

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-07-11

Succinct Oracles for Exact
Distances in Undirected

Unweighted Graphs

Paolo Ferragina Igor Nitto Rossano Venturini

May 23, 2007
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Succinct Oracles for Exact Distances in
Undirected Unweighted Graphs

Paolo Ferragina, Igor Nitto, and Rossano Venturini

Dipartimento di Informatica, University of Pisa, Italy
{ferragina, nitto, rventurini}@di.unipi.it

Abstract. Let G be an unweighted and undirected graph of n nodes,
and let D be the n × n matrix storing the All-Pairs-Shortest-Path dis-
tances in G. Since D contains integers in [n], its plain storage takes
n2 log(n+1) bits. However, a simple counting argument shows that n2/2
bits are necessary to store D. In this paper we investigate the question
of finding a succinct representation of D that requires O(n2) bits of stor-
age and still supports constant-time access to each of its entries. This is
asymptotically optimal in the worst case, and far from the information-
theoretic lower-bound by a multiplicative factor log2 3 ' 1.585. As a
result O(1) bits per pairs of nodes in G are enough to retain constant-
time access to their shortest-path distance. We achieve this result by
reducing the storage of D to the succinct storage of labeled trees and
ternary sequences, for which we properly adapt and orchestrate the use
of known compressed data structures.

1 Introduction

The study of succinct data structures has recently attracted a lot of interest
in the research arena. A data structure is called succinct [9] when its space is
close to the information-theoretic lower bound, and all of its operations can be
supported without any slowdown with respect to the corresponding plain (un-
succinct) data structure. The term “close to” (the information-theoretic lower
bound) usually means either “equal plus some low-order terms”, or “up to a con-
stant factor from” (the information-theoretic lower bound), where the constant
is pretty much close to 1. Nowadays there exist succinct versions of various data
structures and data types: bitmap vectors [4, 16, 17], dictionaries [8], strings [14],
(un)labeled trees [3, 5, 10], binary relations and graphs [12, 1], etc..

In this paper we contribute to the design of new succinct data structures by
investigating the field of distance oracles in unweighted and undirected graphs.
Formally, let G be an unweighted and undirected graph of n nodes, and let D be
the n× n matrix that stores in its entry D[u, v] the length of the shortest path
connecting node u to node v in G (or +∞ when u and v are not connected). D
is called the matrix of All-Pairs-Shortest-Path distances in G, and it is typically
stored in O(n2) memory words, thus taking n2 log(n + 1) bits in total.1

1 Throughout this paper we assume that all logarithms are taken to the base 2, when-
ever not explicitly indicated, and we assume 0 log 0 = 0.

Given the ubiquitous use of large graphs in web and data mining applica-
tions, various authors have investigated the problem of designing succinct graph
encodings for supporting the retrieval of either the adjacency list of a node (see
[12, 13] and references therein), or the approximate distance between node pairs
in various types of graphs (see [19] and references therein). Specifically, [18]
proposed a data structure for approximating shortest-path distances in general
weighted graphs up to a multiplicative stretch factor. For any fixed k, their ap-
proximate distance oracle achieved a stretch factor 2k−1, using O(kn1+1/k log n)
bits of storage and taking O(k) time per distance query. This has been later im-
proved for planar digraph in [19]. When exact distances are needed, it is still
open whether it is possible to deploy the intrinsic structure of matrix D in order
to obtain a distance oracle which uses o(n2 log n) bits and is as much close as
possible to the information-theoretic lower bound of n2/2 bits.2

In our paper we show how to match asymptotically the above lower bound,
by providing a succinct oracle which works on unweighted and undirected graphs
and achieves a bit-space complexity that is far from the information-theoretic
minimum by a multiplicative factor log2 3 ' 1.585. In other words, our suc-
cinct storage scheme for D takes a constant number of bits per entry and is
still able to retrieve in constant time any node-pair distance in G. We remark
that the interest in succinct exact oracles for such a simple (undirected and
unweighted) graphs is driven by applications in the field of graph layouts via
Multi-Dimensional Scaling [15]. Here the distance matrix is deployed to produce
a layout of the graph in the plane that closely preserves the shortest-path metric.

