

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-08-03

A Formal Analysis of
Complex Type Flaw
Attacks on Security

Protocols

Han Gao1 Chiara Bodei2 Pierpaolo Degano2

March 10, 2008
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

A Formal Analysis of Complex Type Flaw
Attacks on Security Protocols

Han Gao1, Chiara Bodei2, and Pierpaolo Degano2

1 Informatics and Mathematical Modelling, Technical University of Denmark,
Richard Petersens Plads bldg 322, DK-2800 Kongens Lyngby, Denmark.

hg@imm.dtu.dk
2 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, I-56127,

Pisa, Italy. {chiara,degano}@di.unipi.it

Abstract. A simple type confusion attack occurs in a security protocol,
when a principal interprets data of one type as data of another. These
attacks can be successfully prevented by “tagging” types of each field
of a message. Complex type confusions occur instead when tags can be
confused with data and when fields or sub-segments of fields may be
confused with concatenations of fields of other types. Capturing these
kinds of confusions is not easy in a process calculus setting, where it is
generally assumed that messages are correctly interpreted. In this paper,
we model in the process calculus LYSA only the misinterpretation due to
the confusion of a concatenation of fields with a single field, by extending
the notation of one-to-one variable binding to multi-to-one binding. We
further present a formal way of detecting these possible misinterpreta-
tions, based on a Control Flow Analysis for this version of the calculus.
The analysis over-approximates all the possible behaviour of a protocol,
including those effected by these type confusions. As an example, we
considered the amended Needham-Schroeder symmetric protocol, where
we succeed in detecting the type confusion that lead to a complex type
flaw attacks it is subject to. Therefore, the analysis can capture potential
type confusions of this kind on security protocols, besides other security
properties such as confidentiality, freshness and message authentication.

1 Introduction

In the last decades, formal analyses of cryptographic protocols have been widely
studied and many formal methods have been put forward. Usually, protocol
specification is given at a very high level of abstraction and several implemen-
tation aspects, such as the cryptographic ones, are abstracted away. Despite the
abstract working hypotheses, many attacks have been found that are indepen-
dent of these aspects. There are situations in which this abstract view is not
completely adequate, though. At a high level, a message in a protocol consists
of fields: each represents some value, such as the name of a principal, a nonce
or a key. This structure can be easily modelled by a process calculus. Neverthe-
less, at a more concrete level, a message is nothing but a raw sequence of bits.
In this view, the recipient of a message has to decide the interpretation of the

bit string, i.e. how to decompose the string into substrings to be associated to
the expected fields (of the expected length) of the message. The message comes
with no indication on its arity and on the types of its components. This source
of ambiguity can be exploited by an intruder that can fool the recipient into
accepting as valid a message different from the expected one. A type confusion
attack arises in this case.

A simple type confusion attack occurs when a field is confused with another
[14]. To prevent such attacks, the current techniques [11] systematically asso-
ciate message fields with tags representing their intended type. On reception of
messages, honest participants check tags so that fields with different types can-
not be mixed up. Nevertheless, as stated by Meadows [15], simple tags could not
suffice for more complex type confusion attacks: “in which tags may be confused
with data, and terms of pieces of terms of one type may be confused with con-
catenations of terms of several other types.” Tags should also provide the length
of tagged fields.

Here, we are interested in semantically capturing attacks that occur when
a concatenation of fields is confused with a single field [21]. Suppose, e.g. that
the message pair (A,N), where A is a principal identity and N is a fresh nonce,
is interpreted as a key K, from the receiver of the message. For simplicity, we
call them complex type confusion attacks. This level of granularity is difficult
to capture with a standard process calculus. In a process algebraic framework,
there is no way to confuse a term (A,N) with a term K. The term is assumed
to abstractly model a message, plugging in the model the hypothesis that the
message is correctly interpreted. In concrete implementation this confusion is
instead possible, provided that the two strings have the same length.

As a concrete example, consider the Amended Needham Schroeder symmetric
key protocol [7]. The protocol aims at distributing a new session key K between
two agents, A and B, via a trusted server S. It is assumed that initially each
agent shares a long term key, KA and KB respectively, with the server. The
protocol narration is reported in Fig. 1 (a). In messages 1 and 2, Alice (A)

1. A→ B : A
2. B → A : {A,NB}KB
3. A→ S : A,B,NA, {A,NB}KB
4. S → A : {NA, B,K, {K,NB , A}KB}KA
5. A→ B : {K,NB , A}KB
6. B → A : {N}K
7. A→ B : {N − 1}K

(a)

1. A→ B : A
2. B → A : {A,NB}KB
3. A→ S : A,B,NA, {A,NB}KB
1′. M → A : NA, B,K

′

2′. A→M : {NA, B,K′, N ′A}KA
4. M(S)→ A : {NA, B,K′, N ′A}KA
5. A→M(B) : N ′A
6. M(B)→ A : {N}K′

7. A→M : {N − 1}K′

(b)

Fig. 1. Amended Needham-Schroeder Symmetric Protocol: Protocol Narration (a) and
Type Flaw Attack (b)

initiates the protocol with Bob (B). In message 3 the server generates a new
session key K, that is distributed in messages 4 and 5. Nonces created by A

and B are used to check freshness of the new key. Finally, messages 6 and 7 are
for mutual authentication of A and B: a new nonce N is generated by B and
exchanged with A, encrypted with the new session key K.

The protocol is vulnerable to a complex type flaw attack, discovered by B.
W. Long [12] and shown in Fig. 1 (b). The attack requires two instances of the
protocol, running in parallel. In one, A plays the roles of initiator and in the
other that of responder. In the first instance, A initiates the protocol with B. In
the meanwhile, the attacker, M , initiates the second instance with A and sends
the triple NA, B,K ′ to A (in step 1′). The nonce NA is a copy from step 3 in the
first instance and K ′ is a faked key generated by the attacker. A will generate
and send out the encryption of the received fields, NA, B,K ′, and a nonce N ′A.
The attacker M(S) impersonates S and replays this message to A in the first
instance. A decrypts this message, checks the nonce NA and the identity B, and
accepts K ′ as the session key, which is actually generated by the attacker. After
completing the challenge and response in step 6 and 7, A will communicate with
the attacker using the faked key K ′.

Our idea is to explore complex type confusion attacks, by getting closer to the
implementation, without leaving the comfortable borders of process calculi. To
this aim, we formally model the possible misinterpretations between terms and
concatenations of terms. More precisely, we extend the notation of one-to-one
variable binding to multi-to-one binding in the process calculus LYSA [3], that
we use to model security protocols. The Control Flow Analysis soundly over-
approximates the behaviour of protocols, by collecting the set of messages than
can be sent over the network, and by recording which values variables may be
bound to. Moreover, at each binding occurrence of a variable, the analysis checks
whether there is any multi-to-one binding possible and records it as a binding vi-
olation. The approach is able to detect complex type confusions possibly leading
to attacks in cryptographic protocols.

The paper is organized as follows. In Section 2, we present the syntax and
semantics of the LYSA calculus. In Section 3 we introduce the Control Flow Anal-
ysis and we describe the Dolev-Yao attacker we use in our setting. Moreover, we
make an experiment in analysing the amended Needham-Schoreder symmetric
key protocol. Section 4 concludes the paper.

2 The LYSA Calculus

The LySa calculus [3] is a process calculus, designed especially for modelling
cryptographic protocols. in the tradition of the π- [18] and Spi- [1] calculi. It
differs from these essentially in two aspects. The first is the absence of channels:
all processes have only access to a single global communication channel, the
network. The second aspect concerns the inclusion of pattern matching into the
language constructs where values can become bound to values, i.e. into input
and into decryption.

