compact types) A type T is pre-compact if for each
type S such that S = T or T = C[l[S]]:

• (i) for each m ∈ topLT (S), there is only one occurrence of m at the top
level of S; formally if S = CL[m[U]], then m 6∈ topLT (CL[()]);

• (ii) for each U+ ∈ Top(S), it is U =
⋃n

1 Ai;

• (iii) for each U∗ ∈ Top(S), it is U =
⋃n

1 Ai.

Definition 3.6 (Compact types) A type T is compact if there exists a pre-
compact type T ′ such that T can be obtained from T ′ by just replacing sub-terms
U+ and U? by, respectively, U∗, U and U | (). Moreover, we require that, if
T = C[S|()] with S not a union type, then S = S′, l[S′′] and l 6∈ topLT (S′).

Type compactness comprises three syntactical restrictions, addressing sev-
eral ambiguity issues. The essence of these restrictions is to prevent backtracking
phenomena while comparing two given types for inclusion. It is worth to notice
that similar backtracking issues arise in automaton-based approaches ([13]), and
are someway independent from the simulation-based approach we use here. We
do not claim here that these restrictions identify the maximal type class for
which our approach is correct and complete; we are aware that these restric-
tions can be someway relaxed without altering the properties of our approach.
However, relaxed restrictions are so complex that we prefer to use a simpler,
even if coarser, property.

It is worth to observe that our algorithm is still sound on non-compact types,
i.e., if the subtype-check succeeds, then the subtyping relation among the types
being compared actually holds. As we will show later, there are cases where the
compactness property is systematically violated and for which our algorithm is
correct.

As an example of type compactness, consider the following (pre-compact)
type: (a[B]|(b[B], c[B]))+, d[B]. This type meets the first restriction, as no tag is
used twice inside the same Top(S) set. Furthermore, restriction (ii) is satisfied
as well, since the argument of the + constructor is a union of sequence types.

Type compactness is a syntactical property that can be enforced by a simple
visit of the type in polynomial time. In [1] a similar restriction, called con-
flict freedom, has been described and in [6] it has been shown that most XML
Schemas and DTDs used in practice meet that requirement. Type compactness
is actually a refinement of conflict freedom, as restriction (ii) serves the purpose
of closing the class of pre-compacts types under the equivalence T+ = T∗, T ,
which is crucial for the completeness of our approach, and restriction (iii) allows
one to check T∗, A < U∗, B without backtracking. The restriction on optional
types meets the purpose of disambiguating comparisons of the kind T < U | V ,
hence avoiding backtracking phenomena; indeed, no simulation approach can
be complete on union types if one cannot prove that either T < U or T < V .
This restriction is actually very light as optional types are usually exploited to
guard element types.

Given these restrictions, in the following we will focus on a smaller type
language, where + and ? type constructors are canonically rewritten.

As we will see later, in a subtype-check T < U we only require that the
right-hand side type (i.e., U) is compact, while no restriction is imposed on the
left-hand side one (i.e., T). This is a very important property of our approach.
Indeed, in many cases a type T is automatically inferred [11, 8] from a query
or a transformation function, and it is compared against a predefined, human-
designed schema U ; given the inner complexity of type inference for XML queries
and transformations, it is very unlike that T would meet restrictions like conflict
freedom or type compactness, while the human-designed schema U can be tuned
to satisfy those requirements.

Table 4.1. norm() function.

norm(()) M= ()
norm(B) M= B

norm(l [T]) M= l [norm(T)]
norm(T | U) M= norm(T) | norm(U)
norm(T ′∗, U ′∗, U) M= norm((T ′ | U ′)∗, U)

norm(T,U) M=

⋃n

1 norm(Ai, U) if norm(T) = (A1 | | An)⋃n
1 norm(T,Ai) if norm(U) = (A1 | | An)

norm(T), norm(U) otherwise
norm(T∗) M= norm(T)∗

4 Symbolic Subtyping

We claimed in the Introduction that semantic subtyping on unordered compact
types can be decided in EXPTIME. To prove this claim we introduce the notion
of symbolic subtyping, and show the equivalence between symbolic and semantic
subtyping over unordered compact types. Through this equivalence, we can use
the EXPTIME symbolic subtype-checking of Section 5 for semantic subtyping,
hence proving the EXPTIME upper bound. We stress that, while our approach
is in EXPTIME, we do not know if the inclusion problem for compact types
is actually in EXPTIME; we just provide here an EXPTIME algorithm for a
problem that may have lower complexity.

4.1 Preliminary Definitions

Symbolic subtyping is defined among types in disjunctive normal form, i.e.,
types where products are distributed across unions. A type T can be normalized
by applying the normalization function norm(T), defined as shown in Table 4.1.

norm() works by transforming types, while preserving their semantics (Lemma
4.1), so that the transformed types can be easily compared by the symbolic re-
lation (and by the corresponding algorithm). For instance, norm(T ′∗, U ′∗, U)
transforms a product of repetition types, which is hard to formalize in the sim-
ulation rules, into a *-guarded union, for which much easier simulation rules
exist (correctness of this transformation is entailed by Lemma 2.1).

To eliminate some ambiguity, the rules of the norm() function must be
applied in the order in which they are defined. norm() can be applied to any
type to obtain a corresponding normalized type, and its relevance resides in
the proof of equivalence between symbolic and semantic subtyping, as it will be
clear in the rest of the paper.

norm() is essentially equivalent to the transformation of logic formulas in
DNF (see rules for norm(T,U)), hence its computational complexity is in EX-
PTIME. Despite this upper bound, for a vast class of types norm() can be
computed in PTIME, as it will be shown in Section 6.

The following lemma proves that norm() preserves the semantics of types.

Lemma 4.1 For each type T , JT K = Jnorm(T)K.

Proof. The proof easily follows by induction on size(T), defined as follows

size(()) = 0
size(B) = 0
size(T ′∗) = 1 + size(T ′)
size(l[T ′]) = 1 + size(T ′)
size(T ′, U ′) = 1 + size(T ′) + size(U ′)
size(T ′ | U ′) = 1 + size(T ′) + size(U ′)

Definition 4.2 (Prime types) A type T is prime if and only if T = norm(T)
and T 6= A | B.

The following lemma proves an important property concerning maximal
prime subterms of norm(T) with T compact. First of all we say that U is a
maximal prime subterm of norm(T) if either norm(T) = C[l[U]] or norm(T) =
C[U | U ′], where U is prime.

