

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-07-06

Outer Approximation

Algorithms for Canonical

DC Problems

Giancarlo Bigi Antonio Frangioni Qinghua Zhang

March 6, 2007

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Outer Approximation Algorithms for Canonical

DC Problems

Giancarlo Bigi ∗ Antonio Frangioni † Qinghua Zhang ‡

March 6, 2007

Abstract

The paper discusses a general framework for outer approximation type

algorithms for the canonical DC optimization problem. A thorough anal-

ysis of properties which guarantee convergence is carried out: different

sets of general conditions are proposed and compared. They are exploited

to build six different algorithms, which include the first cutting plane al-

gorithm proposed by Tuy but also new ones. Approximate optimality

conditions are introduced to guarantee the termination of the algorithms

and the relationships with the global optimal value are discussed.

Keywords: DC problems, approximate optimality conditions, cutting

plane algorithms

1 Introduction

Nonconvex optimization problems often arise from applications in engineer-
ing, economics and other fields. A large number of them are actually DC op-
timization problems, that is nonconvex problems where the objective function
is the difference of two convex functions and the constraint can be expressed as
the set difference of two convex sets. In particular, the canonical DC (shortly
CDC) problem has been investigated in many papers, as every DC optimization
problem can be reduced to a CDC problem through standard transformations
(see [10]). Several algorithms to solve it have been proposed (see, for instance,
[4, 24, 20, 21, 26, 17]) and generally they are modifications of the first cutting
plane algorithm proposed by Tuy in [4].

∗Università di Pisa, Dipartimento di Informatica, Largo B. Pontecorvo 3, 56127 Pisa –

Italy, e-mail: bigi@di.unipi.it
†Università di Pisa, Dipartimento di Informatica, Largo B. Pontecorvo 3, 56127 Pisa –

Italy, e-mail: frangio@di.unipi.it
‡Università di Pisa, Dipartimento di Matematica, Largo B. Pontecorvo 5, 56127 Pisa –

Italy, e-mail: zhang@di.unipi.it

1

In this paper, we consider the CDC problem relying on an alternative equiv-
alent formulation based on a polar characterization of the constraint. The struc-
ture of this formulation allows to carry out a thorough analysis of convergence
for cutting plane type algorithms. Different sets of conditions, which guarantee
convergence, are proposed and exploited to build six algorithms, five of which
can’t be reduced to the original algorithm by Tuy. Furthermore, the alternative
formulation allows to define proper approximate optimality conditions, which
can be exploited to guarantee that the algorithms end after a finite number of
iterations and provide approximate global optimal solutions.

The paper is organized as follows. In Section 2 the CDC problem and its
polar based reformulation are introduced, and the well-known optimality con-
ditions are recalled. In Section 3 we propose approximate optimality conditions
and we investigate the relationship between the exact optimal value and the
approximate optimal values. In Section 4 convergence analysis is carried out
and six different algorithms are proposed and the corresponding proofs of finite
termination are given. In the last section the connections of these results with
the existing algorithms are outlined.

2 The Canonical DC Problem

Throughout all the paper we focus on the canonical DC minimization problem

(CDC) min{ dx | x ∈ Ω \ int C }

where Ω ⊆ Rn and C ⊆ Rn are full-dimensional closed convex sets, d ∈ Rn and
dx denotes the scalar product between d and the vector of variables x ∈ Rn.

The assumption on the dimension of the constraining sets is not restrictive.
In fact, if Ω is not full-dimensional, the problem can be easily reformulated in
the (affine) space generated by Ω. If C is not full-dimensional, then we have
int C = ∅ and the problem is actually a convex minimization problem.

In order to avoid that (CDC) could be reduced to a convex minimization
problem, we also suppose that the set C provides an essential constraint, i.e.,

min{dx | x ∈ Ω} < min{dx | x ∈ Ω \ int C}. (1)

Relying on an appropriate translation, assumption (1) can be equivalently stated
through the following two conditions

0 ∈ Ω ∩ int C (2)

dx > 0 ∀x ∈ Ω \ int C. (3)

Therefore, we assume that (2) and (3) hold. Notice that these assumptions
guarantee that any feasible solution x ∈ Ω\C provides a better feasible solution
taking the unique intersection between the segment with 0 and x as end points
and the boundary of C, i.e. x′ ∈ δC ∩ (0, x) satisfies dx′ < dx.

2

The constraint x /∈ int C is the source of nonconvexity in problem (CDC)
and it is given just as a set relation. However, relying on the polarity between
convex sets, we can express this nonconvex constraint in a different fashion. Let
us recall that

C∗ := {w ∈ Rn | xw ≤ 1 ∀x ∈ C}
is the polar set of C and it is a closed convex set. Exploiting bipolarity relations
(see, for instance, [30]), it is easy to check that the assumption 0 ∈ int C ensures
that x /∈ int C if and only if xw ≥ 1 for some w ∈ C∗. Therefore, problem
(CDC) can be equivalently formulated in the following way

min{ dx | x ∈ Ω , w ∈ C∗ , xw ≥ 1 } (4)

where polar variables w have been introduced and the nonconvexity is given by
the inequality constraint, which asks for some sort of reverse polar condition.

Let v(CDC) denote the optimal value of problem (CDC) and γ be any
feasible value, i.e. γ = dx for some x ∈ Ω \ int C. In order to check whether a
fesible value is optimal or not, we can consider also the set

D(γ) := {x ∈ Ω | dx ≤ γ}.

In fact, as an immediate consequence of the above definitions, if γ = v(CDC),
then the following equivalent inclusions hold

D(γ) ⊆ C (5)

C∗ ⊆ [D(γ)]∗. (6)

Furthermore, it has been shown (see [11, Proposition 10]) that they are not
only necessary but also sufficient optimality conditions when problem (CDC)
is regular, i.e.

min{dx | x ∈ Ω \ int C} = inf{dx | x ∈ Ω \ C}. (7)

3 Approximate Optimality Conditions

Given a feasible value γ, the optimality conditions (5) or (6) should be checked
in order to recognize whether or not γ is the optimal value (x̄ is optimal).
Unfortunately, there is no known efficient way to check the inclusion between
two convex sets. Yet, any exact algorithm for (CDC) must eventually cope with
this problem.

In order to make this crucial step more readily approachable, we consider
the following “optimization version” of the optimality conditions:

(OCγ) max{ vz − 1 | z ∈ D(γ) , v ∈ C∗ } (8)

It is trivial to show that (5) holds if and only if v(OCγ) ≤ 0, thus the above
problem provides a way for checking optimality of a given value γ (solution

3

x̄). Since the objective function of (8) is not concave, there are no known
efficient approaches for this problem as well. However, checking (5) through the
optimization problem (8) has the advantage of making it easy to define a proper
notion of approximate optimality conditions.

A first way of approximating problem (8) is to replace Ω and C by two
convex sets S and Q, respectively, satisfying

C∗ ⊆ Q, (9)

Ω ⊆ S. (10)

This is a standard step in cutting plane (outer approximation) approaches,
where S and Q are chosen to be “easier” than the original sets (e.g., polyhe-
dra with “few” vertices) and iteratively refined to become better and better
approximations of Ω and C∗ as needed. Hence, one considers the relaxation of
(8)

(OCγ) max{ vz − 1 | z ∈ S , v ∈ Q , dz ≤ γ } (11)

whose optimal value provides an upper bound on v(OCγ); thus,

v(OCγ) ≤ 0 (12)

is a convenient sufficient optimality condition for (CDC). If (12) does not hold,
then either γ is not the optimal value, or S andQ are not “good” approximations
of Ω and C∗, respectively. All the cutting plane algorithms presented in this
work follow the same basic scheme: (11) is solved, and its solution is used to
improve S or Q or γ, in such a way to guarantee convergence of γ to the optimal
value. The focus of the research is on devising a number of different ways to
achieve this result, i.e., to obtain a convergent algorithm for (CDC) out of an
“oracle” for (11). However, it is likely that in any such approach the solution
of (11) is going to be the computational bottleneck; it therefore makes sense to
consider solving (11) only approximately.

Approximately solving (11) may actually mean two different things:

1. computing a “large enough” lower bound on v(OCγ), i.e., finding a feasible
solution (x̄, w̄) “sufficiently close” to the optimal solution;

2. computing a “small enough” upper bound l ≥ v(OCγ).