Technically, our paper proposes an interesting algorithmic reduction (de-
tailed in Theorem 2) which turns the storage of D into the succinct storage of
(ternary) labeled trees and (ternary) sequences, for which we properly adapt
and orchestrate known compressed data structures. In detail, our approach will
consist of the following three main steps: (1) We first reduce the storage of D
into the storage of properly labeled (sub)trees (Theorem 2); then (2) we re-
duce this latter problem to the succinct storage of ternary sequences and turn
any distance-query into a constant number of prefix-sums queries over these se-
quences (Lemma 3); finally (3) we adapt known compressed data structures to
execute constant-time prefix sums over those sequences (see Sections 5–6). Using
this algorithmic scheme we obtain two results: a simple distance oracle requir-
ing (log2 3) n2 + o(n2) bits of storage and O(1) access time to any entry of D
(Corollary 2), and a more sophisticated distance oracle which reduces the space
complexity to (1

2 log2 3) n2 + o(n2) bits (Corollary 3).

2 Some basic facts

We assume the standard RAM model with memory words of Θ(log n) bits, where
n is the number of nodes in G.
2 This lower bound comes from the observation that there is a one-to-one correspon-

dence between unweighted undirected graphs and their distance matrices. Thus the
number of n× n distance matrices is 2n(n−1)/2.

Let S[1, n] be a sequence drawn from the alphabet Σ = {a1, . . . , aσ}. For each
symbol ai ∈ Σ, we let ni be the number of occurrences of ai in S. Let {Pi =
ni/n}σ

i=1 be the empirical probability distribution for the sequence S. The zero-
th order empirical entropy of S is defined as: H0(S) = −∑σ

i=1 Pi log Pi. Recall
that |S|H0(S) provides an information-theoretic lower bound to the output size
of any compressor that encodes each symbol of S with a fixed codeword.

The Wavelet Tree [7] is an elegant and powerful data structure that supports
rank/select primitives over sequences drawn from arbitrarily large alphabets,
and achieves entropy-bounded space occupancy.

Theorem 1. Given a sequence S[1, n] drawn from an arbitrary alphabet Σ, the
Wavelet Tree built on S takes nH0(S)+o(n) bits to support the following queries
in O(log |Σ|) time:
– Retrieve character S[i];
– Rankc(S, i): compute the number of times character c ∈ Σ occurs in S[1, i];
– Selectc(S, i): compute the position of the i-th occurrence of character c ∈ Σ

in S.

In addition to rank/select primitives, the design of our distance oracles will
need to support fast prefix sums over integer sequences drawn from potentially
large (integer) alphabets. We therefore state the following result which is an easy
consequence of [11]:

Lemma 1. Let S[1, n] be a sequence drawn from the integer alphabet Σ =
{−l, . . . , 0, . . . , l}. There exists an encoding of S that takes n dlog (2l + 1)e +
o(n log l) bits and supports prefix-sum queries in O(1) time.

An essential fact in our distance oracles will be also the availability of a
storage scheme for a string S which is space succinct and is able to decode in
O(1) time any short substring of S having length logarithmic in n. To this aim,
we use the following result which is an easy corollary of [6].

Corollary 1. Given a sequence S[1, n] drawn from a constant-size alphabet Σ,
there is a succinct data structure that stores S in n log |Σ|+o(n) bits and supports
the retrieval in constant time of any substring of S of length O(log n) bits.

In the rest of this paper, we will also make use of the following two strong
structural properties of the distance matrix D:

Symmetry: D[u, v] = D[v, u]
Triangular inequality: |D[u, v]−D[w, v]| ≤ D[u,w]

where u, v, w are any triplets of nodes in the graph G. Note that the triangular
inequality has been rewritten in a form that will help future references and intu-
itions. We finally notice that we can safely assume the graph G to be connected.
Otherwise we can associate every connected-component of G with its distance
matrix and then assign proper node labels in a way that takes constant-time to
check whether two nodes are in the same connected component. The additional
storage for these labels is O(n log n) = o(n2) bits, thus resulting bounded above
by the other terms occurring in the space bounds of our distance oracles.