Lemma 4.3 If U is a maximal prime subterm of norm(T), with T compact,
then U meets the following property: U is either () or a type (B1 | . . . | Bn)∗, or
(B1 | . . . | Bn)∗,A or simply a type A, with A having unique top-level tags and
such that

• either A = B′1, . . . ,B′k, or A = B′1, . . . ,B′k,D, or A = D

with each Bi and A having unique top level tags, and

• n ≥ 1 and topLT (Bi) ∩ topLT (Bj) = ∅, for i 6= j.

• ∀B′s.∃Bj . B′s = Bj

• topLT (D) ∩ topLT (B1 | . . . | Bn) = ∅

Proof. The proofs follows by using an alternative and more verbose definition
of normalization for the case of product type, norm(T ′, U ′) M=

⋃n
1 (norm(Ci), (norm(T ′))∗) if T ′ = (C1 | | Cn)

U ′ = (T ′∗)⋃n
1 norm(Ai, U

′) if norm(T ′) = (A1 | | An) ∧
topLT (T ′) ∩ topLT (U ′) = ∅⋃n

1 norm(T ′, Ai) if norm(U ′) = (A1 | | An)∧
topLT (T ′) ∩ topLT (U ′) = ∅

norm(T ′), norm(U ′) otherwise
This redefinition is equivalent to the previous one over compact types.
The proof then continues by induction on size(T), without presenting par-

ticular technical issues.

The lemma that follows will play a central role in the following, and explains
what are the effects of compactness from the point of view of type semantics.

Lemma 4.4 If U is a maximal prime subterm of norm(T) with T compact
and U = S∗,A with A and S = (B1 | . . . | Bn) meeting properties stated in the
previous lemma, then

• topLT (A) ⊆ topLT (S)⇒ (f : U ⇒ f : S∗)

• otherwise A = B,D and topLT (D) ∩ topLT (S) = ∅ and topLT (B) ⊆
topLT (S) ∧ (f : U ⇒ f = fS∗, fD)

Proof. The proof follows by properties stated in Lemma 4.3.

The following definitions and lemmas characterize the properties of normal-
ized types; in particular, the Upward Closure Lemma expresses the fact that
in prime types, obtained by normalization, there are not exclusive labels. This
property is crucial to allow for a top-down structural analysis to check subtyping
of union types.

Lemma 4.5 (Upward closure) If T is prime then ∀ f1, f2 ∈ JT K. ∃f ∈
JT K. topLT (fi) ⊆ topLT (f)

Proof. We reason by case analysis on the form of T . As T is prime, T =
norm(T) and T 6= U | V . Hence, T is a product of tree types and/or repetition
types. The main case is T = (V)∗. Here the main observation that directly
leads to the proof is that ∀f1, f2 ∈ JT K.(f1, f2) ∈ JT K.

The following lemma will serve to prove Lemma 4.7.

Lemma 4.6 If T is compact and T =
⋃n

1 Ai then

norm(T+) = norm(T, (T∗)) =
n⋃
1

(norm(Ai), (norm(T))∗)

and for i 6= j:

• topLT (norm(Ai)) ∩ topLT (norm(Aj)) = ∅;

• topLT (norm(Ai), (norm(T))∗)) = topLT (norm(Aj), (norm(T))∗).

Proof. The proof easily follows once we observe that over product types B
normalization preserves top level tags and the product structure.

Restriction (i) of type pre-compactness requires that a pre-compact type T
has no repeated tags at the top level of any type subterm S such that S = T or
T = C[l[S]]. This tag uniqueness property is of course lost after normalization,
which is always applied before subtype-checking. However, uniqueness of tag
occurrences in T implies some properties about norm(T) that are able to prevent
backtracking during the subtype comparison, as well as to correctly decompose
union types (i.e., T < U | V if T < U or T < V).

For instance, we have norm((l[B]∗ | m[B]∗), b[B]) = l[B]∗, b[B] | m[B]∗, b[B]
where the tag b repeats twice. However here we are able to distinguish the two
types in union by the fact that, if not fl[B]∗,b[B] : m[B]∗, b[B], then there is a

top level tag of fl[B]∗,b[B] which is not a top level tag of m[B]∗, b[B]. As we will
show later, if during the subtype-check we have S < l[B]∗, b[B] | m[B]∗, b[B],
with S prime, thanks to this property we will know that either S < l[B]∗, b[B]
or S < m[B]∗, b[B].

The same holds for norm((l[B] | m[B])+, a[B]) = norm((l[B] | m[B])∗, (l[B] |
m[B]), a[B]) which is (l[B] | m[B])∗, l[B], a[B] | (l[B] | m[B])∗,m[B], a[B]. So here
the two types in union have the same set of top level tags, but we have the part
out of the star which makes the distinction between the two types in union after
normalization, even if there is a[B] that repeats.

Finally consider norm(l[B], (m[B], n[B])?) = l[B] | l[B],m[B], n[B]). Here
we have l[B] that repeats, but m[B], n[B] in the second part that makes the
distinction.

These three examples are generalized in the following lemma, which, we
recall, will be crucial to prove that T < U | V implies T < U or T < V (Lemma
4.9).

Lemma 4.7 Let T be compact, if norm(T) = C[S | V], with S and V prime,
then one of the following three properties holds:

1. topLT (S)
a

topLT (V) 6= ∅ implies that if f : S and not f : V , then
∃ l ∈ topLT (f) such that l 6∈ topLT (V), and vice versa, where

a
is the

symmetrical difference operator;

2. topLT (S) ⊂ topLT (V) implies V = V ′, l[V ′′] and l /∈ topLT (S)∪topLT (V ′);

3. topLT (S) = topLT (V) implies S = A, (S′)∗ and V = B, (V ′)∗ with
topLT (A)

a
topLT (B) 6= ∅.

Proof. To easy the proof we reformulate the statement in the following equiv-
alent way, where in the fourth point we add some properties implied by Lemma
4.3:

1. topLT (S)
a

topLT (V) 6= ∅ and, if f : S and not f : V , then ∃ l ∈ topLT (f)
such that l 6∈ topLT (V), and vice versa, where

a
is the symmetrical

difference operator;

2. topLT (S) ⊂ topLT (V) and V = V ′, l[V ′′] and l /∈ topLT (S) ∪ topLT (V ′);

3. topLT (V) ⊂ topLT (S) and S = S′, l[S′′] and l /∈ topLT (V) ∪ topLT (S′);

4. topLT (S) = topLT (V) and S = A,D, (S′)∗ and V = B,D, (V ′)∗ with

• topLT (A)
a

topLT (B) 6= ∅
• A = A1, . . . ,An and B = B1, . . . ,Bm

• S′ = (
⋃n

1 Ai) | (
⋃m

1 Bi) | S′′ = V ′

• topLT (D)∩topLT (S′) = ∅ and (topLT (A)∪topLT (B))∩topLT (S′′) =
∅

Again, we use the alternative definition norm(T) provided in the proof of
Lemma 4.3.