Algorithmically, the two notions correspond to two entirely different classes
of approaches: lower bounds are produced by heuristics computing feasible
solutions, while upper bounds are produced by solving suitable relaxations of
(OCγ), e.g. replacing the non-concave objective function vz with a suitable
concave upper approximation. Exact algorithms combining the two can then be
used to push the lower bound and the upper bound arbitrarily close together.
However, for the sake of our approaches only one of the two bounds is needed at
any given time. In fact, v(OCγ) is either positive or non-negative. To establish

4

that the first case holds amounts at finding a feasible solution (z̄, v̄) to (11) such
that z̄v̄ − 1 > 0, while for the second case one needs an upper bound l ≤ 0.

This is the rationale behind our definition of an approximate oracle for (11).
In our development, we will assume availability of a procedure Θ which, given
S, Q, γ, and two positive tolerances ε and ε′

• either produces an upper bound

εv(OCγ) ≤ l such that l ≤ ε′ (13)

• or produces a feasible point (z̄, v̄) for (11) such that

z̄v̄ − 1 ≥ εv(OCγ). (14)

It is clear that (14) corresponds to a pretty weak requirement about the way in
which (11) is solved: only an ε-approximate solution to (11) is needed, for fixed
but arbitrary ε > 0. As for (13), it allows the lower bound to be “small enough”
but positive, rather than non-negative; this is taken as the stopping condition
of the approach, and we will show that the positive tolerance allows for finite
termination of the algorithms even when γ is optimal. The drawback is that a
feasible value γ needn’t be optimal when (13) holds; clearly, the “quality” of γ
has to be related somewhat with ε′. The remainder of this section is devoted to
the study of this relationship.

Let h be a convex function such that

C = { x ∈ Rn | h(x) ≤ 0 }. (15)

Notice that if γC is the gauge function of C, i.e.

γC(x) := inf{ λ ∈ R+ | x ∈ λC },

then the convex function h(x) = γC(x) − 1 satisfies (15).

Our analysis uses the following three “approximated” problems

(CDCδ) φ(δ) = min{ dx | x ∈ Ω , w ∈ C∗ , xw ≥ 1 + δ } (16)

(CDC′
δ) ψ(δ) = min{ dx | x ∈ Ω , w ∈ C∗

δ , xw ≥ 1 } (17)

(CDC′′
δ) ϕ(δ) = min{ dx | x ∈ Ω , h(x) ≥ δ } (18)

where δ ≥ 0 and Cδ = { x | h(x) ≤ δ }; clearly, ψ(0) = φ(0) = v(CDC), and φ,
ψ, and ϕ are nondecreasing (the feasible set of all three problems shrinks as δ
grows). For a proper choice of h, the three are equivalent.

Lemma 3.1 If h+1 is the gauge function of C, then problems (CDCδ), (CDC′
δ)

and (CDC′′
δ) are equivalent.

5

Proof : The equivalence between (CDC′
δ) and (CDC′′

δ) is trivial so we will
concentrate upon (CDCδ) and (CDC′

δ). If h + 1 is the gauge function of C,
then h+1 is the support function of C∗. For any feasible point (x,w) of (CDCδ),
xw ≥ 1 + δ; this implies that

h(x) + 1 ≥ xw ≥ 1 + δ,

thus x /∈ int Cδ is feasible to (CDC′
δ). Vice-versa, given any feasible point x of

problem (CDC′
δ) we have x /∈ int Cδ and h(x) ≥ δ, that is,

h(x) + 1 ≥ 1 + δ.

Since 0 ∈ int C, C∗ is compact and thus there exists w ∈ C∗ such that xw ≥
1 + δ. ⊡

Remark 3.1 When h + 1 is not the gauge function of C, Problems (CDCδ)
and (CDC′

δ) may not be equivalent. Thus, (CDCδ) can be viewed as a special
case of (CDC′

δ) (equivalently, (CDC′′
δ)) with h+ 1 being the gauge function of

C. The gauge function is therefore a “preferred” way of expressing C via h in
our setting.

The value δ in (CDCδ) is strongly related with our approximate optimality
conditions, as the following result shows:

Lemma 3.2 γ ≤ ψ(δ) ⇔ D(γ) ⊆ Cδ

Proof : Using [11, Proposition 8], γ ≤ ψ(δ) ⇔ D(γ) ⊆ { x | h(x) ≤ δ }. ⊡

Corollary 3.1 If h+1 is the gauge function of C, then γ ≤ φ(δ) ⇔ z(OCγ) ≤ δ

Proof : If h+ 1 is the gauge function of C, then h+ 1 is the support function
of C∗; thus, D(γ) ⊆ {x | h(x) ≤ δ} if and only if

{ (x,w) ∈ D(γ) × C∗ } ⊆ { (x,w) | xw ≤ 1 + δ } ⊡

As a consequence, when (13) holds for some γ, one has

v(OCγ) ≤ ε′/ε

and therefore γ ≤ φ(ε′/ε). Thus, our stopping condition turns out to be that
of the approximated problem (CDCδ); one is then interested in the behavior
of φ(δ) as δ → 0 (remembering that δ = ε′/ε). The first result is easy: ψ is
continuous at 0.

Proposition 3.1 ψ(δ) → ψ(0) = v(CDC) when δ → 0.

6

Proof : Given any δ1 ≥ δ2 ≥ 0, we clearly have ψ(δ1) ≥ ψ(δ2), i.e., ψ is
nonincreasing and bounded below. Let γ̄ = limδ→0 ψ(δ), we have that γ̄ ≥ ψ(0).
Assume by contradiction that γ̄ > ψ(0), by the definition of ψ we have

max{ h(z) | z ∈ D(ψ(δ)) } ≤ δ

for all δ > 0. Therefore, we get that

max{ h(z) | z ∈ D(γ̄) } ≤ 0

which contradicts ψ(0) = sup{ γ | D(γ) ⊆ C }. ⊡

Proposition 3.1 implies that φ(δ) → φ(0) = v(CDC) when δ → 0. Although
ψ(δ) and φ(δ) converges to the right value as δ → 0, the rate of convergence
may be less than linear, as the following example shows.

Example 3.1 Let

C = { (x1, x2) | (x2 − 1)2 − x1 − 2 ≤ 0 }
Ω = { (x1, x2) | x2 ≥ 0 , x1 ≥ −2 , x1 + 2x2 ≥ 0 }

and d = (0, 1). Let (x∗, w∗) be the optimal solution of (CDCδ), it is easy
to see that x∗ = −2 for all δ ≥ 0. Moreover, 1

1+δ
(x∗, w∗) ∈ ∂C, thus we

get that φ(δ) = w∗ = 1 + δ +
√

2δ(1 + δ), thus limδ→0 (φ(δ) − φ(0))/δ =

limδ→0 1 +
√

2(1 + δ)/δ = +∞.
Moreover, let h = (x2−1)2−x1−2 and (x∗, w∗) the optimal value of problem

(CDC′
δ), it is easy to see that x∗ = −2 for all δ ≥ 0. Moreover, h(x∗, w∗) =

δ, thus we have ψ(δ) = w∗ = 1 +
√
δ. Therefore, limδ→0 (ψ(δ) − ψ(0))/δ

= limδ→0

√
δ/δ = +∞.

Thus, one would be interested in conditions ensuring that the value function
φ is Lipschitz at 0.

Proposition 3.2 Let x∗ be an optimal point of problem (CDC). If there exists
a ray L = { x | x = x∗ + λu , λ > 0 } such that

L ∩ Ω 6= ∅ and h′(x∗;u) > 0, (19)

then the value function ψ is Lipschitz at 0.

Proof : For any x ∈ L ∩ Ω (which exists for the hypothesis), all the segment
[x∗, x] is included in Ω. Define x(λ) = x∗ + λu; since h is convex, h(x(λ)) ≥
h(x∗) + λh′(x∗;u) for any λ ≥ 0. For y(δ) = x(δ/h′(x∗;u)) we therefore have

h(y(δ)) ≥ h(x∗) + δ = δ

which means that y(δ) /∈ Cδ. For δ small enough, y(δ) ∈ Ω and therefore
ψ(δ) ≤ dy(δ). Hence,

ψ(δ) − ψ(0) ≤ d(y(δ) − x∗) = (δ/h′(x∗;u))du ,

7

i.e., ψ is Lipschitz at 0 with constant du/h′(x∗;u). ⊡

Proposition 3.2 provides a condition that guarantees Lipschitz behavior of
ψ; however, assumptions are required to ensure that condition (19) holds.