3 From matrix D to labeled (spanning) trees of G

In this section we show how to reduce the problem of succinctly representing
the distance-matrix D into the problem of finding a succinct data structure that
encodes a (ternary) labeled tree and supports in constant time a kind of path-
sum query over its structure. To explain how this algorithmic reduction works,
we introduce some useful notation and terminology.

Let T be a spanning tree of the graph G and root T at anyone of its nodes,
say r. Given that G is connected, T spans all n nodes of G. For each node u of
T (and thus of G), we denote with:

– `(u) an integer label in {−1, 0, 1}, associated to u;
– pre(u) the rank of u in the preorder visit of T (i.e. integer in [n]).
– π(u) the downward path in T which connects r to u.
– f(u) the father of node u in T , and with f i(u) the ith ancestor of u in T

(where f0(u) = u).

Among all the possible ternary labellings ` of T , we consider the ones induced
by the pairwise distances in G. Specifically, for any node v ∈ T we define a
labeling `v such that `v(u) = D[u, v]−D[f(u), v], where u ∈ T . This is a ternary
labelling because of the triangular inequality and the adjacency of u and f(u) in
G. The labeled tree resulting by the ternary labelling `v applied to T is hereafter
denoted by T [v]. An illustrative example is given in Fig. 1.
The labeled tree T [v] offers an interesting property:

Lemma 2 (Path-sum Query). For any node u, the sum of the labels on the
downward path π(u) in T [v] is equal to D[u, v]−D[r, v].

Proof. Note that this is actually a telescopic sum:
∑

w∈π(u)

`v(w) =
∑

i=0,...,|π(u)|−1

D[f i(u), v]−D[f i+1(u), v] = D[u, v]−D[r, v].

ut

As an example, consider again Fig. 1 and sum the (ternary) labels on the
downward path π(6) in T [1]. The result is 0 + 1 + 0 = 1 which is equal to
D[6, 1]−D[4, 1] = 3− 2 = 1.

Lemma 2 can be actually rephrased by saying that the computation of the
distance D[u, v] between any pair of nodes u, v ∈ G, boils down to sum the
value D[r, v] to the result of the path sum-query over π(u) in T [v]. This is the
key idea underlying the theorem below which details our reduction from the
succinct storage of matrix D to the succinct storage of a set of path-sum query
data structures built upon the labeled trees T [v], for all nodes v ∈ G.

Theorem 2. Let T be a tree of n nodes, E(T) be an encoding of T ’s structure,
and let ` be a labelling of T ’s nodes over the ternary alphabet {−1, 0, 1}. Suppose

0 1 1 2 3 3 4

1 0 1 1 2 2 3

1 1 0 2 3 3 4

2 1 2 0 1 1 2

3 2 3 1 0 1 1

3 2 3 1 1 0 2

4 3 4 2 1 2 0

D

R
1 2 4 5

G

3 6 7

4

2

1 3

5

6 7

T [1] 0

-1 1

-1 0 0 1

rT 3 2 5 1 8 9 11

LT [1] 0 -1 -1 1 0 0 1 1 0 0 1 -1 -1 0

↑

rT [u]

︸ ︷︷ ︸

sum = 1

v

u

Fig. 1. (Top) A graph G and its distance-matrix D. (Bottom) An example of labeled
tree T [1], relative to node 1 ∈ G, and the associated arrays LT [1] and rT [1]. The path
π(6) in T [1] is in bold-face. According to Lemma 3 the sum of the labels on π(6) is equal
to the prefix-sum in LT [1][1, rT [1][6]] = LT [1][1, 9] which correctly returns the value 1.

that there exists a succinct data structure D(E(T), `) that occupies S(n) bits to
store ` and answers path-sum queries over the labeled tree `(T) in T (n) time.