We then proceed by case distinction on the form of T and by induction on
size(T). Base cases (i.e., T = () and T = B), for which size(T) = 0, are trivial.

Concerning the inductive cases, the easiest one is that for T = T ′∗. In this
case it is sufficient to observe that norm(T ′∗) = norm(T ′)∗, and that all unions
are in norm(T ′), where the 4 properties in the thesis hold by the inductive
hypothesis. The case T = l[T ′] is similar.

Consider now T = T1 | T2. We recall that size(Ti) < size(T), norm(T) =
norm(T1) | norm(T2), and that, by induction, the thesis holds for unions in
norm(Ti). So to prove the thesis it remains to prove that it holds for unions
V1 | S1, with norm(T1) = V1 | . . . and norm(T2) = S1 | But since T1 and
T2 do not have common top-level tags, the same holds for V1 and S1, so that
topLT (V1)

a
topLT (V2) 6= ∅, meaning that for these unions V1 | S1 property 1

holds.

The case T = T ′, U ′ is the most difficult one. We go by case distinction on
the kind of product, as indicated in the previous re-definition of normalization.

The first case is immediate by Lemma 4.6. The second and third cases are
similar, so we only treat the second.

We have that T ′ and U ′ do not have top-level common tags. Moreover:

norm(T ′, U ′) =
n⋃
1

norm(Ai, U
′)

with norm(T ′) = (A1 | | An), where each Ai prime.
Also assume that

norm(U ′) = (B1 | | Bm)

with each Bi prime. Note that types Ai’s have no common top-level tags with
respect to types Bh’s.

Since, by induction, the thesis holds for unions in each norm(Ai, U
′), we

have to prove that the thesis holds for V1 | S1, with norm(Ai, U
′) = V1 | . . .

and norm(Aj , U
′) = S1 | . . . with i 6= j. It is not difficult to prove that

V1 = norm(Ai, Bh) and S1 = norm(Aj , Bk) .
Now we have to observe and keep in mind this fact: since types Ai, Bh, Aj , Bk

are prime, normalization of norm(Ai, Bh) and norm(Aj , Bk) only requires a
kind of top level reorganization of the types: tipically merge of * types. This
operation does not alter properties stated in this lemma’s thesis, that are 1, 2,
3, and 4.

We know that the lemma holds for pairs Ai, Aj and Bh, Bk; this means
that for Ai, Aj we have one of the property 1, 2, 3, and 4 in the thesis statement
hold; and similarly for Bh, Bk. But thanks to the previous fact, we can provide
the following table showing that the lemma holds for all possible combination
of the 4 cases of the lemma statement.

In the first column of the table we have the possible 4 cases for Ai, Aj and
on the first line the 4 possible cases for Bh, Bk. The body of the table contains
the corresponding case (1, 2, 3, or 4) of the lemma statement that holds for the
pair norm(Ai, Bh) and norm(Aj , Bk) :

Table 4.2. Symbolic subtyping.
1) () <: ()
2) () <: T∗
3) B <: B
4) l[T] <: l[U] if T <: U
5) T∗,A <: U∗,B if A <: U∗,B and T∗ <: U∗
6) T1, T2 <: U1, U2 if T1 <: U1 and T2 <: U2

7) T1 <: U2 | U3 if T1 <: U2 or T1 <: U3 with T1 6= V1 | V2

8) T1 | T2 <: U if T1 <: U and T2 <: U
9) T <: U∗ if T <: U
10) T∗ <: U∗ if T <: U∗
11) T1, T2 <: U∗ if T1 <: U∗ and T2 <: U∗

1 2 3 4
1 1 1 1 1
2 1 2 1 2
3 1 1 3 3
4 1 2 3 4

This ends the proof for the second case of re-definition provide in Lemma
4.3; the third case is similar to that, so it remains the fourth case. Here things
are easier: we have norm(T ′, U ′) = norm(T ′), norm(U ′), which is not a union
type. So all remaining unions types are inside element typed of norm(T ′) and
norm(U ′), for which the four properties of the lemma statement hold by induc-
tion.

4.2 Symbolic Subtyping

Given the preliminary definitions of the previous Section, we can now propose
our notion of symbolic subtyping. This notion is symbolic in the sense that it
is defined by a list of simulation rules depending on the structure of types. We
will use <: to denote symbolic subtyping. In the following definition we use
symbols N and M to indicate normalized tree types l[T] or B .

Definition 4.8 (Symbolic subtyping) Symbolic subtyping <: among nor-
malized types is defined as shown in Table 4.2.

4.3 Properties of Symbolic Subtyping

Lemma 4.9 (Accumulation) Let T be such that norm(T ′) = C[T], and the
union S | V such that norm(U ′) = C ′[S | V], with U ′ compact and S and V
prime. If T < S | V then either T < S or T < V .

Proof. Consider S | V . By Lemma 4.7 we know that one of the three following
cases must hold.

1. topLT (S)
a

topLT (V) 6= ∅ and, if f : S and not f : V , then ∃ l ∈ topLT (f)
such that l 6∈ topLT (V), and vice versa, where

a
is the symmetrical

difference operator;

2. topLT (S) ⊂ topLT (V) and V = V ′, l[V ′′] and l /∈ topLT (S) ∪ topLT (V ′);

3. topLT (V) ⊂ topLT (S) and S = S′, l[S′′] and l /∈ topLT (V) ∪ topLT (S′);

4. topLT (S) = topLT (V) and S = A,D, (S′)∗ and V = B,D, (V ′)∗ with

• topLT (A)
a

topLT (B) 6= ∅
• A = A1, . . . ,An and B = B1, . . . ,Bm

• S′ = (
⋃n

1 Ai) | (
⋃m

1 Bi) | S′′ = V ′

• topLT (D)∩topLT (S′) = ∅ and (topLT (A)∪topLT (B))∩topLT (S′′) =
∅

We first deal with the fourth case, which is the hardest one. We define
H ./ E iff topLT (H) = topLT (E).