Definition 3.1 T (C, x) = { u ∈ Rn | ∃tn ↓ 0 , un → u s.t. x + tnun ∈ C } is
called the tangent cone of C at x.

Corollary 3.2 If there exists an optimal point x∗ such that T (Ω, x∗) * T (C, x∗),
then ψ is Lipschitz at 0.

Proof : Take any u ∈ T (Ω, x∗) \ T (C, x∗); since T (C, x∗) = { u ∈ Rn |
h′(x∗;u) ≤ 0 }, then h′(x∗;u) > 0. As u ∈ T (Ω, x∗), there exist tn ↓ 0 and
un → u such that x + tnun ∈ Ω. By continuity of h′(x∗; ·), h′(x∗;un) > 0 for
large enough n. Thus, un provides the ray L required by Proposition 3.2. ⊡

The following result provides an alternative form of the sufficient condition
(19), which may be taken as a definition of a strong regularity condition which
ensures Lipschitz behavior of φ.

Proposition 3.3 Let h + 1 be the gauge function of C and x∗ be an optimal
solution of problem (CDC), then there exists a ray L satisfying condition (19)
if and only if ∂h(x∗) \ ∂Ω∗ 6= ∅.

Proof : Assume W = ∂h(x∗) \ ∂Ω∗ 6= ∅; there exists w ∈ W such that w /∈ Ω∗.
Therefore, there exists x ∈ Ω such that wx > 1. Let u = x−x∗

‖x−x∗‖ : we have

L ∩ Ω 6= ∅ and h′(x∗;u) ≥ wu > 0 [30, Theorem 23.2].
Vice-versa, assume there exists a ray L satisfying condition (19). Since

h′(x∗;u) = max{ uw | w ∈ ∂h(x∗) } [30, Theorem 23.4], then there exists
a point w ∈ ∂h(x∗) such that wu > 0. Take λ > 0 small enough so that
x∗ + λu ∈ Ω; then w(x∗ + λu) > 1, which implies that w /∈ Ω∗. ⊡

The final result is that bounded polyhedra satisfy the strong regularity con-
dition.

Lemma 3.3 If C is a bounded polyhedron and the regularity condition holds,
then ψ is Lipschitz at 0.

Proof : By assumption, C is a full-dimensional polyhedron, thus all of its facets
are (n − 1)-dimensional polyhedral sets and there exists a unique hyperplane
containing each facet.

For any facet F of C, let HF = {x | tx} be the unique hyperplane containing
F and KF be the cone generated by F . Moreover, let H−

F = {x | tx ≤ 1} and
H+

F = {x | tx ≥ 1}. Given any point x ∈ KF , there exists y ∈ F such that
x = µy where µ ≥ 0. Then we have x ∈ C if and only if µ ≤ 1, which is exactly
x ∈ H−

F . Therefore, C ∩KF = H−
F ∩KF .

Lemmas A.1 and A.2 implies that there exists an optimal point x∗ ∈ ∂(Ω\C)
and a sequence {xi} in Ω \C such that xi → x∗. Let S be the set of facets of C
that contain x∗, we have x∗ ∈ int

⋃

F∈S KF follows by 0 ∈ int C. Therefore,

8

there exists I > 0 such that xi ∈ ⋃

F∈S KF for all i ≥ I. Thus there exists a

facet F̂ ∈ S such that xI ∈ K
F̂
. Since xI /∈ C, we get that xI /∈ H−

F̂
. The fact

that x∗ ∈ K
F̂
∩H

F̂
and xI ∈ K

F̂
∩ int H+

F̂
implies that (x∗, xI] ⊆ K

F̂
∩ int H+

F̂
.

Therefore, by C ∩K
F̂

= H−
F̂
∩K

F̂
we have (x∗, xI] ∩ C = ∅.

Let ū = xI−x∗

‖xI−x∗‖ and F̂ = {x | t̂x = 1}, we get that t̂ū > 0. Since t̂x ≤ 1 for

all x ∈ C, we have ū /∈ T (C, x∗); the thesis then follows by Corollary 3.2. ⊡

4 Conditions and Algorithms

In this section we present several algorithms which, given an approximated ora-
cle Θ, (approximately) solve the problem (CDC). In the presentation, we first
establish a hierarchy of abstract conditions ensuring convergence, and then for
each we propose actual implementatable procedures which realize the abstract
conditions.

All these algorithms follow the generic cutting plane scheme sketched in
the previous paragraph. More in details, a non decreasing sequence of feasible
values {γk} is produced, and for each γk the oracle Θ is called, thereby producing
either a value lk such that condition (13) holds, or points zk and vk satisfying
conditions

(zk, vk) ∈ S ×Q , dzk + evk ≤ γk (20)

and (14). By repeatedly calling the oracle, if necessary, we can construct a
procedure which either proves that γk satisfies condition (13), or produces a
better feasible value γk+1 < γk. In the latter case, the algorithms produces
points xk and wk such that

xk ∈ C , wk ∈ C∗ , xkwk = 1 (21)

and γk+1 = dxk.

By condition (3), we get that all optimal solutions (x,w) should satisfy

xw = 1, otherwise there exists another point (x̄, w̄) = (x,w)√
xw

satisfying dx̄ < dx

and x̄w̄ = 1. Moreover, by optimality condition (5) we know that all the
optimal solutions (x,w) satisfy (x,w) ∈ C ×C∗. Relying on these observations,
the sequence of points {(xk, wk)} is produced to satisfy condition (21).

Given any point (x,w), there are two ways to compute the objective value.
Let

φ(x) =

{

dx if x ∈ Ω,
+∞ else.

(22)

and
ϕ(w) = min{φ(x) | xw ≥ 1}. (23)

The objective function of a point (x,w) is given by γ = φ(x). Note that ϕ(w) ≤
φ(x) for all (x,w) satisfying condition (21), we can also choose γ = ϕ(w). In this
case, if γ is optimal, then the optimal solution is (x̄, w) where x̄ ∈ argmin {dx |
x ∈ Ω, xw ≥ 1}.

9

The basic idea of our algorithms is the following. Choose a point (x0, w0)
satisfying condition (21). Set k = 1, then the incumbent value γk is given by
γk = ϕ(wk−1). If γk satisfies condition (8), then γk is the optimal value and wk−1

is an optimal solution; otherwise, find a point wk ∈ C∗ such that ϕ(wk) < γk

and then iterate. Under suitable assumptions, the sequence of points {wk}
converges to an optimal solution.

Algorithm 1 Prototype Algorithm

0. Let w0 be the best available feasible solution, γ1 = ϕ(w0).
(If no feasible solution is available, then set γ1 = +∞). k = 1.
1. If optimality condition (5) holds, then γk is the optimal value and stop;
2. Otherwise, select a feasible point wk ∈ C∗ such that ϕ(wk) < γk, set γk+1 =
ϕ(wk).
3. k = k + 1, goto 1.

An important feature for the convergence of Algorithm 1 is that {γk} is a
decreasing sequence and bounded below:

0 ≤ γ∞ < · · · < γk < γk−1 < · · · < γ1,

where γ∞ = limk→∞ γk. Therefore, {D(γk)} is a “non-increasing sequence”,
i.e.,

D(γ∞) ⊆ · · · ⊆ D(γk+1) ⊆ D(γk) ⊆ · · · ⊆ D(γ1).

Algorithm 1 is too general to deduce any meaningful property. At least two
important points are still unsaid:

Question 4.1 How to check optimality condition (5)?

Question 4.2 How to select (xk, wk) such that ϕ(wk) < γk once you know
that condition (5) is not fulfilled?

Note that Question 4.1 and Question 4.2 are closely related to each other,
i.e., if we can find a feasible point wk such that ϕ(wk) < γk in Question 4.2, then
Question 4.1 is answered at the same time. We start by answering Question 4.2.
Assume that we have any constructive procedure that answers Question 4.1 by
eventually producing a point zk ∈ D(γk) \ C, then there exists wk ∈ C∗ such
that wkzk > 1. Then we have

ϕ(wk) < dzk ≤ γk.

So the question is: does this method provide a convergent algorithm? the answer
is no.