Syntax In LYSA, the basic building blocks are values, V ∈ V al, which corre-
spond to closed terms, i.e. terms without free variables. Values are used to rep-

resent keys, nonces, encrypted messages, etc. Syntactically, they are described
by expressions E ∈ Expr (or terms) that may either be variables, names, or
encryptions. Variables and names come from two disjoint sets V ar, ranged over
by x, and Name, ranged over by n, respectively. Finally, expressions may be en-
cryptions of a k-tuple of other expressions, in which case, E0 is the key used to
perform the encryption. LYSA expressions are, in turn, used to construct LYSA

processes P ∈ Proc as shown below. Here, we assume perfect cryptography.

E ::= n | x | {E1, . . . , Ek}E0

P ::= 〈E1, . . . , Ek〉.P | (E1, . . . , Ej ;xj+1, . . . , xk)l.P
decrypt E as {E1, . . . , Ej ;xj+1, . . . , xk}lE0

in P |
(ν n)P | P1|P2 | !P | 0

The set of free variables, resp. free names, of a term or a process is defined
in the standard way. As usual we omit the trailing 0 of processes.

In addition to the classical constructs for composing processes, LYSA contains
an input and a decryption construct with matching. The label l from a numerable
set Lab (l ∈ Lab) in the input and in the decryption constructs uniquely identifies
each input and decryption point, resp., and is mechanically attached. Patterns
are in the form (E1, · · · , Ej ;xj+1, · · · , xk) and are matched against k-tuples of
values (E′1, · · · , E′k). The intuition is that the matching succeeds when the first
1 ≤ i ≤ j values E′i pairwise correspond to the values Ei, and the effect is to
bind the remaining k− j values to the variables xj+1, · · · , xk. Syntactically, this
is indicated by a semi-colon that separates the components where matching is
performed from those where only binding takes place. For example, let P =
decrypt {y}K as {x; }lK in P ′ and Q = decrypt {y}K as {;x}lK in Q′. While the
decryption in P succeeds only if x = y, the one in Q always does,binding x to y.

Extended LYSA As seen above, in LYSA, values are passed around among
processes through pattern matching and variable binding. This is the way for
modelling how principals acquire knowledge from the network, by reading mes-
sages (or performing decryptions), provided they have certain format forms. A
requirement for pattern matching is that patterns and expressions are of the
same length: processes only receive (or decrypt) messages, whose length is ex-
actly as expected and each variable is binding to one single value, later on as
one-to-one binding. This constraint, however, implicitly removes the possibility
of modelling complex type confusions, i.e. the possibility to accept a concatena-
tion of fields as a single one. It has to be relaxed. Consider the complex type flaw
attack on the amended Needham-Schroder protocol, shown in the Introduction.
The principal A, in the role of responder, is fooled by accepting NA, B,K ′ as the
identity of the initiator and generates the encryption {NA, B,K ′, N ′A}KA , which
will be replayed by the attacker later on in the first instance. In LYSA, A’s input
can be roughly expressed as (;xb), as she is expecting a single field representing
the identity of the initiator of the protocol. Because of the length requirement,
though, xb can only be binding to a single value and not to a concatenation of
values, such as (NA, B,K ′) object of the output of the attacker.

To model complex type confusions, we need to allow a pattern matching to
succeed also in the cases in which the length of lists is different. The extension
of the notation of pattern matching and variable binding, will be referred as
multi-to-one binding. Patterns are then allowed to be matched against expres-
sions with at least the same number of elements. A single variable can then be
bound also to a concatenation of values. Since there may be more values than
variables, we partition the values into groups (or lists) such that there are the
same number of value groups and variables. Now, each group of values is bound
to the corresponding variable. In this new setting, the pattern in A’s input (;xb)
can instead successfully match the expression in the faked output of the attacker
〈NA, B,K ′〉 and result in the binding of xb to the value (NA, B,K ′).

We need some auxiliary definitions first. The domain of single values is built
from the following grammar and represents closed expressions (i.e. without free
variables), where each value is single, i.e. it is not a list of values. In other words,
no multi-to-one binding has affected the expression. These are the values used
in the original LYSA semantics.

val 3 v ::= n | {v1, . . . , vk}v0 .
General values are closed expressions, where each value V can be a list of values
(V1, .., Vn). These values are used to represent expressions closed after at least
one multi-to-one-binding and are the values our semantics handles.

V al 3 V ::= v | (V1, .., Vn) | {V1, .., Vn}V0

To perform meaningful matching operations between lists of general values, we
first flatten them, thus obtaining flattened values that can be either single values
v or encryptions of general values.

Flat 3 T := v | {V1, .., Vn}V0

Flattening is obtained by using the following Flatten function Fl : V al→ Flat

– Fl(v) = v;
– Fl((V1, .., Vn)) = Fl(V1), ..., F l(Vn);
– Fl({V1, .., Vn}V0) = {V1, .., Vn}V0 .

Example 1. Fl(((n1, n2), ({m1, (m2,m3)}m0))) = n1, n2, {m1, (m2,m3)}m0

The idea is that encryptions cannot be directly flattened when belonging to a
list of general values. Their contents are instead flattened when received and
analysed in the decryption phase.

To perform multi-to-one bindings, we resort to a partition operator
∏
k that,

given a list of flattened values (T1, . . . , Tn), returns all the possible partitions
composed by k non-empty groups (or lists) of flattened values. For simplicity,
we use T̃ to represent a list of flattened values (T1, . . . , Tj)

∏
k

(T1, . . . , Tn) =
{
{(T̃1, ..., T̃k)| ∀i : T̃i 6= ∅ ∧ Fl((T̃1, ..., T̃k)) = (T1, . . . , Tn)} if n ≥ k
undefined if n < k

Note that in case n ≥ k, the function returns a set of results satisfying the
condition. Now binding k variables x1, ..., xk to n flattened values amounts to

partitioning the values into k (the number of variables) non-empty lists of flat-
tened values, (T̃1, ..., T̃k) ∈

∏
k(T1, . . . , Tn), and binding variables xi to the cor-

responding list T̃i.

Example 2. Consider the successful matching of (m;x1, x2) against (m,n1, n2, n3).
Since

∏
2(n1, n2, n3) = {((n1), (n2, n3)), ((n1, n2), (n3))}, it results in two possi-

ble effects (recall that for each i, T̃i must be non-empty),

– binding variable x1 to (n1) and binding variable x2 to (n2, n3), or
– binding variable x1 to (n1, n2) and binding variable x2 to (n3).

Finally, we define the relation =F as the least equivalence over V al and (by
overloading the symbol) and over Flat that includes:
– v =F v′ iff v = v′;
– (V1, ..., Vk) =F (V ′1 , ..., V

′
n) iff Fl(V1, ..., Vk) = Fl(V ′1 , ..., V

′
n);

– {V1, ..., Vk}V0 =F {V ′1 , ..., V ′n}V ′
0

iff Fl(V1, ..., Vk) = Fl(V ′1 , ..., V
′
n) and

Fl(V0) = Fl(V ′0);

Semantics LYSA has a reduction semantics, based on a standard structural
equivalence. The reduction relation →R is the least relation on closed processes
that satisfies the rules in Tab. 1.

At run time, the complex type confusions are checked by a reference monitor,
which aborts when there is a possibility that a concatenation of values is bound
to a single variable. We consider indeed two variants of the reduction relation
→R, graphically identified by a different instantiation of the relation R, which
decorates the transition relation. The first variant takes advantage of checks on
type confusions, while the other one discards them: essentially, the first semantics
checks for the presence of complex type confusions. More precisely, the reference
monitor performs its checks at each binding occurrence, i.e. when the pattern
V1, . . . , Vk is matched against V ′1 , . . . , V

′
k;xj , ..., xt. Both the lists of values are

flattened and result in T1, . . . , Ts and T ′1, . . . , T
′
len, respectively. The reference

monitor checks whether the length of the list len+ (t− j) of the flattened values
of the pattern, corresponds to the length s of the list of the general values to
match against it. If (len+ t− j) = s then there is a correspondence one-to-one
between variables and flattened values. Otherwise, then there exists at least a
variable xi, which may bind to a list of more than one value. Formally:
– the reference monitor semantics, P →RM P ′, takes R = RM(s, len + t − j)

true when s = len+ t− j, where s and len+ t− j are defined as above;
– the standard semantics, P → P ′ takes R to be universally true.