We first assume that T = (T ′)∗,Z. By hypothesis we have Z < S | V .
This means that Z = X ,Y,G with X ./ A and not X ./ B, or vice versa, since
topLT (A)

a
topLT (B) 6= ∅; moreover in both cases we have Y ./ D. Wlog we

assume the first case.
Now we prove that X < A. This follows by simply observing that X ./ A,

that top level tags in X are not inD, and thatA = A1, . . . ,Am with the property
: S′ = (

⋃n
1 Ai) | (

⋃m
1 Bi) | S′′ = V ′ and (topLT (A)∪ topLT (B))∩ topLT (S′′) =

∅. This means that for each f = f ′, f ′′ such that f : S, or f : V , and f ′ contains
at the top level tags at the top level of A, f ′ must be a product fA1 . . . fAn

.
Moreover it is straightforward that Y < D. So it remains to prove that

G < S′∗. To this end, suppose this is not true. We would have soon an absurd
since this would mean that there exists f : G such that not f : S′∗ and not
f : V ′∗ (recall that S′ = V ′). Now, by Lemma 4.4, entailing that both A and B
are subtype of S′∗ and V ′∗, if we take an fX ,Y we have that not fX ,Y , f ′ : S | V ,
which is an absurd.

So we can conclude that Z < S. To complete the proof we prove that T ′∗ <
(S′)∗ (that is T ′∗ < (V ′)∗). We first observe that topLT (T ′) ∩ topLT (D) = ∅,
by uniqueness of tags at the top level of D of forests in both S and V . This
means that top level tags of f : T ′∗ are included in those of S′ = V ′, and
since both A and B are subtypes of S′∗ and V ′∗, we have that it must be
T ′∗ < A, (S′)∗ < (S′)∗ (and T ′∗ < B, (V ′)∗ < (V ′)∗, with, we insist, S′ = V ′,
so to obtain the desired property. This completes the case T = (T ′)∗,Z.

The case T = Z has indeed already been proved, while it case T = (T ′)∗
implies that both A,D and B,D are the empty sequence type (). So the proof
follows by reasonings similar to the previous ones.

Let us now consider the case that S and V meet property 2 (the third is
strictly similar). In this case, we have V = V ′, l[V ′′] and l /∈ topLT (S) ∪
topLT (V ′). Now suppose that there exists f, l[f ′] : T . This means that each
forest fT in T contains only one top level tag l since, due to l 6∈ topLT (S) ∪
topLT (V ′), otherwise we contradict the hypothesis T < S | V . Moreover this
also means that in must be fT : V for each fT : T .

Suppose now that does not exists f, l[f ′] : T . Since T < S | V this means
that T < S, since each forest in V contains an l top level tag.

The only remaining case is that that S and V meet property 1. By aiming at
a contradiction, assume the thesis not to hold. This means that ∃fS ∈ JT K∩JSK
and ∃fV ∈ JT K∩ JV K such that fS /∈ JV K and fV 6∈ JSK. By Lemma 4.7 we have
that there exists a top level tag in fS not belonging to topLT (V) and that there
exists a top level tag in fV not belonging to topLT (S). But Lemma 4.5 tells
us that there exists f : T such that topLT (fS) ∪ topLT (fV) ⊆ topLT (f), with
neither f : S nor f : V , because of the previous facts. So we have contradicted
the hypothesis T < S | V and, therefore, finished the proof.

Lemma 4.10 (Product Injection) If A < B with A = N1, . . . , Nn , B =
M1, . . . ,Mm and A and B prime types such that there exists T compact, so that
norm(T) = C[B], then there exists a bijection π such that Ni < Mπ(i) .

Proof. The proof follows by cardinality reasons and by observing that at top
level of B we have unique tags.

Lemma 4.11 (Product Injection 1) Given a prime type A and given a prime
time U∗ such that norm(T) = C[U∗] with T compact, if A < U∗, then

A < U ∨ (A = A1,A2 ∧ Ai < U∗)

Proof. We proceed by induction on the number of union types at the top level
of U (not inside an element type of U). In the base case we have that U = B,
with B having unique top level tags. In this case eitherA < B orA = A1, . . . ,An

with Ai < B.
Now suppose U = B1 | . . . | Bn. We have U = (B1 | . . . | Bn)∗,Bn∗.

Now if A < (B1 | . . . | Bn−1)∗ we have the thesis by induction, since (B1 |
. . . | Bn−1)∗ < U∗ and (B1 | . . . | Bn−1) < U . If this is not the case, this
means that A = A1,A2 with A1 < (B1 | . . . | Bn−1)∗ and A2 < Bn∗, which
gives us the desired decomposition as (B1 | . . . | Bn−1)∗ < U∗ and Bn∗ < U∗.
Note that the decomposition for A is given by the fact that i) A < U∗, ii)
topLT (B1 | . . . | Bn−1) ∩ topLT (Bn) = ∅ and iii) not A < (B1 | . . . | Bn−1)∗.
Indeed, iii) means that ∃f : A such that not f : (B1 | . . . | Bn−1)∗. This togehter
with ii) yields that topLT (A) 6⊆ topLT ((B1 | . . . | Bn−1)∗): otherwise we would
have an absurd since we end up with

A < U∗ ⇐⇒ A < (B1 | . . . | Bn−1)∗

which contradicts iii). So since A < U∗ =⇒ topLT (A) ⊆ topLT (U∗), we
can obtain A = A1,A2 with topLT (A1) ⊆ topLT ((B1 | . . . | Bn−1)∗) and
topLT (A2) ⊆ topLT (Bn∗), Since i) and ii) these two properites imply that
A1 < (B1 | . . . | Bn−1)∗ and that A2 < Bn∗, which concludes the proof.

Lemma 4.12 (Product Injection 2) If T∗, C < U∗,B and T∗, C is a max-
imal prime subterm of norm(T ′) and U∗,B is a maximal prime subterm of
norm(U ′) with U ′ compact, then

C < U∗,B ∧ T∗ < U∗

Proof. The part C < U∗,B is a direct consequence of the hypothesis T∗, C <
U∗,B. For the second case we use Lemma 4.3. By this lemma we may have
several cases concerning the right hand side type. Let us first consider the first
case

U∗ = (B1 | . . . | Bn)∗
and B = B′1, . . . ,B′k and

• n ≥ 1, each Bi having unique top level tags, and topLT (Bi)∩topLT (Bj) =
∅, for i 6= j.

• ∀B′s.∃Bj . B′s = Bj .

In this case by Lemma 4.4 we know that each forest f in U∗,B is a combination
of Bi’s forests. So the same holds for forests in C , since C < U∗,B. Now this
means that the same property must hold for T∗. Otherwise we contradict the
hypothesis T∗, C < U∗,B . Indeed if we take a forests fT∗ such that not fT∗ :
U∗,B, then we have not fT∗, fC : U∗,B, which is an absurd; this implication
follows by induction on the number of fT∗ top level trees.