Example 4.1 Let d = (0, 1) and e = (0, 0); Ω = {(x1, x2) | −1.8 ≤ x1 ≤
1.96, x2 ≥ 0}, C = {(x1, x2) | x2

1 + x2
2 ≤ 4}. Therefore, C∗ = {(x1, x2) |

x2
1 + x2

2 ≤ 1/4}.

10

In this problem, we can find a sequence of points {(zk, vk)} and {(xk, wk)}
converging to a non-optimal point (x,w) where x = (−1.8, 0.87) and w =
1
4 (−1.8, 0.87). However, the optimal point is (x̄, w̄) where x̄ = (−1.96, 0.4)
and w̄ = 1

4 (−1.96, 0.4).

Example 4.1 shows that if there is no further restriction for the way to select
{(zk, vk)} and {(xk, wk)}, Algorithm 1 may not converge to an optimal solution.
We aim at providing general and weak assumptions under which convergence
can be proved. We propose the following conditions:

lim inf vkzk ≤ 1, (24)

vkzk − 1 ≥ εmax{vz − 1 | (z, v) ∈ D(γk) × C∗}, (25)

where ε ∈ (0, 1).

Proposition 4.1 If conditions (24) and (25) hold, then the sequence of feasible
values {γk} converges to the optimal value.

Proof : Since the sequence {γk} is non-increasing and has a lower bound, then
there exists a limit γ̄ of {γk}. Let γ̂ be the optimal value of problem (CDC),
we get that γ̂ is not greater than γk for all k, which implies that γ̂ ≤ γ̄ and thus
γ̄ is a feasible value.

Since γ̄ ≤ γk for all k, then condition (25) implies that

vkzk − 1 ≥ εmax{vz − 1 | (z, v) ∈ D(γ̄) × C∗}

for all k. It follows from condition (24) that

max{vz − 1 | (z, v) ∈ D(γ̄) × C∗} ≤ 0,

which means that the feasible value γ̄ is optimal. ⊡

Conditions (24) and (25) provide a weak and general assumptions under
which the sequence of feasible values {γk} converges to the optimal value. Note
that condition (24) is difficult to check. In the following paragraphs, we aim to
construct sequences of points {(zk, vk)} satisfying condition (24).

Let {σk
1}, {σk

2}, {σk
3} and {σk

4} be four positive sequences such that σk
1 → 0,

σk
2 → 0, σk

3 → 0 and σk
4 → 0. The following conditions are proposed.

vkzk ≤ vkxk + σk
1 , (26)

vkxk ≤ 1 + σk
2 . (27)

vkzk ≤ zkwk + σk
3 , (28)

zkwk ≤ 1 + σk
4 . (29)

Lemma 4.1 If conditions (26) and (27) ((28) and (29)) hold, then condition
(24) holds.

11

Proof : By conditions (26) and (27), we get that vkzk ≤ 1 + σk
1 + σk

2 . ⊡

Remark 4.1 Let A be the set of conditions (24) and (25); B1 the set of con-
ditions (25), (26) and (27); and B2 the set of conditions (25), (28) and (29).
Lemma 4.1 shows that A is implied by both B1 and B2. Therefore, both B1

and B2 guarantee that a sequence of feasible values converges to the optimal
value. In the following sections, we give some sub-procedures to produce points
satisfying B1 or B2.

4.1 Algorithms Exploiting Conditions B1

In order that condition (26) holds, we propose the following condition.

zk = µk
1x

k, (30)

where µk
1 > 0.

Lemma 4.2 Suppose that {vkxk} is bounded. If conditions (29) and (30) hold,
then condition (26) holds.

Proof By conditions (29) and (30), we get that µk
1 ≤ 1 + σk

3 for all k, thus
lim supµk

1 ≤ 1. Therefore, when {vkxk} is bounded we have

lim sup vk(zk − xk) = lim sup vkxk(µk
1 − 1) ≤ 0.

⊡

There are many ways to get conditions (29) and (30). In many existing
algorithms, d is used to get these conditions. The following conditions are
proposed.

dzk ≤ dxk−1, (31)

xk ∈ (0, zk) ∩ Ω ∩ ∂C. (32)

Condition (32) implies that the sequence of points {xk} is feasible and con-
dition (30) holds. Furthermore, we have µk

1 > 1 in condition (30).

Lemma 4.3 Suppose that the optimal value of problem (4) is positive. If con-
ditions (31) and (32) hold, then condition (29) holds.

Proof : Condition (32) implies that xk is feasible, then we have dxk > 0.
Therefore, dzk > dxk for all k since µk

1 > 1. Conditions (31) and (32) imply
dxk−1 ≥ dzk > dxk. By this inequality, it follows that

dxk−1 − dxk ≥ dzk − dxk > 0.

Let γ∗ be the optimal value, we get that

dxh = dx0 −
h

∑

k=1

(dxk−1 − dxk) ≥ γ∗.

12

This means that

dx0 − γ∗ ≥
h

∑

k=1

(dxk−1 − dxk) ≥
h

∑

k=1

(dzk − dxk).

Taking the limits as h → +∞, we get limh→∞
∑h

k=1(dz
k − dxk) ≤ dx0 − γ∗.

It follows from the fact dzk − dxk is non-negative that dzk − dxk ↓ 0 and thus
(µk

1 − 1)dxk ↓ 0, which implies that limk→∞ µk
1 = 1 since limk→∞ dxk ≥ γ∗ > 0.

Therefore,
lim sup zkwk = lim supµk

1x
kwk = lim supµk

1 ≤ 1.

⊡

Lemma 4.3 implies that conditions (29) and (30) are implied by conditions
(31) and (32), thus condition (26) is also implied by (31) and (32) when {vkxk}
is bounded. Therefore, B1 are implied by conditions (25), (27), (31) and (32).

Let C1 be the set of conditions (25), (27), (31) and (32), C1 guarantees that
a sequence of feasible values {γk} converges to the optimal value. Before giving
a sub-procedure to produce points satisfying these conditions, we introduce a
theorem about the outer approximation method.

Theorem 4.1 [11, Proposition 17] Let Ω be a convex set in Rn such that Ω =
{x : g̃(x) ≤ 0}, g̃ is a convex function. Assume that 0 ∈ int Ω and let Sk,
k = 1, 2, . . . be a sequence of polyhedrons satisfying

1) zk ∈ Sk \ Ω;
2) Sk+1 = Sk ∩ {x | pk, x − yk + αk ≤ 0}, where yk ∈ [0, zk) \ int Ω,

0 ≤ αk ≤ g̃(yk), pk ∈ ∂g̃(yk) and αk − g̃(yk) → 0.
Then any cluster point z̄ of the sequence {zk} belongs to ∂Ω.

Theorem 4.1 gives an outer approximation method and proves that all the
cluster points of of this method belong to Ω. Replying on the method provided
by this theorem, we get Sub-procedure 4.1.

Subprocedure 4.1

1. Ω is a closed convex set such that Ω = {g(x) ≤ 0} and 0 ∈ int Ω, S ⊇ Ω
is a closed convex set.

2. Given a point x ∈ S \Ω, select a point y ∈ (0, x)∩ ∂Ω and a sub-gradient
p ∈ ∂g(y). Set S = S ∩ {x | p(x− y) + g(y) ≤ 0}

It is obvious that Sub-procedure 4.1 is a simplified form of the method
provided by Theorem 4.1. Although the proof of Theorem 4.1 has shown that
Sub-procedure 4.1 cut off x from Ω without cutting any point from Ω, we can
still use a more simple way to explain it.

Remark 4.2 Let H = {z | p(z−y)+g(y) = 0} and H+ = {z | p(z−y)+g(y) ≥
0}. Note that for any point z ∈ Ω, we have

p(z − y) + g(y) ≤ g(z) ≤ 0

13

Therefore, no point in Ω is cut away form S. In fact, it follows from the definition
of the hyperplane H that it is a tangent hyperplane of Ω at y and 0 ∈ int H−

since 0 ∈ int Ω.
Consider the point x ∈ S \ Ω in Sub-procedure 4.1, it is easy to see that

x and Ω are separated by H strictly: Assume by contradiction that x ∈ H−,
then z ∈ int H− for all z ∈ (0, x) [30, Theorem 6.1], this contradicts the fact
that y ∈ (0, x) and y ∈ H .

Remark 4.2 shows that Sub-procedure 4.1 constructs a hyperplane separating
Ω and x strictly. x is removed from S and Ω is still included in S. Note that
the condition 0 ∈ int Ω is required, otherwise Sub-procedure 4.1 may not be
able to construct a hyperplane separating Ω and x strictly [Example 4.2].