The rule (Com) in the Tab. 1 states when an output 〈V1, . . . , Vk〉.P is matched
by an input (V ′1 , . . . , V

′
j ;xj+1, . . . , xt)l.P ′. It requires that: (i) the first j general

values of the input pattern V ′1 , . . . , V
′
j are flattened into len flattened values

T ′1, . . . , T
′
len; (ii) the general values V1, . . . , Vk in the output tuple are flattened

into s flattened values T1, . . . , Ts; (iii) if s ≥ (len+t−j) and the first len values of
T1, . . . , Ts pairwise match with T ′1, . . . , T

′
len then the matching succeeds; (iv) in

this case, the remaining values Tlen+1, . . . , Ts are partitioned into a sequence of

(Com)

∧leni=1Ti =F T ′i ∧ R(s, len+ t− j)
〈V1, . . . , Vk〉.P | (V ′1 , . . . , V

′
j ;xj+1, . . . , xt)

l.P ′ →R P | P ′[eTj+1/xj+1, . . . , eTt/xt]
where (A) holds

(Dec)

V0 =F V ′0 ∧ ∧leni=1 Ti =F T ′i ∧ R(s, len+ t− j)
decrypt {V1, . . . , Vk}V0 as {V ′1 , . . . , V ′j ;xj+1, . . . , xt}lV ′

0
in P →R P [eTj+1/xj+1, . . . , eTt/xt]

where (A) holds

(New)
P →R P ′

(ν n)P →R (ν n)P ′

(Par)
P1 →R P ′1

P1 | P2 →R P ′1 | P2

(Congr)
P ≡ P ′ ∧ P ′ →R P ′′ ∧ P ′′ ≡ P ′′′

P →R P ′′′

A =

8<:
Fl((V1, . . . , Vk)) = T1, . . . , Tlen, Tlen+1, . . . , Ts
Fl(V ′1 , . . . , V

′
j)) = T ′1, . . . , T

′
len

(eTj+1, . . . , eTt) ∈
Q
t−j(Tlen+1, . . . , Ts)

9=;
Table 1. Operational Semantics; P →R P ′, parameterised on R.

non-empty lists T̃i, whose number is equal to the one of the variables (i.e. t− j),
computed by the operator

∏
t−j . Furthermore, the reference monitor checks for

the possibility of multi-to-one binding, i.e. checks whether s ≥ (len+t−j). If this
is the case, it aborts the execution. Note that, if instead s = (len+ t− j), then
Fl(V1, . . . , Vk) = V1, . . . , Vk, Fl(V ′1 , . . . , V

′
j) = V ′1 , . . . , V

′
j , k = s, and j = len.

The rule (Dec) performs pattern matching and variable binding in the same
way as in (Com), with the following additional requirement: the keys for encryp-
tion and decryption have to correspond, i.e. V0 =F V ′0 . Similarly, the reference
monitor aborts the execution if multi-to-one binding occurs.

The rules (New), (Par) and (Congr) are standard.
As for the dynamic property of the process, we say that a process is complex

type coherent, when there is no complex type confusions, i.e. there is no multi-
to-one binding in any of its executions. Consequently, the reference monitor will
never stop any execution step.

Definition 1 (Complex Type Coherence). A process P is complex type
coherent if for all the executions P →∗ P ′ → P ′′ whenever P ′ → P ′′ is derived
using as axiom
- (Com) on 〈V1, . . . , Vk〉.Q | (V ′1 , . . . , V

′
j ;xj+1, . . . , xt)l.Q′ or using

- (Dec) on decrypt {V1, . . . , Vk}V0 as {V ′1 , . . . , V ′j ;xj+1, . . . , xt}lV ′
0

in Q

it is always the case that s = len + t − j, where Fl(Vp, . . . , Vk) = Tp, ..., Ts and
Fl(V ′p , . . . , V

′
j) = Tp, ..., Tlen with p = 1 (p = 0) in the case of (Com), (Dec),

respectively.

3 The Control Flow Analysis

Our analysis aims at giving a safe over-approximation of the protocol behaviour
and safely approximating when the reference monitor may abort the computa-
tion. The Control Flow Analysis describes a protocol behaviour by collecting
all the communications that a process may participate in. In particular, the
analysis records which value tuples may flow over the network (see the analysis
component κ below) and which value variables may be bound to (component
ρ). This gives information on bindings due to pattern matching. Moreover, at
each binding occurrence, the Control Flow Analysis checks whether there is any
multi-to-one binding possible, and records it as a binding violation (component
ψ). Formally, the approximation, or estimate, is a triple (ρ, κ, ψ) (respectively, a
pair (ρ, θ) when analysing an expression E) that satisfies the judgements defined
by the axioms and rules in Tab. 3.
Canonical Names Both the analysis components κ and ρ have to do with record-
ing values in some format. However, a LYSA process may generate infinitely
many values during an execution because of the restriction and replication con-
structs, e.g. !(ν n)〈n〉, which means that the analysis components have to be
able to record infinitely many names. For keeping the estimates finite, we par-
tition all the names used by a process into finitely many equivalence classes,
and we use a representative, called canonical name, of each of them, instead of
the actual names. Consequently there are only finitely many canonical names
in any execution of a given process. This is enforced by using in the structural
congruence a disciplined α-equivalence that allows for substituting names only
within the same equivalence class. Notationally, the canonical name bnc is for a
name n. Similarly, bxc is the canonical variable of a variable x. Hereafter, when
unambiguous, we shall simply write n (resp. x) for bnc (resp. bxc).

Analysis of Expressions For each expression E, our analysis will determine
a superset of the possible values it may evaluate to. For this, the analysis keeps
track of the potential values of variables, by recording them into the global
abstract environment:
• ρ : X → P(V al) that maps the variables to the sets of general values that they
may be bound to, i.e. if a ∈ ρ(x) then x may take the value a.

The judgement for expressions takes the form ρ |= E : ϑ where ϑ ⊆ V al∗ is an
acceptable estimate (i.e. a sound over-approximation) of the set of general value
lists that E may evaluate to in the environment ρ. The judgement is defined by
the axioms and rules in the upper part of Tab. 3. Basically, the rules demand
that ϑ contains all the value lists associated with the components of a term,
e.g. a name n evaluates to the set ϑ, provided that n belongs to ϑ; similarly for
a variable x, provided that ϑ includes the set of value lists ρ(x) to which x is
associated with.

The rule (Enc) (i) checks the validity of estimates θi for each expression
Ei; (ii) requires that all the values T1, ..., Ts obtained by flattening the k-tuples
V1, ..., Vk, such that Vi ∈ θi, are collected into values of the form ({T1, · · · , Ts}lV0

),
(iii) requires these values to belong to ϑ.