Let’s consider now the case that B = D with

• n ≥ 1, each Bi having unique top level tags, and topLT (Bi)∩topLT (Bj) =
∅, for i 6= j.

• topLT (D) ∩ topLT (B1 | . . . | Bn) = ∅

This entails that topLT (T)∩ topLT (D) = ∅. So this means that T∗ can only
contains combinations of Bi’s forests, that are forests in U∗.

The remaining case is that

• B = B′1, . . . ,B′k,D

with

• n ≥ 1, each Bi having unique top level tags, and topLT (Bi)∩topLT (Bj) =
∅, for i 6= j.

• ∀B′s.∃Bj . B′s = Bj , and topLT (B′r) ∩ topLT (B′s) = ∅ with r 6= s

• topLT (D) ∩ topLT (B1 | . . . | Bn) = ∅

This case actually is a combination of previous two cases, and follows with
a similar reasoning.

Lemma 4.13 (Product Injection 3) If A < U∗,B and A is a subterm of
norm(T ′) and U∗,B is a maximal prime subterm of norm(U ′) with U ′ compact,
then
A < B ∨ (A = A1,A2 ∧ A1 < U ∗ ∧ A2 < B)

Proof. We may have |A| = |B| or |A| > |B|, where | · | is the number of tree
types at the top level of the argument type. The first case is obvious, so we
assume |A| > |B|.

We use Lemma 4.3. By this lemma we may have several cases concerning
the right hand side type. Let us first consider the first case

U∗ = (B1 | . . . | Bn)∗
and B = B′1, . . . ,B′k and

• n ≥ 1, each Bi having unique top level tags, and topLT (Bi)∩topLT (Bj) =
∅, for i 6= j.

• ∀B′s.∃Bj . B′s = Bj .

Now we proceed by induction on |B|. For the base case we assume |B| = 0,
which trivially follows, as A = A, (). Assume that V is tree type and that
B = B′, V .

By previous properties we have that there exists V ′ such that A = A′, V ′

with V ′ < V (this is because for whatever tree type V ′′ at the top level of U∗,B
having the same top level tag as V , it is V ′′ = V). As a consequence we have
A′ < U∗,B′, and then the thesis by induction.

The second case is that B = D with

• topLT (D) ∩ topLT (B1 | . . . | Bn) = ∅

This case is similar to the previous one, even easier actually thanks to uniqueness
of D tags.

The remaining case is that

• B = B′1, . . . ,B′k,D

with

• n ≥ 1, each Bi having unique top level tags, and topLT (Bi)∩topLT (Bj) =
∅, for i 6= j.

• ∀B′s.∃Bj . B′s = Bj , and topLT (B′r) ∩ topLT (B′s) = ∅ with r 6= s

• topLT (D) ∩ topLT (B1 | . . . | Bn) = ∅

This is a combination of previous two cases, and follows with similar reason-
ings.

Lemma 4.14 (* Elimination) T∗ < U∗ iff T < U∗

Proof. The only non trivial direction is T∗ < U∗ if T < U∗. To prove this it
suffices to add a star to T < U∗ so to obtain T∗ < U ∗∗, which means T∗ < U∗.

4.4 Equivalence between symbolic and semantic subtyp-
ing

It is now possible to prove that our symbolic characterization of semantic sub-
typing is correct and that, when U in T < U is compact, then it is also complete.

Theorem 4.15 (Soundness) If norm(T) <: norm(U) then T < U .

Proof. The proof easily follows by cases inspection of Table 4.2.

Theorem 4.16 (Completeness) If T < U and U is compact then norm(T) <:
norm(U).

Proof. For this case all the work has already been done: the proof easily follows
induction over the structure of types and by case distinction of compared types,
and by applying Lemma 4.9 for the case when the left hand-side type is a union
type, and lemmas 4.10, 4.11, 4.12, and 4.14 in the cases of product and ∗ types.

5 Symbolic Subtype-checking

Our algorithm for symbolic subtype-checking (Sim(T1,T2)) is shown in Figures
2 and 3. It consists of three main phases. During Phase 1, the algorithm
creates and populates a type matrix simTypes with boolean values or symbolic
references, both obtained by repeatedly calling the SimpleSub algorithm of
Figure 2. The matrix has as many rows as the type terms in T1, and as many
columns as type terms in T2. To ensure the proper behavior of the algorithm,
type terms from both T1 and T2 have to be extracted with a pre-order visit, so
that, if Zi and Zj are type terms in T1 and i < j, then Zi precedes Zj in the
pre-order visit of T1. The SimpleSub algorithm is called once per each cell in
the type matrix, with the notable exception of those cells that correspond to
types whose match is useless as they occupy incompatible positions in the type
term hierarchy (this task is performed by the boolean function Comparable).
For instance, given T1 = l [B,m [B]] and T2 = l [(B, p [B]) | (B,m [B])], comparing
the first B inside T1 with the B inside p [B] in T2 is a waste of time, as their
different positions in the hierarchies of T1 and T2, respectively, prevent their
matching.

SimpleSub returns a boolean value for any comparison that does not require
any further type comparisons. If, instead, the comparison between T and U
requires a further comparison, as in the type simulation rule for l [Z] <: l [W]
(Rule 4), then the algorithm returns a simple symbolic reference (ref(Ux, Vy)),
a logical combination of simple references (e.g.,

∧n
i=1 ref(Ui, T2)), or a product

reference (ref({U1, . . . , Un}⊗{V1, . . . , Vm})). A simple reference ref(Ux, Vy) is
a symbolic pointer to the content of the cell simTypes[x][y], while a product
reference indicates that the maximum flow algorithm must be executed on top
of a bipartite graph built from the partitions {U1, . . . , Un} and {V1, . . . , Vm}.
References are left unevaluated, and they will be solved during Phase 2.