Example 4.2 Let Ω ⊆ R2 such that Ω = {(u, v)|(u + 1)2 + v2 ≤ 1}, S =
{(u, v)| − 1 ≤ u ≤ 1,−1 ≤ v ≤ 1} and x = (1, 0).

Apply Sub-procedure 4.1 to Ω and x, we get that y = (0, 0) and the sep-
arating hyperplane is {(u, v)|u = 0}. It’s easy to see that x still belongs to
S = S ∩ {(u, v)|u ≤ 0}, i,e, Sub-procedure 4.1 can not remove x from S.⊡

Let’s give a sub-procedure that finds points satisfying conditions B1.

Subprocedure 4.2 a) Let S and Q be the closed convex sets satisfying condi-
tions (10) and (9), respectively. Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying condition (13).
If li ≤ ε′, then l′ = li and stop.
c) Use the oracle Θ to select (zi, vi) satisfying (20) and (14), choose (xi, wi) ∈
∂C × ∂C∗ such that zi = µi

1x
i and xiwi = 1, where µi

1 > 0.
If zi /∈ Ω, then use Sub-procedure 4.1 with Si and zi to get a convex set Si+1;
else, Si+1 = Si.
If vi /∈ C∗, then use Sub-procedure 4.1 with Qi and vi to get a convex set Qi+1;
else, Qi+1 = Qi.
If xi ∈ Ω and xivi ≤ 1 + σ, then x′ = xi, w′ = wi, l′ = li, z′ = zi, v′ = vi,
Q′ = Qi+1 and S′ = Si+1, stop;
d) Else, set i = i+ 1, return to b).

Remark 4.3 In Sub-procedure 4.2, ε is the parameter defined in condition
(25). Since ε ∈ (0, 1), we can always find a value li satisfying condition (13).
ε′ and σ are two small enough positive values such that σ < ε′. In this case,
we have v′z′ > v′x′, which implies that µ′

1 > 1 and thus z′ /∈ C. Therefore,
x′ ∈ (0, z′) ∩ ∂C.

Remark 4.4 In Sub-procedure 4.2, it follows from conditions (10) and (9) that
Ω and C∗ are included in S1 and Q1, respectively. As it has been shown in
Remark 4.2, Sub-procedure 4.1 constructs a hyperplane separating zi and Ω
strictly. By using this hyperplane, Sub-procedure 4.1 cuts off zi from Si without
removing any point in Ω, thus we get a “non-increasing” sequence {Si}:

Ω ⊆ · · · ⊆ Si ⊆ Si−1 ⊆ · · · ⊆ S1. (33)

14

In the same way, we have

C∗ ⊆ · · · ⊆ Qi ⊆ Qi−1 ⊆ · · · ⊆ Q1. (34)

When we start Sub-procedure 4.2 with a feasible value γ, we hope that Sub-
procedure 4.2 can produce a better feasible value or prove that γ is optimal.
Let’s consider the case that γ is not optimal.

Proposition 4.2 Suppose the set S and Q are bounded. If D(γ) * C, then
Sub-procedure 4.2 ends in a finite number of steps and it either reports l′ such
that l′ ≤ ε′ or reports (z′, v′) and (x′, w′) satisfying conditions (25), (27), (31)
and (32).

Proof : Assume by contradiction that Sub-procedure 4.2 never ends. Sub-
procedure 4.2 generates two sequences of points {(zi, vi)} and {(xi, wi)}. (zi, vi)
is contained in Si ×Qi for all i. As it has been shown in (33) and (34), Si ⊆ S
and Qi ⊆ Q for all i, thus the sequence {(zi, vi)} is bounded since S × Q is
bounded. Theorem 4.1 guarantees that all the cluster points of {(zi, vi)} are
in Ω × C∗. Moreover, dzi ≤ γ for all i, we get that all the cluster points of
{(zi, vi)} are in D(γ) × C∗.

If there exists a cluster point of {(zi, vi)} in C×C∗, then we have lim inf vizi ≤
1 and thus there exists lI such that lI < ε′, a contradiction. In this case Sub-
procedure 4.2 ends and outputs l′ = lI .

Let’s consider the case that all the cluster points of {zi} are not in C.
Theorem 4.1 guarantees that all the cluster points of {(zi, vi)} are in Ω × C∗,
thus lim sup vixi ≤ 1 since xi ∈ C for all i. Therefore, there are only a finite
number of i such that vixi > 1 + σ.

Let z̄ be any cluster point of {zi}, we have z̄ ∈ Ω \ C, thus there exists
x̄ ∈ (0, z̄) such that x̄ is a cluster point of {xi}. The fact that 0 ∈ int Ω and
z̄ ∈ Ω implies that x̄ ∈ int Ω. Therefore, there exists I > 0 such that xi ∈ Ω
for all i ≥ I, a contradiction.

In this case, Sub-procedure 4.2 ends. Conditions (13), (14), (33), and (34)
imply that condition (25) holds. The stopping criteria v′x′ ≤ 1+σ implies that
condition (27) holds. (31) is implied by condition (20) when γ = γk. As it has
been shown in Remark 4.3, x′ ∈ (0, z′) ∩ ∂C, thus condition (32) holds since
x′ ∈ Ω. ⊡

Proposition 4.2 shows that Sub-procedure 4.2 can produce a better feasible
value or prove that γ is an approximate optimal value in a finite number of
steps. Then let’s consider the case that γ is optimal.

Proposition 4.3 Suppose the set S and Q are bounded. Given any ε′ > 0, if
D(γ) ⊆ C, then Sub-procedure 4.2 ends in a finite number of steps and reports
l′ such that l′ ≤ ε′.

Proof : Assume by contradiction that Sub-procedure 4.2 never ends. As it
has been shown in the proof of Proposition 4.2, Sub-procedure 4.2 generates

15

a bounded sequence of points {(zi, vi)}. Theorem 4.1 guarantees that all the
cluster points of {(zi, vi)} are in Ω×C∗. Moreover, dzi ≤ γ implies that all the
cluster points of {(zi, vi)} are in D(γ)×C∗. Since D(γ) ⊆ C, then we get that
all the cluster points of {(zi, vi)} are in C ×C∗. Then we have lim inf vizi ≤ 1,
which implies that there exists I > 0 such that lI < ε′, a contradiction. Sub-
procedure 4.2 ends and outputs l′ = lI . ⊡

Remark 4.5 When γ is optimal and ε′ = 0, it is obvious that Sub-procedure
4.2 can not find a better feasible value. Sub-procedure 4.2 may never stop since
we can only get that lim sup li ≤ 0, which doesn’t guarantee that there exists
an I such that lI ≤ 0. If li > 0 for all i, then Sub-procedure 4.2 never stops.
Therefore, Sub-procedure 4.2 can not prove that the optimal value is optimal.
We will consider the relationship between approximated optimal values and the
optimal value later.

C1 is not the only set of conditions implying B1. Let’s show that condition
(27) is implied by condition

vkxi ≤ 1 for all i < k. (35)

Lemma 4.4 Suppose that {vk} and {xk} are bounded. If condition (35) holds,
then condition (27) holds.

Proof : By taking subsequences if necessary, let vk → v̄ and xk → x̄. Since
vkxi ≤ 1 for all i < k, we get that v̄xi ≤ 1 for all i and thus v̄x̄ ≤ 1. ⊡

Let C2 be the set of conditions (25), (31), (32) and (35), then C2 also guar-
antees that a sequence of feasible values {γk} converges to the optimal value.
Let’s show how to construct a sub-procedure to obtain points satisfying the set
of conditions C2.

Subprocedure 4.3 a) Let S and Q be the closed convex sets satisfying condi-
tions (10) and (9).
Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying condition (13), if li ≤ ε′, then l′ = li

and stop;
c) Use the oracle Θ to choose (zi, vi) satisfying (14) and (20), choose (xi, wi) ∈
∂C × ∂C∗ such that zi = µi

1x
i and xiwi = 1, where µi

1 > 0.
Set Qi+1 = Qi ∩ {v | vxi ≤ 1}.
If zi /∈ Ω, use Sub-procedure 4.1 with Si and zi to get a convex set Si+1, else,
Si+1 = Si.
d) If xi ∈ Ω and zi /∈ C, then x′ = xi, z′ = zi, v′ = vi, w′ = wi, l′ = li,
Q′ = Qi+1 and S′ = Si+1, stop;
Else, set i = i+ 1, return to b).