(Name)
(n) ∈ ϑ
ρ |= n : ϑ

(Var)
ρ(x) ⊆ ϑ
ρ |= x : ϑ

(Enc)

∧ki=0 ρ |= Ei : ϑi ∧
∀V0, . . . , Vk : ∧ki=0 Vi ∈ ϑi ∧ Fl(V1, ..., Vk) = T1, ..., Ts ⇒

({T1, ..., Ts}V0) ∈ ϑ
ρ |= {E1, . . . , Ek}E0 : ϑ

(Out)

∧ki=1 ρ |= Ei : ϑi ∧
∀V1, . . . , Vk : ∧ki=1Vi ∈ ϑi ∧ Fl(V1, ..., Vk) = T1, ..., Ts ⇒

〈T1, ..., Ts〉 ∈ κ ∧ (ρ, κ) |= P : ψ

(ρ, κ) |= 〈E1, . . . , Ek〉.P : ψ

(In)

∧ji=1 ρ |= Ei : ϑ1 ∧
∀V ′1, . . . , V ′j : ∧ji=1V

′
i ∈ ϑi ∧ Fl(V ′1 , ..., V

′
j) = T ′1, ..., T

′
len ⇒

∀〈T1, ..., Ts〉 ∈ κ : T1, ..., Tlen =F T ′1, ..., T
′
len ⇒

∀(eTj+1, . . . , eTt) ∈Q
t−j(Tlen+1, . . . , Tk)⇒

(∧ti=j+1
eTi ∈ ρ(xi) ∧ (s > len+ t− j)⇒ l ∈ ψ ∧ (ρ, κ) |= P : ψ)

(ρ, κ) |= (E1, . . . , Ej ;xj+1, . . . , xt)l.P : ψ
where s ≥ len+ t− j

(Dec)

ρ |= E : ϑ ∧ ∧ji=0 ρ |= Ei : ϑi ∧
∀V ′0, . . . , V ′j : ∧ji=0V

′
i ∈ ϑi ∧ Fl(V ′1 , ..., V

′
j) = T ′1, ..., T

′
len ⇒

∀{T1, . . . , Ts}V0 ∈ ϑ : T1, ..., Tlen =F T ′1, ..., T
′
len ⇒

∀(eT ′j+1, . . . , eT ′t) ∈Q
t−j(Tlen+1, . . . , Tk)⇒

(∧ti=j+1
eT ′i ∈ ρ(xi) ∧ (s > len+ t− j)⇒ l ∈ ψ ∧ (ρ, κ) |= P : ψ)

(ρ, κ) |= decrypt E as {E1, . . . , Ej ;xj+1, . . . , xt}lE0
in P : ψ

where s ≥ len+ t− j

(New)
(ρ, κ) |= P : ψ

(ρ, κ) |= (ν n)P : ψ
(Par)

(ρ, κ) |= P1 : ψ ∧ (ρ, κ) |= P2 : ψ

(ρ, κ) |= P1|P2 : ψ

(Rep)
(ρ, κ) |= P : ψ

(ρ, κ) |=!P : ψ
(Nil) (ρ, κ) |= 0 : ψ

Table 2. Analysis of terms; ρ |= E : ϑ, and processes: (ρ, κ) |= P : ψ

Analysis of Processes In the analysis of processes, we focus on which tuples
of values can flow on the network:
• κ ⊆ P(V al∗), the abstract network environment, includes all the tuples forming
a message that may flow on the network, e.g. if the tuple 〈a, b〉 belongs to κ then
it can be sent on the network.

The judgement for processes has the form: (ρ, κ) |= P : ψ, where ψ is the
possibly empty set of “error messages” of the form l, indicating a binding viola-
tion at the point labelled l. We prove in Theorem 2 below that when ψ = ∅ we
may do without the reference monitor. The judgement is defined by the axioms

and rules in the lower part of Tab. 3 (where A ⇒ B means that B is analysed
only when A is evaluated to be true) and are explained below.

We now briefly comment on the rules. The rule for output (Out), computes all
the messages that can be obtained by flattening all the general values to which
sub-expressions may be evaluated to. The use of the flatten function makes sure
that each message is plain-structured, i.e. redundant parentheses are dropped.
More precisely, it (i) checks the validity of estimates θi for each expression Ei;
(ii) requires that all the values obtained by flattening the k-tuples V1, ..., Vk, such
that Vi ∈ θi, can flow on the network, i.e. that they are in the component ρ;
(iii) requires that the estimate (ρ, κ, ψ) is valid also for the continuation process
P . Suppose e.g. to analyse 〈A,NA〉.0. In this case, we have that ρ |= A : {(A)},
ρ |= NA : {(NA)}, Fl((A), (NA)) = A,NA and 〈A,NA〉 ∈ κ. Suppose instead to
have 〈A, xA〉.P and ρ(xA) = {(NA), (N ′A)}. In this case we have Fl((A), (NA)) =
A,NA, Fl((A), (N ′A)) = A,N ′A, 〈A,NA〉 ∈ κ and also 〈A,N ′A〉 ∈ κ.

The rule for input (In) basically looks up in κ for matched tuples and performs
variable binding before analysing the continuation process. This is done in the
following steps: the rule (i) evaluates the first j expressions, whose results are
general values, V ′i . These are flattened into a list of values T ′1, ..., T

′
len in order to

perform the pattern matching. Then, the rule (ii) checks whether the first len
values of any message 〈T1, ..., Ts〉 in κ (i.e. any message predicted to flow on the
network) matches the values from previous step, i.e. T ′1, ..., T

′
len. Also, the rule

(iii) partitions the remaining Tlen+1, ..., Ts values of the tuple 〈T1, ..., Ts〉 in all
the possible ways to obtain t− j lists of flattened values T̃i and requires each list
is bound to the corresponding variable T̃i ∈ ρ(xi). The rule (iv) checks whether
the flattened pattern and the flattened value are of the same length. If this is not
the case, the final step should be in putting l in the error component ψ. Finally,
the rule (v) analyses the continuation process. Suppose to analyse the process
(A, xA;x, xB).0, where 〈A,NA, B,NB〉 ∈ κ and (NA) ∈ ρ(xA). Concretising the
rule (Inp) gives j = 2, t = 2 and the followings,

ρ |= A : ϑ1 ∧ ρ |= xA : ϑ2 yielding ϑ1 3 (A) and ϑ2 3 (NA)
∀V ′1 , V ′2 : V ′1 ∈ ϑ1 ∧ V ′2 ∈ ϑ2 ∧ taking V ′1 = (A) and V ′2 = (NA) ∧
Fl(V ′1 , V

′
2) = T ′1, ..., T

′
len len = 2 and T ′1, ..., T

′
len = A,NA

∀〈T1, . . . , Ts〉 ∈ κ : if 〈A,NA, B,NB〉 ∈ κ and s = 4
i.e. T1 = A, T2 = NA, T3 = B, T4 = NB

T1, . . . , Tlen =F T ′1, . . . , T
′
len ⇒ T1, T2 =F T ′1, T

′
2 = A,NA

∀(T̃3, T̃4) ∈
∏

2(T3, T4)⇒
∏

2(T3, T4) =
∏

2(B,NB) = {((B), (NB))}
(T̃3 ∈ ρ(x) ∧ T̃4 ∈ ρ(xA)∧ gives (B) ∈ ρ(x) ∧ (NB) ∈ ρ(xB)
(s > len+ t− j)⇒ l ∈ ψ∧ and 4 = 4 does not require l 6∈ ψ
(ρ, κ) |= 0 : ψ) true

(ρ, κ) |= (A, xA;x, xB)l.0 : ψ

In particular, ((B), (NB)) ∈
∏

2(B,NB) implies that (B) ∈ ρ(x) and (NB) ∈
ρ(xB). Suppose to have also that 〈A,NA, B,NB ,K〉 ∈ κ. In this case, ((B), (NB ,K)) ∈∏

2(B,NB ,K) and therefore (B) ∈ ρ(x) and (NB ,K) ∈ ρ(xB) and also ((B,NB),K) ∈

∏
2(B,NB ,K) and therefore (B,NB) ∈ ρ(x) and (K) ∈ ρ(xB). More precisely:

ρ |= A : ϑ1 ∧ ρ |= xA : ϑ2 yielding ϑ1 3 (A) and ϑ2 3 (NA)
∀V ′1 , V ′2 : V ′1 ∈ ϑ1 ∧ V ′2 ∈ ϑ2 ∧ taking V ′1 = (A) and V ′2 = (NA) ∧
Fl(V ′1 , V