The output of Phase 1, thus, is a partially instantiated type matrix. This
matrix is the input for Phase 2, whose objective is to solve symbolic references.
By visiting the matrix in reverse order, starting from the bottom right and

SimpleSub(Type T1, T ype T2)
1 switch
2 case T1 = T2 :
3 return true
4 case T1 = () ∧ T2 = V ∗ :
5 return true
6 case T1 = l[U1] ∧ T2 = l[U2] :
7 return ref(U1, U2)
8 case T1 = U1, . . . , Un ∧ T2 = V1, . . . , Vm :
9 return ref({U1, . . . , Un} ⊗ {V1, . . . , Vm})

10 case T1 = U1, . . . , Un ∧ T2 = V1 | . . . | Vm :
11 return (

∨m
j=1 ref(T1, Vj))

12 case T1 = U1 | . . . | Un ∧ T2 = V1, . . . , Vm :
13 return (

∧n
i=1 ref(Ui, T2))

14 case T1 = U ∗ ∧T2 = V ∗ :
15 return ref(U, T2)
16 case T1 = U1, . . . , Un ∧ T2 = V ∗ :
17 return (

∧n
i=1 ref(Ui, T2))

18 case T1 = U ∧ T2 = V ∗ :
19 return ref(U, V)
20 case default :
21 return false

Figure 2: SimpleSub algorithm.

going right to left, the algorithm proceeds by replacing references of the form
ref(Ux, Vy) with the content of simType[x][y], by evaluating logical combiners,
and by applying the maximum flow algorithm for ⊗ references; in the latter
case, an auxiliary (and trivial) function GraphConstr is invoked with the
aim of building the bipartite graph G, while the maximum flow is computed
with a standard maximum flow algorithm MaxFlow; MaxFlow returns the
maximum flow traversing the bipartite graph as well as the set of nodes in
the second partition that are reached by the flow. The result of this phase
is a fully instantiated type matrix, since, as shown by Lemma 5.5, when a
cell simTypes[i][j] has been reached, all the cells that can be referenced by
its content have already been visited and instantiated. It should be observed
that, as prescribed by Rule 10 of the simulation relation, nodes in the second
partition of G, corresponding to *-types in the right hand-side of the comparison,
are marked as special, since they can be used to map more than one term of the
left hand-side; from a flow point of view, this means the edges connecting these
nodes with the sink of the graph have unbounded capacity.

Phase 3 is very simple and consists in returning a boolean value describing
the result of the whole simulation. Since the types being compared correspond
to the first row and to the first column of the type matrix, the algorithm just
returns the content of simTypes[1][1].

The use of a maximum flow algorithm for implementing Rules 5 and 6 may

Sim(Type T1, T ype T2)
1 // we assume T1 to be composed by n terms and T2 by m terms
2 // phase 1: type matrix construction
3 Array[n][m] simTypes
4 for each Ui in T1

5 do for each Vj in T2

6 do if Comparable(Ui, Vj)
7 then simType[i][j] = SimpleSub(Ui, Vj)
8 // phase 2: reference resolution
9 for i← n to 1

10 do for j ← m to 1
11 do if simTypes[i][j] = ref(Zp, Uq) ∧ simTypes[p][q] ∈ {true, false}
12 then simTypes[i][j] = simTypes[p][q]
13 else if simTypes[i][j] contains references different from ⊗
14 then for each ref(Zx, Vy) in simTypes[i][j]
15 do replace ref(Ux, Vy) with simTypes[x][y]
16 evaluate the logical expression in simTypes[i][j]
17 else if simTypes[i][j] = ref({Uf , . . . , Up} ⊗ {Vg, . . . , Vq})
18 then P1 = {Uf , . . . , Up}
19 P2 = {Vg, . . . , Vq}
20 mark as special P2 nodes corresponding to *-types
21 G = GraphConstr(P1,P2)
22 (flow,Pc) = MaxFlow(G)
23 if flow = ‖P1‖ ∧ Pc = P2

24 then simTypes[i][j] = true
25 else simTypes[i][j] = false
26 // phase 3: result discovery
27 return simTypes[1][1]

Figure 3: Symbolic subtype-checking algorithm.

appear as an overkill since the restrictions imposed by type compactness make
comparison of product types quite simple. In particular, as no element tags
can be repeated at the top level of the right hand-side product, it is easy to
see that a simple nested loop between the left hand-side factors and the right
hand-side factors would suffice to implement the simulation rules. We chose
to use a more powerful algorithm in order to broaden the class of non-compact
types on which the algorithm is still complete; as Ford/Fulkerson maximum flow
algorithm is still polynomial, we found this option a viable solution to extend
the applicability of our approach. Several experiments on types with wide and
systematic violations of the type compactness property validate this claim.

5.1 Correctness and Completeness

To prove correctness and completeness of the Sim algorithm wrt type simulation,
we need the following Lemmas.

Lemma 5.1 The SimpleSub algorithm satisfies the reflexivity, commutativity,
associativity, and ()-neutrality properties.

Proof. The lemma is proved by analyzing the behavior of the algorithm.
Reflexivity:

Reflexivity is directly proved by case 2/3;
()-neutrality:

Consider T = T1, (). By applying case 8/9, SimpleSub(T , T1) returns a
⊗ reference of the form ref({T1, ()} ⊗ {T1}), which instructs the Sim to build
a bipartite graph G, where P1 = {T1, ()} and P2 = {T1}. The maximum flow
algorithm automatically discards () types during maximum flow analysis.

The case of SimpleSub(T1,T) is trivial.
Commutativity:

Consider T = T1, T2 and U = T2, T1. SimpleSub(T ,U) returns a ⊗ reference
ref({T1, T2}⊗{T2, T1}), which instructs Sim to build a bipartite graph G, whose
partitions are equal.
Associativity: Consider types T = (T1, T2), T3 and U = T1, (T2, T3). The
algorithm just drops the parentheses from T and U , hence the proof is trivial.

Lemma 5.2 The SimpleSub algorithm is compatible with the simulation re-
lation, in the sense that it implements the simulation relation.

Proof. The lemma is proved by analyzing the correspondence between the sim-
ulation rules and the algorithm cases. A preliminary observation is that side
conditions of the form T <: U are encoded by a simple reference of the form
ref(T,U).
Completeness

We want to prove that each simulation rule can be encoded in the algorithm.
We proceed by induction on the simulation rules.

() <: (): By reflexivity.

() <: T∗: By case 4/5.

B <: B: By reflexivity.

l [T] <: l [U]: By case 6/7.

N1, . . . , Nn <: M1, . . . ,Mm: Case 8/9 is applied; the algorithm returns a ⊗ ref-
erence of the form ref({N1, . . . , Nn}, {M1, . . . ,Mm}), which instructs the
Sim algorithm to build a bipartite graph G where P1 = {N1, . . . , Nn} and
P2 = {M1, . . . ,Mm}. The thesis follows from induction on the rule side
conditions.

U∗, N1, . . . , Nn <: V ∗,M1, . . . ,Mm: As for the previous rule, case 8/9 is applied
and the thesis follows from induction on the rule side conditions.

T1 <: U2 | U3: Case 10/11 is applied, hence the algorithm returns ref(T1, V1)∨
ref(T1, V2). The thesis follows from induction on the rule side conditions.