Then the distance matrix D of an unweighted undirected graph G of n nodes
can be encoded in at most nS(n) + |E(T)|+ o(n2) bits, and the distance between
any pair of nodes in G can be computed in T (n) + O(1) time.

Proof. Let T be the spanning tree of G rooted at node r. For each node v ∈ T , we
define the labeling `v as detailed above, namely: for any node u, we set `v(u) =
D[u, v]−D[f(u), v]. We call T [v] the tree T labeled with `v. We then represent
the distance matrix D of graph G via the following three data structures:

– The array R[1, n] which stores the shortest-path distance between r and
every other node in G. Namely, R is the r-th row of matrix D.

– The data structures D(E(T), `v), for any node v.
– The tree encoding E(T) of T which allows the constant-time retrieval of the

location of `v(u) inside D(E(T), `v), for any node-pair u, v.

The first two data structures occupy |E(T)| + o(n2) bits. The n path-sum
data structures require nS(n) bits, because v ranges over all n nodes in T . The
claimed space bounds therefore follows.

To compute D[u, v] we execute a path-sum query on D(E(T), `v) and retrieve
the sum of the labels along the path π(u) in T [v]. From Lemma 2, this sum equals
D[u, v]−D[r, v], so that it suffices to add the value R[v] = D[r, v] to get the final
result. Therefore, any distance query takes T (n) time to compute the path-sum
plus O(1) arithmetic and table-lookup operations. ut

4 Path-sum queries boil down to prefix-sum queries

Theorem 2 allows us to shift our attention to the design of an efficient data
structure that supports path-sum queries over (ternary) labeled trees. Here we go
one step further and show that finding such a data structure boils down to finding
an encoding of a ternary sequence that supports fast prefix-sum computations.

Let T be an n-node tree and let ` be a ternary labeling of its nodes. We visit
T in preorder and build the following two arrays (see Fig. 1):

– LT [1, 2n] is the ternary sequence obtained by appending the integer label
`(u) when the pre-visit of node u starts, and the integer label −`(u) when
the pre-visit of node u ends (i.e. its subtree has been completely visited).

– rT [1, n] is the array that maps T ’s nodes to their positions in LT . Hence rT [u]
stores the preorder-time instant of u’s visit. This way, LT [rT [u]] = `(u).

The sequence LT has the following, easy to prove, property (see Figure 1):

Lemma 3. Let T be an n-node tree labeled with (positive and negative) integers.
For any node u, the sum of the labels on path π(u) in T can be computed as the
prefix-sum of the integers in LT [1, rT [u]].

Theorem 2 and Lemma 3 provide us with all the algorithmic machinery we
need to succinctly encode the distance matrix D. What we really need now
are succinct data structures to perform constant-time prefix-sum queries over
integer sequences (namely LT [v], for all v ∈ G), and suitable succinct encodings
of the tree T (namely E(T)). The following two sections will detail two possible
solutions, one very simple and already asymptotically optimal, the other more
sophisticated and closer to the information-theoretic lower bound.

5 Our first solution

The labeled trees we are interested in succinctly encodings, are the ternary-
labeled trees T [v] introduced in the proof of Theorem 2, as a result of the ternary
labeling `v. Given T [v], the corresponding sequence LT [v] is drawn from the
ternary alphabet {−1, 0, 1}. In order to compute efficiently the prefix-sum queries
over LT [v], we use the wavelet tree data structure (see Theorem 1). This way, the
prefix-sum query over LT [v][1, rT [u]] can be computed by counting (i.e. ranking)
the number of −1 and 1 in the queried prefix of LT [v]. By Theorem 1, this
counting takes constant time and the space required to store the wavelet tree is
2(log 3)n + o(n) bits (since |Σ| = 3 and H0(S) ≤ log |Σ|).