′
2) = T ′1, ..., T

′
len len = 2 and T ′1, ..., T

′
len = A,NA

∀〈T1, . . . , Ts〉 ∈ κ : if 〈A,NA, B,NB ,K〉 ∈ κ and s = 5
i.e. T1 = A, T2 = NA, T3 = B, T4 = NB , T5 = K

T1, . . . , Tlen =F T ′1, . . . , T
′
len ⇒ T1, T2 =F T ′1, T

′
2 = A,NA

∀(T̃3, T̃4) ∈
∏

2(T3, T4, T5)⇒
∏

2(T3, T4, T5) =
∏

2(B,NB ,K) =
{((B), (NB ,K)), ((B,NB), (K))}

(T̃3 ∈ ρ(x) ∧ T̃4 ∈ ρ(xA) gives (B), (B,NB) ∈ ρ(x) and (K), (NB ,K) ∈ ρ(xB)
(s > len+ t− j)⇒ l ∈ ψ∧ 5 > 2 + 4− 2 requires l ∈ ψ
(ρ, κ) |= 0 : ψ true

(ρ, κ) |= (A, xA;x, xB)l.0 : ψ

The rule for decryption (Dec) is similar to (In): the values to be matched are
those obtained by evaluating the expression E; while the matching ones are the
terms inside decryption. If the check succeeds then variables are bound and the
continuation process P is analysed. Moreover, the rule checks the possibility of
multi-to-one binding: the component ψ must contain the label l corresponding to
the decryption. Suppose e.g. to have decrypt E as {E1, . . . , E2;x3, . . . , x4}lE0

in P ,
with E = {A,NA, B,NB}K , E0 = K,E1 = A, E2 = xA and ρ(xA) = {(NA)}.
Then we have that ρ |= A : {(A)}, ρ |= xA : {(NA)} and Fl((A), (NA)) = A,NA.
Then ((B), (NB)) ∈

∏
2(B,NB) implies that (B) ∈ ρ(x3) and (NB) ∈ ρ(x4).

Suppose to have instead E = {A,NA, B,NB ,K0}K , then ((B), (NB ,K0)) ∈∏
2(B,NB ,K0) and therefore (B) ∈ ρ(x3) and (NB ,K0) ∈ ρ(x4) and also

((B,NB), (K0)) ∈
∏

2(B,NB ,K0) and therefore (B,NB) ∈ ρ(x3) and (K0) ∈
ρ(x4). Furthermore l ∈ ψ.

The rule (Nil) does not restrict the estimate, while the rules (New), (Par)
and (Rep) ensure that the estimate also holds for the immediate sub-processes.
Semantics Properties Our analysis is correct with respects to the operational
semantics of LYSA. The detailed proofs are reported in the Appendix.

We have the following results. The first states that estimates are resistant to
substitution of closed terms for variables, and it holds for both extended terms
and processes. The second one says that estimate respect ≡.

Lemma 1. 1. (a) ρ |= E : ϑ ∧ (T1, . . . , Tk) ∈ ρ(x) imply ρ |= E[T1, . . . , Tk/x] : ϑ
(b) (ρ, κ) |= P : ψ ∧ (T1, . . . , Tk) ∈ ρ(x) imply (ρ, κ) |= P [T1, . . . , Tk/x] : ψ

2. If P ≡ Q and (ρ, κ) |= P then (ρ, κ) |= Q

Our analysis is semantically correct regardless of the way the semantics is param-
eterised, furthermore the reference monitor semantics cannot stop the execution
of P when ψ is empty. The proof is by induction on the inference of P → Q.
Theorem 1. (Subject reduction) If P → Q and ρ, κ, ψ |= P then ρ, κ, ψ |= Q.

The next theorem shows that our analysis correctly predicts when we can
safely do without the reference monitor. We shall say that the reference monitor

RM cannot abort a process P when there exist no Q,Q′ such that P →∗ Q→ Q′

and P →∗RM Q 9RM. (As usual, * stands for the transitive and reflexive closure
of the relation in question, and we omit the string of labels in this case; while
Q 9RM stands for 6 ∃Q′ : Q→RM Q′.) We then have:

Theorem 2. (Static check for reference monitor) If ρ, κ, ψ |= P and
ψ = ∅ then RM cannot abort P .

Proof. Suppose ad absurdum that such Q and Q′ exist. A straightforward in-
duction extends the subject reduction result to P →∗ Q giving ρ, κ, ψ |= Q and
ψ = ∅. The part 2 of the subject reduction result applied to Q → Q′ gives
Q→RM Q′ which is a contradiction.

Modelling the Attackers In a protocol execution, several principals exchange
messages over an open network, which is accessible to the attackers and therefore
vulnerable to malicious behaviour. We assume an active Dolev-Yao attacker
[8]: it can eavesdrop, and replay, encrypt, decrypt, generate messages providing
that the necessary information is within his knowledge, that it increases while
interacting with the network.

This scenario can be modelled in LYSA as a process running in parallel with
the protocol process. Formally, we shall have Psys | P•, where Psys represents
the protocol process and P• is some arbitrary attacker. The attacker acquires its
knowledge by interacting with Psys, starting from the public knowledge. Note
that the secret messages and keys, e.g. Kab, are restricted to their scope in Psys
and thus they are not immediately accessible to the attacker. Instead of consid-
ering only one attacker, we want to consider how P behaves under the attack
of arbitrary attackers P•. To get an account of the infinitely many attackers,
the overall idea is to find a formula (for a similar treatment see [3]) that char-
acterizes all P•: this means that whenever an estimate (ρ, κ, ψ) satisfies it, then
(ρ, κ) |= P• : ψ for all attackers P•. The estimates we consider hereafter will
satisfy the formula. Intuitively, the formula has to mimic how all the P• are
analysed.

3.1 Constructing Attacker Process Formula

Our aim here is to define a general formula, able to characterise all the attackers
and then to prove its correctness.

One concern regarding the analysis of the attacker process is about the names
and variables the attacker uses, which have to be apart from the ones used by
Psys. Let all the names used by Psys to be in a finite set Nc and all the variables
in a finite set Xc; we can then postulate a new name n• not in Nc and a new
variable z• not in Xc. This means that all the names and variables of the attacker
are coalesced in n• and z•. Therefore n• may represent any name generated by
the attacker, while ρ(z•) represents the attacker knowledge.

In order for the attacker process to interact with the protocol process, some
basic information of the protocol process has to be known in advance. We shall

(1) ∧k∈Aκ ∀ 〈V1, . . . , Vk〉 ∈ κ : ∧ki=1 Vi ∈ ρ(z•)
the attacker may learn by eavesdropping

(2) ∧k∈AEnc ∀{V1, . . . , Vk}V0 ∈ ρ(z•) : V0 ∈ ρ(z•)⇒ ∧ki=1Vi ∈ ρ(z•)
the attacker may learn by decrypting messages with keys already known

(3) ∀ V0, . . . , Vk : ∧ki=0Vi ∈ ρ(z•) ∧ BLen({V1, . . . , Vk}V0) ∈ BEnc ⇒ {V1, . . . , Vk}V0 ∈ ρ(z•)
the attacker may construct new encryptions using the keys known

(4) ∀V1, . . . , Vk : ∧ki=1Vi ∈ ρ(z•) ∧ BLen(V1) + . . .+BLen(Vk) ∈ Bκ ⇒ 〈V1, . . . , Vk〉 ∈ κ
the attacker may actively forge new communications

(5) {n•} ∪ Nf ⊆ ρ(z•)
the attacker initially has some knowledge

Table 3. The Attacker’s Capabilities

say that a process Psys has the type (Nf ,Aκ,AEnc) whenever: (1) it is close, (2)
all the free names of Psys are inNf . (3) all the arities used for sending or receiving
are in Aκ and (4) all the arities used for encryption or decryption are in AEnc.
Obviously, Nf , Aκ and AEnc are all finite and can be computed by inspecting
the process Psys.