Remark 4.6 In Sub-procedure 4.3, ε′ is a small enough positive value. Let g̃
be the gauge function of C∗, then g̃ is also the support function of C∗∗ = C

16

[30, Theorem 14.5]. This implies that C∗ = {v | g̃(v) − 1 ≤ 0} and g̃(v) =
max{vx | x ∈ C}. Note that xi ∈ ∂C and xiwi = 1, then we have g̃(wi) = wixi.
Therefore, xi ∈ ∂(g̃(wi)− 1). Given any sequence {vi} such that vi /∈ C∗ for all
i, Qi+1 = Qi ∩ {v | vxi ≤ 1} satisfies conditions 1) and 2) in Theorem 4.1. As
it has been shown in Remark 4.4, the sequence of sets {Qi} satisfies condition
(34).

Proposition 4.4 Suppose the set S and Q are bounded. If D(γ) * C, then
Sub-procedure 4.3 ends in a finite number of steps and it either reports l′ such
that l′ ≤ ε′ or reports (z′, v′) and (x′, w′) satisfying conditions (25), (31) and
(32).

Proof : Assume by contradiction that Sub-procedure 4.3 never ends. Sub-
procedure 4.3 generates two sequences of points {(zi, vi)} and {(xi, wi)}. (zi, vi)
is contained in Si ×Qi for all i. As it has been shown in (33) and (34), Si ⊆ S
and Qi ⊆ Q for all i, thus the sequence {(zi, vi)} is bounded since S × Q is
bounded. Theorem 4.1 guarantees that all the cluster points of {(zi, vi)} are
in Ω × C∗. Moreover, dzi ≤ γ for all i, we get that all the cluster points of
{(zi, vi)} are in D(γ) × C∗.

If there exists a cluster point of {(zi, vi)} in C×C∗, then we have lim inf vizi ≤
1 and thus there exists lI such that lI < ε′, a contradiction. In this case Sub-
procedure 4.3 ends and outputs l′ = lI .

Let’s consider the case that all the cluster points of {zi} are not in C, then
there are only a finite number of zi ∈ C. Let z̄ be any cluster point of {zi},
we have z̄ ∈ Ω \ C, thus there exists x̄ ∈ (0, z̄) such that x̄ is a cluster point of
{xi}. The fact that 0 ∈ int Ω and z̄ ∈ Ω implies that x̄ ∈ int Ω. Therefore,
there exists I > 0 such that xi ∈ Ω for all i ≥ I, a contradiction.

In this case, Sub-procedure 4.3 ends. Conditions (13), (14), (33), and (34)
imply that condition (25) holds. x′ ∈ Ω and z′ /∈ C imply that condition (32)
holds. (31) is implied by condition (20) when γ = γk. ⊡

As it has been shown in the proof of Proposition 4.3, when D(γ) ⊆ C,
Theorem 4.1 guarantees that all the cluster points of {(zi, vi)} in D(γ)×C∗ ⊆
C × C∗. Thus Sub-procedure 4.3 always ends in a finite number of steps since
lim sup vizi ≤ 0.

We aim to find points satisfying conditions C2, however, Proposition 4.4
can only guarantee that the produced points satisfy conditions (25), (31) and
(32). Obviously this result is not enough, in order to check whether condition
(35) holds or not, we should consider the relationship between points generated
by Sub-procedure 4.3 with different sets of Sk, γk and Qk. When we start
Sub-procedure 4.3 with γk and Qk, we assume that Qk satisfy the following
condition

Qk ⊆
⋂

i=1,...,k−1

{v | vxi ≤ 1}. (36)

It is trivial to show that any point of {vi} generated by Sub-procedure 4.3 with
Qk satisfies condition (35).

17

Lemma 4.4 states that condition (27) is implied by condition (35) when {vk}
and {xk} are bounded. In the same way, we can prove that condition (29) is
implied by

zkwi ≤ 1 for all i < k, (37)

when {zk} and {wk} are bounded.
Let C3 be the set of conditions (25), (27), (30), and (37), then C3 also

guarantees that a sequence of feasible values {γk} converges to the optimal
value. Let’s show how to construct a sub-procedure to obtain points satisfying
conditions C3.

Subprocedure 4.4 Let S and Q be the closed convex sets satisfying conditions
(10) and (9).
Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying (13);
If li ≤ ε′, then l′ = li and stop.
c) Use the oracle Θ to select (zi, vi) satisfying (14) and (20), choose (xi, wi) ∈
∂C × ∂C∗ such that zi = µi

1x
i and xiwi = 1, where µi

1 > 0.
Use Sub-procedure 4.1 with Si and zi to get a new set Si+1; Set Qi+1 = Qi∩{v |
vxi ≤ 1}.
If min{dx | x ∈ Ω, xwi ≥ 1} ≥ γ and vikxi ≥ 1 + σ, then goto d).
Else, set x′ = xi, w′ = wi, z′ = zi, v′ = vi, l′ = li, Q′ = Qi+1 and S′ =
Si+1 ∩ {z | zwi ≤ 1}, stop.
d) Set i = i+ 1, return to b).

Remark 4.7 When we start Sub-procedure 4.4 with γk, Qk and Sk, we aim
to find points satisfying condition (37). As it has been shown in Sub-procedure
4.3, we need only make sure that Sk satisfies condition

Sk ⊆
⋂

i=1,...,k−1

{z | zwi ≤ 1}. (38)

Remark 4.8 Let C4 be the set of conditions (25), (30), (35) and (37), since
condition (35) implies condition (27) when {vk} and {xk} are bounded, C4

guarantees that a sequence of feasible values {γk} converges to the optimal
value. In order that condition (35) holds for points produced by Sub-procedure
4.4, we need only make sure that Qk satisfies condition (36). Moreover, the
stopping criteria vkxk ≥ 1 + σ is not needed.

Proposition 4.5 Suppose the set S and Q are bounded. If D(γ) * C, then
Sub-procedure 4.4 ends in a finite number of steps and it either reports l′ such
that l′ ≤ ε′ or reports (z′, v′) and (x′, w′) satisfying conditions (25) and (30).

Proof : Assume by contradiction that Sub-procedure 4.4 never ends. Sub-
procedure 4.4 generates two sequences of points {(zi, vi)} and {(xi, wi)}. (zi, vi)
is contained in Si ×Qi for all i. As it has been shown in (33) and (34), Si ⊆ S

18

and Qi ⊆ Q for all i, thus the sequence {(zi, vi)} is bounded since S × Q is
bounded. Theorem 4.1 guarantees that all the cluster points of {(zi, vi)} are
in Ω × C∗. Moreover, dzi ≤ γ for all i, we get that all the cluster points of
{(zi, vi)} are in D(γ) × C∗. Therefore, there are only finite number of i such
that vixi ≥ 1 + σ for any σ > 0.

If there exists a cluster point of {(zi, vi)} in C×C∗, then we have lim inf vizi ≤
1 and thus there exists lI such that lI < ε′, a contradiction. In this case Sub-
procedure 4.4 ends and outputs l′ = lI .

Let’s consider the case that all the cluster points of {zi} are not in C, then
there are only a finite number of zi ∈ C. Let z̄ be any cluster point of {zi},
we have z̄ ∈ Ω \ C, thus there exists x̄ ∈ (0, z̄) such that x̄ is a cluster point of
{xi}. The fact that 0 ∈ int Ω and z̄ ∈ Ω implies that x̄ ∈ int Ω. Therefore,
there exists I > 0 such that xi ∈ Ω for all i ≥ I, which implies that

ϕ(wi) ≤ dxi < dzi ≤ γ

for all i ≥ I, a contradiction.
In this case, Sub-procedure 4.4 ends. Conditions (13), (14), (33), and (34)

imply that condition (25) holds. That zi = µi
1x

i for all i implies that condition
(30) holds. ⊡

As it has been shown in the proof of Proposition 4.3, when D(γ) ⊆ C,
Theorem 4.1 guarantees that all the cluster points of {(zi, vi)} in D(γ)×C∗ ⊆
C × C∗. Thus Sub-procedure 4.4 always ends in a finite number of steps since
lim sup vizi ≤ 0.