We are therefore ready to detail our first simple solution to the succinct
encoding of D. For each node v ∈ T , we consider the labeling `v, the resulting
labeled tree T [v], and the corresponding ternary sequence LT [v]. We then set
the tree encoding E(T) = rT and build D(E(T), `v) as the wavelet tree of the
ternary sequence LT [v]. By plugging these data structures into Theorem 2, and
exploiting Lemmas 2–3, we obtain:

Theorem 3. Let G be an undirected and unweighted graph of n nodes, and let
D be its n × n matrix storing all-pairs-shortest-path distances. There exists a
succinct representation of D that uses at most 2n2(log 3) + o(n2) bits, and takes
constant-time to access any of its entries.

For a running example of Theorem 3 we refer the reader to Fig. 1. Assume
that we wish to compute D[6, 1] = 3. According to Lemma 2, we need to compute
the path-sum over π(6) in T [1], which equals to D[6, 1]−D[4, 1] = 1, and then
add to this value R[1] = D[4, 1] = 2 (given that T ’s root is node 4). By Lemma 3,
the path-sum computation boils down to the prefix-sum of LT [1][1, rT [6]], which
correctly gives the result 1.

In Section 1, we noted that the information-theoretic lower bound for storing
the distance matrix D is n2

2 bits. Therefore the solution proposed in Theorem 3
is asymptotically space- and time-optimal in the worst case, and far from such
lower bound of a multiplicative factor 4 log 3 ' 6.34. This simple approach proves
that a succinct encoding taking O(1) bits per pairwise-distance of G and O(1)
time per distance computation does exist.

A non-trivial issue is now to reduce the amount of bits spent to encode every
entry of D, by exploiting some structural properties of G and T , in order to come
as much close as possible to the lower bound 0.5. A first step in this direction
is obtained by exploiting the symmetry of matrix D, and thus storing just the
suffix LT [v][1, rT [v]] for every ternary sequence LT [v]. This way, when we query
D[u, v], if pre(u) ≤ pre(v) we proceed as detailed above (because rT [u] ≤ rT [v]).
Otherwise, we swap the role of u and v, and proceed as before. Using this simple
trick we halve the space complexity and obtain:

Corollary 2. There exists a representation for D that uses at most n2(log 3) +
o(n2) bits, and takes constant-time to access any one of its entries.

6 Our second solution

In this section we show how to further halve the space complexity by deploying
the structure of T . We proceed in two steps. First, we exhibit a path-sum data
structure for an n-node ternary labeled tree that takes (log 3)n + o(n) bits and
supports path-sum queries in O(1) time (Theorem 4). The core of this technique
is a well-known approach to the decomposition of arbitrary trees in suitable
subtrees, called macro-micro tree partitioning (see e.g. [2]). Second, we deploy
again the “symmetry in D”, and get our final result (Corollary 3).

Let T be a tree labeled over {−1, 0, 1}, and set µ = d(log n)/4e. A node v ∈ T
is called a jump node, if it has at least µ descendants in T but every child of
v has strictly less than µ descendants. A node v is called a macro node, if it
has at least one jump node among its descendants. The root is assumed to be
a macro node. Any other node of T that is neither jump nor macro is called a
micro node. Note that all descendants of micro nodes are micro nodes too, so
that we define a micro-tree as any maximal subtree of micro nodes in T .

Let Q1, . . . , Qt be the sequence of micro-trees in T ordered by preorder rank
of their roots, and let T ∗ be the subtree of T induced by its macro and jump
nodes. Of course, trees T ∗, Q1, . . . , Qt form a partition of T (see Figure 2). Since
every micro node has at most µ descendants, the size of each micro tree is upper
bounded by µ. This decomposition is usually called macro-micro partition of T .
In this section we will show how to deploy this decomposition to further reduce
the space-encoding of D.

r

r b branching

bc jump

r unary

Q1

Q2

Q3

Q4 Q5

Fig. 2. Macro-micro tree partition.