In the complex type flaw analysis, each message sent to or received by prin-
cipals is viewed as a sequence of bits. Protocol participants then parse the bit
sequences into a number of fields as specified by the protocol. It is reasonable to
assume that each protocol participant knows the bit length of the expected mes-
sage beforehand and hence refuse to accept messages of different length. Under
this assumption, we say that the attacker can only send out messages, whose bit
length equals to one of the messages exchanged during the protocol execution.
We claim that the attacker will not gain anything more by sending out a message
of a different bit length. Similarly for encryptions, the attacker only generates
encryptions, whose bit length equals to one of the encryptions generated during
the protocol execution. Formally, we define a function, BLen, to represent the
bit length of names and encryptions:

BLen(V) : the bit length of the value V
BLen({V1, . . . , Vk}K) : the bit length of the encryption {V1, . . . , Vk}K

Furthermore, we require that

– the bit lengths of all the sending or receiving messages are in Bκ, and
– the bit lengths of all the encryptions are in BEnc

Obviously, Bκ and BEnc are all finite and can be computed by inspecting the
process Psys.

Given the assumptions as above, the extended Dolev-Yao condition for the
LYSA calculus can be expressed as the conjunction of the five components in the
Table 3.

Implementation Following [3], the implementation can be obtained along the
lines that first transform the analysis into a logically equivalent formulation writ-
ten in Alternation free Least Fixed Point logic (ALFP) [19], and then followed
by using the Succinct Solver [19], which computes the least interpretation of the
predicate symbols in a given ALFP formula.

3.2 Validate the Amended Needham-Schroeder Protocol

Here, we will show that the analysis applied to the Amended Needham-Schroeder
protocol, successfully captures the complex type confusion leading to the attack,
presented in the Introduction.

In LYSA, each instance of the protocol is modelled as three processes, A, B
and S, running in parallel within the scope of the shared keys. To allow the
complex type confusion arise, we put two instances together, and add indices to
names and variables used in each instance in order to tell them apart, namely

PNS = (ν KA)(ν KB)(A1 | A2 | B1 | B2 | S)
To save space, processes without indices are shown in Tab. 4. For clarity, each

message begins with the pair of principals involved in the exchange. In LYSA

we do not have other data constructors than encryption, but the predecessor
operation can be modelled by an encryption with the key PRED that is also
known to the attacker. For the sake of readability, we directly use N − 1. We

Initiator A :
/ ∗ 1 ∗ / 〈A,B,A〉.
/ ∗ 2 ∗ / (B,A;xenc)

l1 .
/ ∗ 3 ∗ / (ν NA)〈A,S,A,B,NA, xenc〉.
/ ∗ 4 ∗ / (S,A;xz)

l2 .

decrypt xz as {NA, B;xk, xy}l3KA in

/ ∗ 5 ∗ / 〈A,B, xy〉.
/ ∗ 6 ∗ / (B,A;xno)

l4 .

decrypt xn0 as {;xn}l5xk in
/ ∗ 7 ∗ / 〈A,B, {xn − 1}xk 〉.0

Responder B :

/ ∗ 1 ∗ / (A,B; ya)l6 .
/ ∗ 2 ∗ / (ν NB) 〈B,A, {ya, NB}KB 〉.

/ ∗ 5 ∗ / (A,B; yenc)
l7 .

decrypt yenc as {NB , A; yk}l8KB in

/ ∗ 6 ∗ / (ν N0)〈B,A, {N0}yk 〉.
/ ∗ 7 ∗ / (A,B; yn0)l9 .

decrypt yn0 as {N0 − 1}l10yk in 0

Server S :

/ ∗ 3 ∗ / (A,S,A,B; zna, zenc)
l11 .

decrypt zenc as {A; znb}l12KB in

/ ∗ 4 ∗ / (ν K)
〈S,A, {zna, B,K, {znb, A,K}KB}KA〉.0

(A) ∈ ρ(y1
a)

({A,N1
B}KB) ∈ ρ(x1

enc)
(N2

A) ∈ ρ(x1
y)

〈A,B,N1
A, {A,N1

B}KB 〉 ∈ κ

(B) ∈ ρ(z•)
(N1

A) ∈ ρ(z•)
〈A,B,N1

A, B, n•〉 ∈ κ
(N1

A, B, n•) ∈ ρ(y2
a)

(n•) ∈ ρ(x1
k)

〈A,B,N1
A, B, n•, N

2
A〉 ∈ κ

(N1
A, B, n•, N

2
A) ∈ ρ(x1

z)
l6 ∈ ψ

Table 4. Amended Needham-Schroeder protocol: specification (above); some analysis
results (below).

can apply our analysis and check that (ρ, κ) |= PNS : ψ, where ρ, κ and ψ have
the non-empty entries (only the interesting ones) listed in Tab. 4.

The message exchanges of the regular run (the first instance) performed by
A and B are correctly reflected by the analysis. In step 1, B receives the tuple
sent by A and binds variable y1

a to the value (A), as predicted by (A) ∈ ρ(y1
a).

In step 2, B generates a nonce N1
B , encrypts it together to the value of y1

a and
sends it out to the network. A reads this message, binds the variable x1

enc to the
value ({A,N1

B}KB), as reflected by ({A,N1
B}KB) ∈ ρ(x1

enc); then, in step 3, it
generates N1

A and sends it to S as a plain-text, together with x1
enc as predicted

by 〈A,S,N1
A, {A,N1

B}KB 〉 ∈ κ, and so on.
Moreover, the non-empty error component ψ shows that a multi-to-one bind-

ing may happen in the decryption with label l6 and therefore suggests a possible
complex type confusion leading to a complex type flaw attack.

By studying the contents of the analysis components ρ and κ, we can rebuild
the attack sequence. Since 〈A,S,N1

A, {A,N1
B}KB 〉 ∈ κ, then (N1

A) ∈ ρ(z•). This
corresponds to the fact that the attacker, able to intercept messages on the
net, can learn N1

A. The entry 〈A,B,N1
A, B, n•〉 ∈ κ reflects that the attacker

is able to constructs and sends to A a new message (N1
A, B, n•) to initiate the

second instance, where (n•) is within its knowledge. The entry (N1
A, B, n•) in

ρ(y2
a) corresponds to the fact A receives this message, by binding y2

a to the value
(N1

A, B, n•). This is a multi-to-one binding, detected by the analysis, as reported
by the error component: l6 ∈ ψ. Afterwards, A encrypts what she has received
with a new nonce N2

A and sends it out, as indicated by 〈A,B,N1
A, B, n•, N

2
A〉 ∈ κ.

The attacker replays this to A, who takes it as the message from S in the step
4 of the first instance ((N1

A, B, n•, N
2
A) ∈ ρ(x1

z)). The entry (n•) ∈ ρ(x1
k) reflects

that in decrypting message 4, A binds x1
k to the concatenation of values (n•) to

be used as the session key. After completing the challenge and response in step
6 and 7, A then believes she is talking to B using the session key K, but indeed
she is talking to the attacker using (n•) as the new key. This exactly corresponds
to the complex type flaw attack shown before.

The protocol can be modified such that each principal use different keys for
different roles, i.e. all the principals taking the initiator’s role Ai share a master
key Ki

A with the server and all the principals taking the responder’s role Bj
share Kj

B with the server. In this case, the analysis holds for ψ = ∅ and thereby
it guarantees absence of complex type confusions attacks.

Here, only two sessions are taken into account. However, as in [3], the pro-
tocol can be modelled in a way that multiple principals are participating in the
protocol at the same time and therefore mimic the scenario that several sessions
are running together. Due to space limitation, further details are skipped here.