T1 | T2 <: U : Case 12/13 is applied, hence the algorithm returns ref(T1, U) ∧
ref(T2, U). The thesis follows from induction on the rule side conditions.

T <: U∗: Case 18/19 is applied.

T∗ <: U∗: Case 14/15 is applied.

T1, T2 <: U∗: Case 16/17 is applied.

Correctness
We want to prove each algorithm case is backed by the application of the

simulation rules. We proceed by induction on the algorithm cases.

Case 2/3: By reflexivity.

Case 4/5: By ()-neutrality.

Case 6/7: By Rule 4.

Case 8/9: If both T1 and T2 contain a star type, Rule 6, combined with type
equivalence modulo commutativity, is applied. Otherwise, Rule 5, combine
with type equivalence modulo commutativity, is applied.

Case 10/11: If n = 1, it suffices to apply Rule 7. If n > 1, Rule 7 is applied
to decompose the right hand-side of the comparison; then, Rules 5 and 6
are applied.

Case 12/13: Rule 8 is applied to decompose the left hand-side of the compar-
ison; Rules 5 and 6 are then applied to the resulting terms.

Case 14/15: It suffices to apply Rule 10.

Case 16/17: Rule 11 is iteratively applied.

Case 18/19: Rule 9 is applied.

To conclude the proof, it should be observed that the algorithm does not
contain any other case.

Lemma 5.3 Given i ∈ [1, . . . , n], given j ∈ [1, . . . ,m], if simTypes[i][j] con-
tains a reference ref(Zx, Vy), then x > i and y > j.

Proof. By a simple inspection of the SimpleSub algorithm.

Lemma 5.4 Given i ∈ [1, . . . , n], given j ∈ [1, . . . ,m], if simTypes[i][j] con-
tains a reference of the form ref({Zf , . . . ,Zh} ⊗{Vp, . . . , Vq}), then i 6 f, . . . , i 6
h and j 6 p, . . . , j 6 q

Proof. By a simple inspection of the SimpleSub algorithm.

These lemmas allows us to prove the following Lemma about the second
phase of the Sim algorithm.

Lemma 5.5 Phase 2 of the Sim algorithm produces a fully instantiated type
matrix.

Proof. Phase 2 consists of a reverse order visit of the type matrix. When a cell
simTypes[i][j] is examined, by Lemmas 5.3 and 5.4, it may contain only forward
references, i.e., references to already visited cells. These references have already
been solved, hence the cell simTypes[i][j] can be fully instantiated.

We can now state the correctness and completeness of Sim wrt type simu-
lation.

Theorem 5.6 The Sim algorithm is correct and complete wrt the type simula-
tion relation.

Proof. We first observe that the algorithm terminates, as it does not make
recursive calls nor it uses unbounded iterations.

We can now prove the thesis by analyzing each phase of the algorithm.
Phase 1

Assuming that T1 is formed by n type terms (from Z1 to Zn), and that T2 is
formed by m type terms (from V1 to Vm), Phase 1 creates a matrix simTypes of
n×m entries, where each entry contains a boolean value or a reference to other
entries: simTypes[i][j] indicates whether Zi is similar to Vj (true or false);
if the simulation cannot be directly computed, a reference to entries of nested
terms is inserted. For each entry, Phase 1 calls the SimpleSub algorithm,
which, as shown by Lemma 5.2, implements the rules of the definition of type
simulation.
Phase 2

Phase 2 solves symbolic references in the matrix entries. The only potential
source of incompleteness is the comparison among product types. However, we
have already shown, even if informally, that this comparison is equivalent to a
0−1 maximum flow problem on bipartite graphs, and that our algorithm is able
to capture all matchings among product types.
Phase 3

Phase 3 just outputs the result of the algorithm.

5.2 Complexity Analysis

To study the complexity of the Sim algorithm we must first analyze the com-
plexity of the auxiliary algorithms SimpleSub.

Lemma 5.7 The SimpleSub algorithm has O(1) worst case complexity.

Proof. We assume the pattern matching on types (e.g., case T1 = . . .) has
O(1) complexity.

Each case in the SimpleSub algorithm performs no recursive calls nor it-
erations; furthermore, each reference returned by the return clause is just a
symbolic reference and does not involve any operation to be performed. As a
consequence, each case requires just O(1) operations.

Theorem 5.8 The worst case complexity of the Sim algorithm, while comparing
T and U , is O(nm(n + m)3), where n is the number of terms in T , and m is
the number of terms in U .

Proof. We prove the thesis by analyzing each phase of the algorithm.
Phase 1

Phase 1 creates a matrix of n×m entries, where each entry contains the pro-
jection relation between two types. For each entry, phase 1 calls the SimpleSub
algorithm, which, as shown in Lemma 5.7, has O(1) complexity. Moreover, each
calls to the function Comparable has O(1) complexity, as it involves a single
lookup in a compatibility matrix that can be built in O(nm) time during type
parsing. Phase 1, hence, performs O(nm) operations.
Phase 2

Phase 2 performs the resolution of symbolic references by traversing the type
matrix in reverse order. Simple references of the form ref(Zx, Vy) can be solved
with a single access to the matrix, while each logical expression of the form∧n

i=1

∨m
j=1 ref(Ui, Vj) can be evaluated in at most nm operations.

The resolution of ⊗-references requires the construction of the bipartite
graph G (O(nm) operations), and the execution of the 0 − 1 maximum flow
algorithm. The best 0 − 1 maximum flow algorithm on bipartite graphs is a
variant of the Ford-Fulkerson algorithm and has O((n + m)3) complexity [15],
hence this phase has O(nm(n + m)3) worst case time complexity.
Phase 3

Phase 3 requires just one operation.

It should be noted that, while Sim has polynomial complexity, the overall
approach has exponential complexity, as types must be normalized (via norm())
before the application of Sim.

6 Tractable Subtype-checking

In the previous Sections we described a class of unordered XML types for which
subtype-checking can be performed in EXPTIME. As most of the complexity
of our approach is confined into the norm() function, which transforms a given

type into an equivalent disjunctive normal form representation, inclusion be-
comes tractable for any type class for which normalization can be performed
in polynomial time. To this purpose, we identified a large class of types (ESG
types) not in DNF for which normalization is polynomial. ESG types are defined
by the following grammar.