Let us concentrate on the subtree T ∗, formed by jump and macro nodes. Note
that jump nodes form the leaves of this tree, and are O(n/ log n) in number. The
macro nodes are internal in T ∗ and can be then divided into branching nodes, if
they have at least two children in T ∗, or unary nodes. The number of branching
nodes is upper bounded by the number of leaves in T ∗ (i.e. jump nodes), and
thus it is O(n/ log n). To deal with long chains of unary nodes in T ∗, we sample
them by taking one out of dlog ne consecutive nodes in any maximal unary path
of T ∗. This way we sample O(n/ log n) unary nodes. The set of nodes formed by
jump nodes, branching nodes, and sampled unary nodes is called breaking nodes,
and has size O(n/ log n). By definition, the distance between any non-breaking
node and its closest breaking ancestor in T ∗ is at most dlog ne.

Given the notion of breaking nodes, we define TF as the tree T ∗ contracted to
include only the breaking nodes: i.e. u has parent u′ in TF iff u, u′ are breaking

nodes and u′ is the lowest breaking ancestor of u in T ∗. Since we wish to execute
path-sum queries over T ∗ by deploying TF , we need to reflect the contraction
process onto the tree labeling too. This is done as follows. We label every node
u ∈ TF with the integer `F (u) =

∑
w∈π(u′,u) `(w), where u′ is the father of u in

TF , π(u′, u) is the path in T ∗ connecting u to its father u′, and ` is the labeling of
T (and thus of T ∗). Given the sampling over the unary macro-nodes, and since
` is assumed to be a ternary labeling, the label `F (u) is an integer less than
dlog ne (in absolute value). At this point, we note that the path-sum leading to
any breaking node u can be equally computed either in T or in TF .

To apply Theorem 2, we need a succinct path-sum data structure that we
design here based on the macro-micro decomposition of the ternary labeled tree
T . Specifically, let us assume that we wish to answer a path-sum query on a
node u ∈ T , we distinguish three cases depending on whether u is micro or not.

1. Node u is non-micro and breaking. As observed above, we can compute the
path-sum over π(u) by acting on the contracted tree TF .

2. Node u is non-micro and non-breaking. Since u is not a node of TF , we pick z
as the lowest breaking ancestor of u in T ∗. Hence z ∈ TF . The path π(u) lies
in T ∗ and can then be decomposed into two subpaths: one connecting T ’s
root r to the breaking node z, and the other being a unary path connecting
z to u (and formed by all non-breaking nodes). The first path-sum can
be executed in TF , whereas the other path-sum needs some specific data
structure over the unary paths of T ∗ (formed by non-breaking nodes).

3. Node u is micro. Let rj be the root of its enclosing micro-tree Qj . The
parent of rj , say f(rj), is a jump node (and thus f(rj) ∈ TF), by definition.
Therefore the path π(u) can be decomposed in two subpaths: one lies in TF

and connects its root r to f(rj), the other lies in Qj and connects rj to u.
Consequently, the first path-sum can be executed in TF , whereas the other
path-sum can be executed in Qj .

We are therefore left with the design of succinct data structures to support
constant-time path-sum queries over the contracted tree TF , the unary paths in
T ∗, and the micro-trees Qjs. We detail their implementation below.

Path-sum over the TF . Given the labeled tree TF , we build the integer se-
quence LTF and the array rTF , similarly as done in Section 4. Since there are
O(n/ log n) breaking nodes, |LTF | = O(n/ log n) and its elements are in the range
[− log n,+ log n]. Now we define K as the data structure of Theorem 1 built on
sequence LTF

(here l = O(log n)), thus taking O(n log log n/ log n) = o(n) bits.
By Lemma 3, the path-sum query involving a breaking node in TF can then be
answered in constant time using K and rTF .