4 Conclusion

We say that a complex type confusion attack happens when a concatenation of
fields in a message is interpreted as a single field. This kind of attacks is not easy
to deal with in a process algebraic setting, because message specifications are

given at a high level: the focus is on their contents and not on their structure. In
this paper, we extended the notation of variable binding in the process calculus
LYSA from one-to-one to multi-to-one binding, thus making it easier modelling
the scenario where a list of fields is confused with a single field. The semantics
of the extended LYSA makes use of a reference monitor to capture the possible
multi-to-one bindings at run time. We mechanise the search for complex type
confusions by defining a Control Flow Analysis for the extended LYSA calculus.
It checks at each input and decryption place whether a multi-to-one binding
may happen. The analysis ensures that, if no such binding is possible, then the
process is not subject to complex type flaw attacks at run time. As far as the
attacker is concerned, we adopted the standard notion from Dolev-Yao threat
model [8], and we enriched it to deal with the new kind of variable binding.

We applied our Control Flow Analysis to the Amended Needham-Schroeder
Protocol (as shown in Section 3), to Otway-Rees [20], Yahalom [6] (not reported,
because of lack of space). It has confirmed that we can successfully detect the
complex type confusions leading to type flaw attacks on those protocols. This
detection is done in a purely mechanical and static way. The analysis also con-
firms the complex type flaw attacks on a version of the Neuman-Stubblebine
protocol, found in [22].

The technique presented here is for detecting complex type flaw attacks only.
Simple type flaw attacks, i.e. two single fields of different types are confused with
each other, not considered here, have been addressed instead in [4]. There, under
a framework similar to the present one, a type annotation (type tags) is devel-
oped, to be attached to LYSA processes, for checking simple type confusions.
Besides the type tags, several kinds of annotations for LYSA has been developed
for validating various security properties, e.g. confidentiality [10], freshness [9]
and message authentication [3]. They can be easily combined with the annota-
tions introduced here, thus giving more comprehensive results.

Usual formal frameworks for the verification of security protocols need to be
suitably extended for modelling complex type flaw confusions. Extensions include
the possibility to decompose and rebuild message components, that we obtain by
playing with single, general and flattened values. In [5], for instance, the author
uses a concatenation operator to glue together different components in messages.
His approach is based on linear logic and it is capable of finding the complex
type flaw attack on the Otway-Rees protocol. Meadows [15, 16] approach is more
general and can address also even more complex type confusions, e.g. those due
to the confusion between pieces of fields of one type with pieces of another. The
author, using the GDOI protocol as running example, develops a model of types
that assumes differing capacities for checking types by principals. Moreover, she
presents a procedure to determine whether the types of two messages can be
confused, that also evaluates the likelihood of the misinterpretations in terms of
probability. In [13], using the AVISPA [2] model checking tool, type flaw attacks
of the GDOI protocol are captured. Furthermore, by using the Object-Z schema
calculus [23], as in some previous work, e.g. [12] the authors verify the attacks
at a lower level and find which are the low-level assumptions that leads to the

attacks and which are the requirements that prevent them. Type confusions are
captured also in [17], by using an efficient Prolog based constraint solver. The
above settings, especially the ones in [15, 16, 13], are more general than our.
They make it possible to capture more involved kind of type confusions in a
complex setting like the one of the GDOI protocol. Furthermore, we cannot
deal with probabilities. Our work represents a first step in modelling lower level
features of protocol specifications in a process algebraic setting, like the ones
that lead to type confusions. The idea is to only perform the refinement of the
high-level specifications necessary to capture the low-level feature of interest.
Our control flow analysis procedure always guarantees termination, even though
it only offers an approximation of protocols behaviour and of their dynamic
properties. Here we focussed on a particular kind of confusions, leaving other
kind of type confusions for future work. We also would like to move to the
multi-protocol setting, where the assumptions adopted in each protocol could
be different, but messages could be easily confused, e.g. because of the re-use of
keys.

References

1. M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi
Calculus. Information and Computation, 148(1): 1-70, 1999.

2. A. Armando et Al. The AVISPA tool for the automated validation of internet se-
curity protocols and applications. In Proc. of the 17th International Conference on
Computer-Aided Verification (CAV), LNCS 3576, pp. 281-285, Springer, 2005.

3. C. Bodei, M. Buchholtz, P. Degano, F. Nielson and H. Riis Nielson. Static Validation
of Security Protocols. Journal of Computer Security, 13(3): 347 - 390, 2005.

4. C. Bodei, P. Degano, H. Gao and L. Brodo. Detecting and Preventing Type Flaws:
a Control Flow Analysis with tags. In Proc. of 5th International Workshop on
Security Issues in Concurrency (SecCO), ENTCS, 2007.

5. M. Bozzano. A Logic-Based Approach to Model Checking of Parameterized and
Infinite-State Systems. PhD Thesis, DISI, University of Genova, 2002.

6. M. Burrows, M. Abadi and R. Needham. A Logic of Authentication. TR 39, Digital
Systems Research Center, February, 1989.

7. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0,
1997. http://www.cs.york.ac.uk/∼jac/papers/drareviewps.ps.

8. D. Dolev and A. C. Yao. On the Security of Public Key Protocols. IEEE TIT,
IT-29(12):198-208, 1983.

9. H. Gao, C. Bodei, P. Degano, and H. Riis Nielson. A Formal Analysis for Capturing
Replay Attacks in Cryptographic Protocols. In Proc. of the 12th Annual Asian
Computing Science Conference (ASIAN), LNCS 4846: 150-165, Springer, 2007.

10. H. Gao and H. Riis Nielson. Analysis of LYSA calculus with explicit confidential-
ity annotations. In Proc. of Advanced Information Networking and Applications
(AINA), IEEE Computer Society, 2005.

11. J. Heather, G. Lowe and S. Schneider. How to prevent type flaw attacks on security
protocols. In Proc. of the 13th Computer Security Foundations Workshop (CSFW),
IEEE Computer Society Press, 2000.

12. B. W. Long. Formal verification of a type flaw attack on a security protocol using
Object-Z. In 4th International Conference of B and Z Users, ZB, LNCS 3455:
319–333, 2005.

13. B. W. Long, Colin J. Fidge David A. Carrington. Cross-layer verification of type
flaw attacks on security protocols. In Proc. of the 30th Australasian conference on
Computer science - Volume 62, 2007.

14. C. Meadows. Analyzing the Needham-Schroeder public key protocol: A comparison
of two approaches. In Proc. of European Symposium on Research in Computer
Security. Springer, 2006.

15. C. Meadows. Identifying potential type confusion in authenticated messages. In
Proc. of Workshop on Foundation of Computer Security (FCS), pp. 75-84, 2002.
Copenhagen, Denmark, DIKU TR 02/12.

16. C. Meadows. A procedure for verifying security against type confusion attacks. In
Proc. of the 16th Workshop on Foundation of Computer Security (CSFW), 2003.

17. J. Millen, V. Shmatikov. Constraint Solving for Bounded-Process Cryptographic
Protocol Analysis. ACM Conference on Computer and Communications Security,
2001: 166-175.

18. R. Milner. Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

19. F. Nielson, H. Seidl, and H. R. Nielson. A Succinct Solver for ALFP. Nordic
Journal of Computing, 9:335-372, 2002.

20. D. Otway and O. Rees. Efficient and timely mutual authentication. ACM Operating
Systems Review, 21(1):8-10, 1987.

21. E. Snekkenes. Roles in cryptographic protocols. In Proc. of the Computer Secu-
rity Symposium on Research in Security and Privacy, pp. 105-119. IEEE Computer
Society Press, 1992.

22. P. Syverson and C. Meadows. Formal requirements for key distribution protocols.
In Advances in Cryptology - EUROCRYPT, LNCS 950: 320-331. Springer, 1994.