By now we have given three working sub-procedures for conditions C1, C2,
C3 and C4, respectively. We also show that B1 is implied by C1. When the
sequence of points {(zk, vk)} and {(xk, wk)} are bounded, C2, C3 and C4 imply
B1, too.

4.2 Algorithms Exploiting Conditions B2

In order that condition (28) holds, we propose the following conditions.

vk = µk
2w

k, (39)

where µk
2 > 0 for all k.

Lemma 4.5 Suppose that {zkwk} is bounded. If conditions conditions (27) and
(39) hold, then condition (28) holds.

Proof By conditions (27) and (39), we get that µk
2 ≤ 1 + σk

2 for all k, thus
lim supµk

2 ≤ 1. Therefore,

lim sup zk(vk − wk) = lim sup zkwk(µk
2 − 1) ≤ 0.

⊡

19

Let D1 be the set of conditions (25), (27), (37) and (39), then D1 implies B2

when the sequence of points {(zk, vk)} and {(xk, wk)} are bounded. Note that
condition (39) is “symmetric” to condition (30), we view D1 as the “symmetric
version” of C3.

Remark 4.9 In order to give the “symmetric conditions” of C1 and C2, we
should find “symmetric conditions” of (31) and (32). Let’s replace Ω, C, d, zk

and xk by C∗, Ω∗, e, vk and wk in (31) and (32), respectively. Then we have
the following conditions.

evk ≤ ewk−1, (40)

wk ∈ (0, vk) ∩ C∗ ∩ ∂Ω∗ (41)

However, e always equals 0 in Problem (CDC), thus (31) is trivial. Moreover,
condition (32) implies that there exists at least one optimal solution w in the
set C∗ ∩ ∂Ω∗, which is contradicted by Example 4.3.

Example 4.3 Let d = 1 and e = 0, Ω = C∗ = [− 1
2 , 4]. Then the optimal point

is (x,w) = (− 1
4 , 4) where w /∈ C∗ ∩ ∂Ω∗.

Let’s construct a sub-procedure to obtain points satisfying conditions D1.

Subprocedure 4.5 Let S and Q be the closed convex sets satisfying conditions
(10) and (9).
Let S1 = S and Q1 = Q. Set i = 1.
b) Use the oracle Θ to select li satisfying (13);
If li ≤ ε′, then l′ = li and stop.
c) Use the oracle Θ to select (zi, vi) satisfying (20) and (14), choose (xi, wi) ∈
∂C × ∂C∗ such that vi = µi

2w
i and xiwi = 1, where µi

2 > 0.
Use Sub-procedure 4.1 with Si and zi to get a new set Si+1; Set Qi+1 = Qi∩{v |
vxi ≤ 1}.
If min{dx | x ∈ Ω, xwi ≥ 1} ≥ γ and vixi ≥ 1 + σ, then goto d).
Else, set x′ = xi, w′ = wi, z′ = zi, v′ = vi, Q′ = Qi+1 and S′ = Si+1 ∩ {z |
zwi ≤ 1}, stop.
d) Set i = i+ 1, return to b).

Remark 4.10 As it has been shown in Remark 4.7, when we start Sub-procedure
4.5 with γk, Qk and Sk, we aim to find points satisfying condition (37). All we
need to do is to make sure that Sk satisfies condition (38).

Remark 4.11 Let D2 be the set of conditions (25), (35), (37) and (39). When
{(zk, vk)} and {(xk, wk)} are bounded, D2 implies B2 and thus D2 guaran-
tees the convergence of a sequence of feasible values {γk}. As it has been
shown in Remark 4.8, in order that condition (35) holds for points produced
by Sub-procedure 4.5, we need only make sure that Qk satisfies condition (36).
Moreover, the stopping criteria vkxk ≥ 1 + σ is not needed.

20

Proposition 4.6 Suppose the sets S and Q are bounded. If D(γ) * C, then
Sub-procedure 4.5 ends in a finite number of steps and it either reports l′ such
that l′ ≤ ε′ or reports (z′, v′) and (x′, w′) satisfying conditions (25) and (39).

Proof : Assume by contradiction that Sub-procedure 4.5 never ends. Sub-
procedure 4.5 generates two sequences of points {(zi, vi)} and {(xi, wi)}. (zi, vi)
is contained in Si ×Qi for all i. As it has been shown in (33) and (34), Si ⊆ S
and Qi ⊆ Q for all i, thus the sequence {(zi, vi)} is bounded since S × Q is
bounded. Theorem 4.1 guarantees that all the cluster points of {(zi, vi)} are
in Ω × C∗. Moreover, dzi ≤ γ for all i, we get that all the cluster points of
{(zi, vi)} are in D(γ) × C∗. Therefore, there are only a finite number of i such
that vixi ≥ 1 + σ for any σ > 0.

Since wi ∈ ∂C∗ for all i, we get that lim supµi
2 ≤ 1, which implies that

lim inf zi(wi − vi) ≥ 0. Therefore, there exists I > 0 such that ziwi − 1 ≥ ε′

2

for all i ≥ I since vizi − 1 ≥ ε′ for all i. Hence we have ϕ(wi) ≤ φ(zi

1+ ε′

2

) for all

i ≥ I.
Let z̄ be any cluster point of {zi}, then z̄

1+ ε′

2

∈ int Ω since 0 ∈ int Ω and

z̄ ∈ Ω. Thus there exists I2 > 0 such that zi

1+ ε′

2

∈ Ω for all i ≥ I2. Therefore,

ϕ(wi) ≤ d
zi

1 + ε′

2

< dzi ≤ γ

for all i ≥ max{I, I2}, a contradiction.
In this case, Sub-procedure 4.5 ends. Conditions (13), (14), (33), and (34)

imply that condition (25) holds. That vi = µi
2w

i for all i implies that condition
(39) holds. ⊡

As it has been shown in the proof of Proposition 4.3, when D(γ) ⊆ C,
Theorem 4.1 guarantees that all the cluster points of {(zi, vi)} in D(γ)×C∗ ⊆
C × C∗. Thus Sub-procedure 4.5 always ends in a finite number of steps since
lim sup vizi ≤ 0.

5 Comparison with Existing Algorithms

In these two decades, different algorithms have been proposed for solving
the canonical DC Programming problem and related problems, i.e., other forms
of DC problems, concave problems and reverse convex problems. Generally,
these algorithms are based either on the cutting plane method or on the branch
and bound method. In this paper, we discuss only the cutting plane algorithms
for solving the canonical DC problem and related works. In order to make the
algorithms more clear, we use the notations of our paper rather than the original
ones.

21

The first cutting plane algorithm for problem (CDC) was proposed by Tuy
[4, 10]. Tuy introduced the canonical DC problem and show how any DC prob-
lem can be reduced to this canonical form. This algorithm always cuts off the
feasible point x such that dx > γk − α, then it either finds that γk is optimal
or finds a better feasible point xk and iterate. This algorithm either terminates
at an α-optimal solution xk or converges to an optimal solution. A variant [12]
of this algorithm is proposed by Tuy for solving a more general reverse convex
problem where dx is replaced by a convex finite function f(x). A modified algo-
rithm is given in Tuy[5]. Here γ1 can be +∞ when there is no available feasible
point and the algorithm cuts the feasible points such that dx > γk.

Nghia and Hieu [20] proposed an algorithm for solving the reverse convex
problem. This algorithm finds an interval (γ1, γ2) including the optimal value,
then it checks whether the mean value γ = γ1+γ2

2 is optimal or not and iterate.
Another attempt to solve (CDC) problem is given by Thoai [21]. The algo-

rithm in [21] is a modified form of the ones in [4, 10]. However, this algorithm
as well as its modified form [28] are not guaranteed to converge [5]. Ben Saad
and Jacobsen have also proposed cutting plane algorithms for problem (CDC)
[31, 32], and their counter example was given later in [33].

Strekalovsky and Tsevendori [2] proposed an algorithm for solving general
reverse convex problem. This algorithm use an optimality condition

sup
x∈∂C

sup
y∈D(γ)

∇h(x)(y − x) ≤ 0 , (42)

which is equivalent to the classical optimality condition D(γ) ⊆ C. However,
Tuan [3] shows that its implementation doesn’t guarantee a correct solution and
(42) is not easier to check than D(γ) ⊆ C.

On the other hand, Tuy [7, 8] have proposed a polyhedral annexation method
for a special type of (CDC) problem where Ω is a polyhedron. This algorithm
finds sequence of points {(zk, vk)} and uses the following optimality condition

vkzk ≥ max{ vz | (z, v) ∈ D(γk) × C∗ }.