Path-sum over the unary paths in T ∗. We serialize the unary paths in T ∗

according to the pre-order visit of this tree. Let us denote by PT∗ the resulting
sequence of ternary labels of those (serialized) nodes. Notice that PT∗ is similar
in vein to LT∗ , but it avoids the double storage of the node labels. Nonetheless
path-sum queries over unary paths of T ∗ can still be executed as prefix-sum
queries over PT∗ ; but with the additional advantage of saving a factor 2 in the

space complexity. More specifically, any path-sum query over a unary path in
T ∗ actually boils down to a range-sum query over the sequence PT∗ , because
the paths are unary and node labels are written in PT∗ according to a pre-
visit of T ∗. Additionally, a range-sum query over PT∗ can be implemented as
a difference of two prefix-sum queries over the same sequence. As a result, we
build a wavelet tree on PT∗ (see Theorem 1) taking (log 3)|PT∗ |+ o(|PT∗ |) bits
of space (since |Σ| = 3 and H0(PT∗) ≤ log |Σ|). Given this wavelet tree and
an array preT∗ [1, n], which stores the rank of the macro-nodes in the preorder
visit of T ∗, the path-sum queries over the unary paths in T ∗ can be answered in
constant time.

Path-sum over the micro-trees. Here we exploit the fact that micro-trees are
small enough, so that we can explicitly store the answer to all possible path-sum
queries over all of them in succinct space. We note that any path-sum query
over a micro-tree Q can be uniquely specified by a triple 〈Q, `(Q), i〉, where Q
denotes the micro-tree structure, `(Q) denotes the ternary labeling of Q, and i
is the pre-order rank in Q of the queried node (hence i ≤ µ). We then build a
table C that tabulates all possible path-sum queries over micro-trees, indexed
by triplets 〈Q, `(Q), i〉. To access C, we need an encoding for the triplet: i.e. we
encode the Q’s structure via any succinct tree encoding of at most 2µ bits (see
e.g. [9, 12]), and encode `(Q) via the string PQ which consists of no more than µ
ternary labels (obtained by visiting in pre-order Q, see above). Consequently, C
consists of 22µ×3µ×µ entries, each storing an integer smaller than µ in absolute
value. Table C thus takes less than O(n log n log log n) bits. As a result, a path-
sum query over a micro-tree Q can be answered in constant time, provided that
we have constant-time access to its micro-tree encoding and labeling. To this
aim, we store all structural encodings of the Qi’s in one string, thus taking O(n)
bits overall. Also, we create the string S`, obtained by juxtaposing the encodings
of the labellings `(Qi) (i.e. the strings PQi), for all micro-trees Qi of T . Note
that S` depends on the labeling ` of T . Finally we compress and index S` via
the succinct data structure of Corollary 1. This way, we can retrieve any `(Qi)
in constant time, taking a total of |S`| log 3 + o(|S`|) bits.

To complete the description of our solution we just need to store some other
auxiliary arrays which take O(n log n) = o(n2) bits overall:

– the array encoding the node type– (non)micro, breaking.
– the array of parent-pointers of T ’s nodes (useful to execute path-sums in

micro-trees);
– the arrays storing for each micro node the root of its micro-tree and its

pre-order rank inside it (useful to execute path-sums in micro-trees).
– the array storing for each unary non-breaking node the top node in its maxi-

mal unary path (useful to execute path-sums of non-micro and non-breaking
nodes).

At this point, we are left with the orchestration of all data structures sketched
above in order to provide a succinct data structure for performing path-sum

queries over the ternary labeled tree T , and then apply Theorem 2. We indeed
use the above macro-micro tree decomposition on T (and its labeling `) and
define:

– the succinct data structures D(E(T), `), as the combination of data structure
K built on TF , the wavelet tree built on PT∗ , and the compressed indexing
of S`. These data structures take (log 3)(|PT∗ |+ |S`|)+ o(|PT∗ |+ |S`|+n) =
(log 3)n + o(n) bits.

– the encoding E(T) as the combination of the table C, the encodings of the
micro-tree structures, and all other auxiliary arrays, for a total of o(n2) bits.

We then plug this data structure to Theorem 2, and get the following result:

Theorem 4. There exists a representation for D that uses at most n2(log 3) +
o(n2) bits, and takes constant-time to access any of its entries.