Definition 6.1 (ESG types) A type T is element/star-guarded if it can be
generated by the following grammar:

ESG-Types T ::= () | B | l[U] | T, T | U∗
Union Types U ::= T | T | U

By the above grammar, only union types inside the immediate scope of a
repetition or a tree type are legal. Hence, types (l[B] | m[B])∗ and l[B | m[B]]
are ESG types, while type (l[B] | m[B]), p[B] does not satisfy this restriction.

As shown in [3], the restriction imposed by the grammar of ESG types is
met by many practical DTDs: indeed, author considered a sample comprising
DTDs extracted from the Web and found that about 77% of all the union types
used in the sample were ∗-guarded.

It is easy to see that norm() is polynomial when executed on ESG types.

Lemma 6.2 norm() is polynomial on ESG types.

By combining this result with the complexity analysis of the previous Sec-
tion, we can state the following theorem.

Theorem 6.3 Given an ESG type T , and given an ESG, compact type U ,
T < U can be decided in polynomial time.

Proof. The thesis easily follows from theorems 4.16, 5.8, and from Lemma 6.2.

It is worth to notice that Theorem 6.3 implies that equivalence and member-
ship for ESG, compact types can be decided in PTIME too. We are currently
investigating the complexity of the intersection problem.

7 Related Works

The properties of unordered XML types have become the subject of several re-
cent works. In [13] authors discuss the techniques and heuristics they used in
implementing a type-checker for unordered XML types. Their implementation
is based on sheaves automata with Presburger arithmetic. Interestingly, authors
describe the same backtracking phenomena we addressed here (see the accumu-
lation lemmas of Section 4.3): this fact proves our claim that these phenomena
are independent from the approach used for implementing the subtyping oper-
ation.

In [14] authors deeply analyze the complexity of basic decision problems
(i.e., inclusion, intersection, and equivalence) for XML types with numerical
occurrence constraints and interleaving. They prove that inclusion for unordered
XML types is inherently more expensive than inclusion for ordered types, both

in the case of DTDs and in the case of EDTDs. Authors also describe a class of
XML types for with numerical occurrence constraints (but without interleaving)
for which inclusion is in PTIME; this class comprises types in conjunctive normal
form with severe limitations on the use of repetition types. On the contrary, we
focus on unordered types only, and describe a wider class of types (ESG types)
for which inclusion can be decided in PTIME.

8 Conclusions and Future Work

In this paper we described a class of unordered XML types for which subtype-
checking can be decided in EXPTIME, as well as a class for which subtyping is
tractable. The first class is identified by a non-ambiguity property that is en-
joyed by most DTDs and XML Schemas, and that represents only a mild restric-
tion on the type language. We encoded semantic subtyping into a simulation-
based, symbolic relation for which we provided a correct and complete algorithm.

Our future work moves along two lines. First, we want to analyze what
happens when types compactness is combined with grammatical restrictions like
CHARE[&] [14]: our intuition is that inclusion for CHARE[&] compact types
can be performed in PTIME, but we have no dispositive evidence. Second, we
want to more deeply analyze the properties of our approach, in particular for
what concerns complexity lower bounds.

References

[1] Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet,
and Marcelo Arenas. Efficient incremental validation of xml documents. In
ICDE, pages 671–682. IEEE Computer Society, 2004.

[2] Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. Cduce: an
xml-centric general-purpose language. In ICFP, pages 51–63, 2003.

[3] Geert Jan Bex, Frank Neven, and Jan Van den Bussche. Dtds versus
xml schema: A practical study. In Sihem Amer-Yahia and Luis Gravano,
editors, WebDB, pages 79–84, 2004.

[4] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes
Second Edition. Technical report, World Wide Web Consortium, Oct 2004.
W3C Recommendation.

[5] Scott Boag, Don Chamberlin, Mary F. Fernandez, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Lan-
guage. Technical report, World Wide Web Consortium, Nov 2006. W3C
Proposed Recommendation.

[6] Byron Choi. What are real dtds like? In WebDB, pages 43–48, 2002.

[7] James Clark. XSL Transformations (xslt) Version 1.0. Technical report,
World Wide Web Consortium, Nov 1999. W3C Recommendation.

[8] Dario Colazzo., Giorgio Ghelli, Paolo Manghi., and Carlo Sartiani. Static
analysis for path correctness of XML queries. Journal of Functional Pro-
gramming, 16(4-5):621–661, 2006.

[9] Dario Colazzo and Carlo Sartiani. An efficient algorithm for xml type pro-
jection. In Proceedings of the Eighth ACM-SIGPLAN International Sympo-
sium on Principles and Practice of Declarative Programming (PPDP’06),
Venice, Italy, 10-12 July 2006., 2006.

[10] Silvano Dal-Zilio, Denis Lugiez, and Charles Meyssonnier. A logic you can
count on. In Neil D. Jones and Xavier Leroy, editors, POPL, pages 135–146.
ACM, 2004.

[11] Denise Draper, Peter Fankhauser, Mary Fernandez, Ashok Malhotra,
Kristoffer Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery
1.0 and XPath 2.0 Formal Semantics. Technical report, World Wide Web
Consortium, November 2006. W3C Proposed Recommendation.

[12] Mary F. Fernández and Jérôme Siméon. Building an extensible xquery
engine: Experiences with galax (extended abstract). In Zohra Bellahsene,
Tova Milo, Michael Rys, Dan Suciu, and Rainer Unland, editors, XSym,
volume 3186 of Lecture Notes in Computer Science, pages 1–4. Springer,
2004.

[13] J. Nathan Foster, Benjamin C. Pierce, and Alan Schmitt. A logic your
typechecker can count on: Unordered tree types in practice, September
2006. To appear in PLAN-X ’07.

[14] Wouter Gelade, Wim Martens, and Frank Neven. Optimizing schema lan-
guages for xml: Numerical constraints and interleaving. In To appear
in Proceedings of the International Conference on Database Theory 2007
(ICDT 2007), 2007.

[15] Andrew V. Goldberg. Recent developments in maximum flow algorithms.
In SWAT: Scandinavian Workshop on Algorithm Theory, 1998.

[16] Haruo Hosoya and Benjamin C. Pierce. Xduce: A statically typed xml
processing language. ACM Trans. Internet Techn., 3(2):117–148, 2003.

[17] Wim Martens, Frank Neven, and Thomas Schwentick. Complexity of deci-
sion problems for simple regular expressions. In Jiŕı Fiala, Václav Koubek,
and Jan Kratochv́ıl, editors, MFCS, volume 3153 of Lecture Notes in Com-
puter Science, pages 889–900. Springer, 2004.

[18] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML Schema Part 1: Structures Second Edition. Technical report,
World Wide Web Consortium, Oct 2004. W3C Recommendation.