In [6, 11] it is shown that this algorithm can be extended to the problem (CDC).
The points and functions produced by these algorithms satisfy C1 and C2

when h is the gauge function of C. According to our knowledge, there is no
algorithm satisfying the set of conditions C3, C4, D1 and D2. And there also
lacks work exploring the hierarchy of conditions guaranteeing the convergence
of cutting plane algorithms for problem (CDC) and the Lipschitz property
of value function γδ. Our contribution is to give a more general framework
of cutting plane algorithms for problem (CDC), incorporating all the existing
outer approximation algorithms and polyhedral annexation algorithms. Then
we build six algorithms for conditions C1, C2, C3, C4, D1 and D2 and prove that
these algorithm can generate an approximate optimal value in a finite number
of steps. Moreover, the algorithms for C3, C4, D1 and D2 can not be reduced to
any existing algorithm. We also give the conditions that guarantee the Lipschitz
property of the value function, thus the error can be managed and controlled.

22

A Appendix

Lemma A.1 Suppose the set Ω is bounded. If the regularity condition is satis-
fied, then there exists a global optimal point x∗ ∈ ∂(Ω \ C).

Proof : Since the regularity condition is satisfied, we have for the optimal value

γ∗ = min{ dx | x ∈ Ω \ int C } = inf{ dx | x ∈ Ω \ C } . (43)

Thus, there exists a sequence {xk ∈ Ω \ C} such that dxk → γ∗. Since Ω is
bounded, the sequence {xk} is also bounded; hence, there exists at least one
cluster point x∗ such that x∗ ∈ cl (Ω \ C) and dx∗ = γ∗.

Since the set Ω is closed and xk /∈ C for all k, we have x∗ ∈ Ω and x∗ /∈ int C.
This implies that x∗ is feasible and hence x∗ is optimal. From (3) x∗ /∈ C, thus
we have x∗ ∈ ∂(Ω \ C). ⊡

Lemma A.2 Suppose the set C is bounded. If the regularity condition is satis-
fied, then there exists a global optimal point x∗ ∈ ∂(Ω \ C).

Proof : Let {xk} be a feasible sequence such that dxk → γ∗. It is sufficient to
show that the sequence {xk} is bounded when C is bounded.

Let H = {x | dx = 0}; since C is bounded, then Ω ∩ H is also bounded,
otherwise there exists a point x̂ in (Ω ∩H) \ C such that dx̂ = 0. This implies
that the set Ω ∩ {x | 0 ≤ dx ≤ dx1} is bounded, too. Since dxk → γ∗, there
exists K > 0 such that dxk ≤ dx1 for all k ≥ K, hence {xk} is bounded. ⊡

References

[1] A.D. Alexandrov, “On surfaces which may be represented by a difference of
convex functions”, Izvestiya Akademii Nauk Kazakhskoj SSR, Seria Fiziko
Matematicheskikh, 3 (1949), 3–20.

[2] A.S. Strekalovsky, I. Tsevendorj, “Testing the R-strategy for a reverse con-
vex problem”, J. Global Optim. 13 (1998), 61–74.

[3] H.D. Tuan, “Remarks on an algorithm for reverse convex programs”, J.
Global Optim. 16 (2000), 295–297.

[4] H. Tuy, “Global minimization of a difference of two convex functions”,
Math. Programming Studies 30 (1987), 150–182.

[5] H. Tuy, “Canonical DC programming problem: outer approximation meth-
ods revisited”, Oper. Res. Lett. 18 (1995), 99–106.

[6] H. Tuy, B.T. Tam, “Polyhedral annexation vs outer approximation for the
decomposition of monotonic quasiconcave minimization problems”, Acta
Math. Vietnam. 20 (1995), 99–114.

23

[7] H. Tuy, “On nonconvex optimization problems with separated nonconvex
variables”, J. Global Optim. 2 (1992), 133–144.

[8] H. Tuy, F.A. Al-Khayyal, “Global optimization of a nonconvex single fa-
cility location problem by sequential unconstrained convex minimization”,
J. Global Optim. 2 (1992), 61–71.

[9] H. Tuy, Convex Analysis and Global Optimization, Kluwer Academic Pub-
lishers, 1998.

[10] H. Tuy, “A general deterministic approach to global optimization via d.c.
programming”, in J.B. Hiriart-Urruty (ed.) FERMAT Days 85: Mathemat-
ics for Optimization, North-Holland, Amsterdam (1986), 273–303.

[11] H. Tuy, “D.C. optimization: theory, methods and algorithms”, in R. Horst,
P.M. Pardalos (eds.), Handbook of global optimization, Kluwer Academic
Publishers, Dordrecht (1995), 149–216.

[12] H. Tuy, “Convex programs with an additional reverse convex constraint”,
J. Optim. Theory Appl. 52 (1997), 463-486.

[13] H. Tuy, “On global optimality conditions and cutting plane algorithms”,
J. Optim. Theory Appl. 118 (2003), 201–216.

[14] H. Tuy, “An implicit space covering method with applications to fixed
point and global optimization problems”, Acta Math. Vietnam. 12 (1987),
93–102.

[15] J.B. Hiriart-Urruty, “Generalized differentiability, duality and optimization
for problems dealing with difference of convex functions”, in M. Beckmann,
W. Krelle (eds.), Convexity and Duality in Optimization, Lecture notes in
Economics and Mathematical Systems, 256, Springer, Berlin (1985), 37–70.

[16] J.B. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Al-
gorithms II, Springer-Verlag, 1993.

[17] J. Fulop, “A finite cutting plane method for solving linear programs with an
additional reverse constraint”, European J. Oper. Res. 44 (1990), 395–409.

[18] L.T. Hoai An, P.D. Tao, “A continuous approach for globally solving lin-
early constrained quadratic zero-one programming problems”, Optimiza-
tion 50 (2001), 93–120.

[19] M. Borchardt, O. Engel, “A counterexample to a global optimization algo-
rithm”, J. Global Optim. 5 (1994), 371–372.

[20] M.D. Nghia, N.D. Hieu, “A method for solving reverse convex programming
problems”, Acta Math. Vietnam. 11 (1986), 241–252.

[21] N.V. Thoai, “A modified version of Tuy’s method for solving d.c. program-
ming problems”, Optimization 19 (1988), 665–674.

24

[22] J.P. Penot, “What is quasiconvex analysis?”, Optimization 47 (2000), 35–
110.

[23] P. Hartman, “On functions representable as a difference of convex func-
tions”, Pacific J. Math. 9 (1959), 707–713.

[24] P.T. Thach, “Convex programs with several additional reverse convex con-
straints”, Acta Math. Vietnam. 10 (1985), 35–57.

[25] P.T. Thach, “D.c sets, d.c. functions and nonlinear equations”, Math. Pro-
gram. 58 (1993), 415–428.

[26] D.T. Pham, S. El Bernoussi, “Numerical methods for solving a class of
global nonconvex optimization problems”, International Series of Numer-
ical Mathematics 87 (1989), 97–132.

[27] R. Horst, P.M. Pardalos, Handbook of global optimization, Kluwer Aca-
demic Publishers, Dordrecht (1995).

[28] R. Horst, H. Tuy, Global optimization, Springer, Berlin, 1990.

[29] R. Horst, T.Q. Phong, N.V. Thoai, “On solving general reverse program-
ming problems by a sequence of linear programs and line searches”, Ann.
Oper. Res. 25 (1990), 1–18.

[30] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[31] S. Ben Saad, S.E. Jacobsen, “A level set algorithm for a class of reverse
convex programs”, Ann. Oper. Res. 25 (1990), 19–42.

[32] S. Ben Saad, S.E. Jacobsen, “A new cutting plane algorithm for a class of
reverse convex 0-1 integer programs”, Recent advances in global optimiza-
tion, Princeton University Press, Princeton, NJ. (1992), 152–164.

[33] S. Ben Saad, S.E. Jacobsen, “Comments on a reverse convex programming
algorithm”, J. Global Optim. 5 (1994), 95–96.

[34] T.Q. Phong, P.D. Tao, L.T. Hoai An, “A method for solving D.C. pro-
gramming problems; application to fuel mixture nonconvex optimization
problem”, J. Global Optim. 6 (1995), 87-105.

25