Proof. The space bound has been proved above. The time bound derives from
the three-cases analysis made above and the use of D(E(T), `) data structure
which guarantees constant-time prefix-sum queries. ut

The previous solution does not deploy the symmetry-idea sketched at the
end of Section 5. We then apply it to further halve the above space occupancy:

Corollary 3. There exists a representation for D that uses at most n2(log 3
2) +

o(n2) bits, and takes constant-time to access any of its entries.

7 Conclusion and open problems

We have studied the problem of succinctly encoding the All-Pair-Shortest-Path
matrix of an n-node unweighted and undirected graph. We have designed suc-
cinct distance oracles which are asymptotically time- and space-optimal, and
result close to the information-theoretic lower bound by a small constant factor.

We leave two interesting open problems. The first one concerns with (dis)proving
the existence of a succinct data structure that achieves n2/2+o(n2) bits of space
occupancy and supports distance-queries in constant time. The second question
deals with the design of a solution whose space complexity depends on the num-
ber m of edges in the graph G, and still guarantees constant time to compute
exactly the shortest-path distance between any pair of its nodes. In fact, in the
case of sparse graphs, the information-theoretic lower bound is 2m log n ¿ n2

bits! Such a solution would be much useful for Web-mining applications that
manage very sparse large graphs.

References

1. J. Barbay, M. He, J.I. Munro, and S. Srinivasa Rao. Succinct indexes for string,
bynary relations and multi-labeled trees. In Proc. 18th ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2007.

2. M. A. Bender and M. Farach-Colton. The level ancestor problem simplified. Theor.
Comput. Sci., 321(1):5–12, 2004.

3. D. Benoit, E. Demaine, I. Munro, R. Raman, V. Raman, and S. Rao. Representing
trees of higher degree. Algorithmica, 43:275–292, 2005.

4. A. Brodnik and I. Munro. Membership in constant time and almost-minimum
space. SIAM Journal on Computing, 28(5):1627–1640, 1999.

5. P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled
trees for optimal succinctness, and beyond. In Proc. 46th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 184–193, 2005.

6. P. Ferragina and R. Venturini. A simple storage scheme for strings achieving
entropy bounds. In Proc. 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2007.

7. R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes.
In Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 841–
850, 2003.

8. A. Gupta, W.K. Hon, R. Shah, and J.S. Vitter. Dynamic rank/select dictionaries
with applications to XML indexing. Technical Report Purdue University, 2006.

9. G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 549–554, 1989.

10. J. Jansson, K. Sadakane, and W.K. Sung. Ultra-succinct representation of ordered
trees. In Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2007.

11. V. Mäkinen and G. Navarro. Rank and select revisited and ex-
tended. Theoretical Computer Science – Special issue on “The Burrows-
Wheeler Transform and its Applications”, 2007 (to appear). (accessible at
http://www.dcc.uchile.cl/ gnavarro/publ.html).

12. I. Munro and V. Raman. Succinct representation of balanced parentheses, static
trees and planar graphs. In Proc. of the 38th IEEE Symposium on Foundations of
Computer Science (FOCS), pages 118–126, 1997.

13. I. Munro and V. Raman. Succinct representation of balanced parentheses and
static trees. SIAM J. Computing, 31:762–776, 2001.

14. G. Navarro and V. Mäkinen. Compressed full text indexes. ACM Computing
Surveys, 2007. Also TR/DCC-2006-6, Dept. of Computer Science, University of
Chile.

15. Working Group on Algorithms for Multidimensional Scal-
ing. Algorithms for multidimensional scaling. DIMACS Web
Page (http://dimacs.rutgers.edu/Workshops/Algorithms/Algorithmsfor
MultidimensionalScaling.html).

16. R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM
Journal on Computing, 31(2):353–363, 2001.

17. R. Raman, V. Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In Proc. 13th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 233–242, 2002.

18. M. Thorup and U. Zwick. Approximate distance oracles. In STOC, pages 183–192,
2001.

19. Mikkel Thorup. Compact oracles for reachability and approximate distances in
planar digraphs. J. ACM, 51(6):993–1024, 2004.