23. J. B. Wordsworth. Software development with Z - A practical approach to formal
methods in software engineering. International Computer Science Series. Addison-
Wesley Publishers Ltd., London, 1992.

5 Appendix

We present the complete list of lemmata and theorems concerning the semantics
correctness, endowed with the corresponding proofs.

The first lemma shows that the analysisonly distinguish processes up to as-
signment of canonical names.

Lemma 2. (Invariance of canonical names) If (ρ, κ) |= P and bnc = bn′c
then (ρ, κ) |= P [n 7→ n′].

Definition 2. (Disciplined α−equivalence) Two process P1 and P2 are dis-
ciplined α−equivalence whenever P1

α≡ P2 with the extra requirement that bn1c =
bn2c.

Since the disciplined α-equivalence cannot modify canonical names, then the
analysis results for two α-equivalent processes are the same.

Lemma 3. (Invariance of α-equivalence) If (ρ, κ) |= P and P is disciplined
α-equivalent to P ′, then (ρ, κ) |= P ′.

We need to prove two further lemmata. The first states that estimates are
resistant to substitution of closed terms for variables, and it holds for both
extended terms and processes.

Lemma 4. (Substitution results)

1. ρ |= E : ϑ and (T1, . . . , Tk) ∈ ρ(x) imply ρ |= E[T1, . . . , Tk/x] : ϑ
2. (ρ, κ) |= P : ψ and (T1, . . . , Tk) ∈ ρ(x) imply (ρ, κ) |= P [T1, . . . , Tk/x] : ψ

Proof. Part 1 The proof proceeds by structural induction over expression by
regarding each of the rules in the analysis.

Case (Name). Assume that E = n and ρ |= n : ϑ. For arbitrary choices of
x and T1, . . . , Tk, it holds that n[T1, . . . , Tk/x] = n so it is immediate that also
ρ |= n[T1, . . . , Tk/x] : ϑ.

Case (Variable). Assume that E = x′ and ρ |= x′ : ϑ, i.e. that ρ(x′) ⊆ ϑ.
Then there are two cases. Either x′ 6= x in which case x′[T1, . . . , Tk/x] =
x′ so clearly ρ |= x′[T1, . . . , Tk/x] : ϑ. Alternatively, x′ = x in which case
x′[T1, . . . , Tk/x] = (T1, . . . , Tk). Furthermore assume that (T1, . . . , Tk) ∈ ρ(x)
and because ρ(x′) ⊆ ϑ, it holds that ρ |= (T1, . . . , Tk) : ϑ in which case
ρ |= x′[T1, . . . , Tk/x] : ϑ by the analysis.

Case (Symmetric Encryption). Assume that E = {E1, . . . , Ek}E0 , i.e.
ρ |= {E1, . . . , Ek}E0 : ϑ. The result holds by applying the induction hypothesis
on each individual Ei.

Proof. Part 2 The proof is done by straightforward induction applying the in-
duction hypothesis on any sub-process and lemma 3.1 on any sub-terms.

The second lemma says that an estimate for an extended processes P is valid
for every process congruent to P , as well.

Lemma 5. (Invariance of Structural Congruence) If P ≡ Q and (ρ, κ) |=
P then (ρ, κ) |= Q

Proof. The proof amounts to a straightforward inspection of each of the clauses
defining P ≡ Q.

The analysis of a value simply evaluates to the canonical value.

Lemma 6. (Evaluation of values) The analysis ρ |= V : ϑ holds if and only
if V ∈ ϑ.

Proof. The proof is by induction in the structure of values. Remember that
values, V , are expressions without variables, the proof is straightforward.

We are now ready to state the subject reduction result. It expresses that our
analysis is semantically correct regardless of the way the semantics is parame-
terised, furthermore the reference monitor semantics cannot stop the execution
of P when ψ is empty.

Theorem 3. (Subject reduction) If P → Q and ρ, κ, ψ |= P then also ρ, κ, ψ |=
Q. Furthermore, if ψ = ∅ then P →RM Q

Proof. By induction on the inference of P → Q.
In case (Com) we assume (ρ, κ) |= 〈V1, . . . , Vk〉.P | (V ′1 , . . . , V ′j ;xj+1, . . . , xt)l.Q :

ψ which amounts to:
(a)∧ki=1ρ |= Vi : ϑi
(b)∀V1, . . . , Vk : ∧ki=1Vi ∈ ϑi ⇒ 〈T1, ..., Ts〉 ∈ κ where T1, ..., Ts = Fl((V1, ...Vk))
(c)(ρ, κ) |= P : ψ
(d)∧ji=1ρ |= V ′i : ϑ′i
(e)∀V ′1, . . . , V ′j : ∧ji=1V

′
i ∈ ϑi ∧ Fl(V ′1 , ..., V

′
j) = T ′1, ..., T

′
len ⇒

∀〈T1, . . . , Ts〉 ∈ κ : T1, . . . , Tlen = T ′1, . . . , T
′
len ⇒

∀(T̃j+1, . . . , T̃t) ∈
∏
t−j(Tlen+1, . . . , Ts)⇒

∧ti=j+1 T̃i ∈ ρ(xi) ∧ (ρ, κ) |= P : ψ
Moreover we assume that ∧ji=1Ti = T ′i and k ≥ t because
〈V1, . . . , Vk〉.P | (V ′1 , . . . , V ′j ;xj+1, . . . , xt).Q→ P |Q[T̃j+1/xj+1, . . . , T̃k/xk] where
(T̃j+1, . . . , T̃t) ∈

∏
t−j(Tj+1, . . . , Tk), and we have to prove that

ρ, κ, ψ |= P | Q[T̃j+1/xj+1, . . . , T̃k/xk].
From (a) we have ∧ki=1Vi ∈ ϑi since ∧ki=1fv(Vi) = ∅ and then (b) gives

〈T1, . . . , Tk〉 ∈ κ since T1, . . . , Tk = Fl(V1, . . . , Vk). From (d) and the assumption
∧ji=1Ti = T ′i we get ∧ji=1Vi ∈ ϑ′i. Apparently, (V1), . . . , (Vj) = Fl(V1, . . . , Vj) and
len = j. (e) gives ∀(T̃ ′j+1, . . . , T̃

′
t) ∈

∏
t−j(Tk−j , . . . , Tk) ⇒ ∧ti=j+1 T̃

′
i ∈ ρ(xi))

and ρ, κ, ψ |= Q.
The substitution result then gives ρ, κ, ψ |= Q[T̃ ′j+1/xj+1, . . . , T̃

′
t/xt] and

together with (c) this gives the required result.
For the second part of the result we observe that ¬RM(s, len+ t− j)⇒ l ∈ ψ

follows from (e) and since ψ = ∅ and len = j it must the case that t = k. Thus
the condition of the rule (Com) are fulfilled for →RM .

The case (Dec) is analogous.
Cases (New), (Par) and (Rep) follow directly from the induction hy-

pothesis.
The case (Congr) also uses the congruence result.

The next result shows that our analysis correctly predicts when we can safely
do without the reference monitor. We shall say that the reference monitor RM
cannot abort a process P when there exist no Q,Q′ such that P →∗ Q→ Q′ and
P →∗RM Q 9RM. As usual, “*” stands for the transitive and reflexive closure of
the relation in question (we omit the string of labels in this case), and Q 9RM

stands for 6 ∃Q′ : Q→RM Q′. We then have:
Theorem 4. (Static check for reference monitor) If ρ, κ, ψ |= P and ψ =
∅ then RM cannot abort P .
Proof. Suppose per absurdum that such Q and Q′ exist. A straightforward in-
duction extends the subject reduction result to P →∗ Q giving ρ, κ, ψ |= Q and
ψ = ∅. The part 2 of the subject reduction result applied to Q → Q′ gives
Q→RM Q′ which is a contradiction.

