

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-08-13

Hard life with weak binders

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy

Roberto Zunino

Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

June 9, 2008

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Hard life with weak binders

Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari

Dipartimento di Informatica, Università di Pisa, Italy

Roberto Zunino

Dipartimento di Informatica e Telecomunicazioni, Università di Trento, Italy

June 9, 2008

Abstract

We introduce weak binders, a lightweight construct to deal with
fresh names in nominal calculi. Weak binders do not define the scope
of names as precisely as the standard ν-binders, yet they enjoy strong
semantic properties. We provide them with a denotational seman-
tics, an equational theory, and a trace inclusion preorder. Further-
more, we present a trace-preserving mapping between weak binders
and ν-binders.

1 Introduction

Over the last few years naming has been envisaged as a suitable abstraction
for capturing and handling a variety of computational concepts, like dis-
tributed objects, cryptographic keys, session identifiers. Also, the dynam-
icity issues usually arising in distributed computing (e.g., network reconfig-
uration, module versioning) may be usefully explained in terms of naming
disciplines such as fresh name generation, binding and scoping rules. The π-
calculus [9, 14] is probably the most illustrative example of nominal calculi,
in which many of the concepts outlined above have been formally modelled
and explained.

Nominal calculi manipulate names via explicit binders that define their
scope. The standard example is the π-calculus restriction operator νn. A
ν-binder also declares that a fresh name has to be created. A broad variety
of formal theories [6, 7, 16, 13, 10, 11, 3] developed in the last few years
shows the intrinsic difficulties of handling naming and freshness.

This paper aims at contributing to this line of research. Our motivating
starting point is to understand what is the actual gain in using ν-binders
to deal with fresh names. Indeed, the equational theory of ν-binders allows
for freely moving them almost anywhere in a process (except escaping from

1

a recursion). So, one might wonder whether ν-binders can be omitted in a
process, and replaced by a more primitive construct, e.g. an atomic action
to be interpreted as a gensym() that explicitly creates a fresh name.

We introduce a nominal calculus with weak binders, a construct for gen-
erating fresh names as an atomic action, without explicit ν-binders. Our
calculus slightly extends Bergstra and Klop’ Basic Process Algebras [2], by
allowing parametrized atomic actions α(r), that abstract from dispatching
the action α to the object r. Objects can be freshly created through the
special action new(n), our “weak binder”.

We study under which conditions a weakly bound process can be treated
coherently with a process with ν-binders. For instance, in the weakly bound
process p = new(n) ·α(n)+new(m) ·α(m) there is no confusion between the
scopes of the “bound” names n and m, and so p is equivalent to the “strongly
bound” process P = νn.νm.(new(n) ·α(n) + new(m) ·α(m)). We shall then
say that p is well-bound, and that P is its bindification. This transformation
makes precise the scopes of names in weakly bound processes, by inserting
the ν-binders at the right points. This is not always possible, however, e.g.
in the process new(n) · (ε + new(n)) · α(n) there is an inherent ambiguity,
because we cannot tell whether the action α has to be done on the object
created by the first or by the second new. When bindification is possible, we
prove that the semantics of the weakly bound and of the bindified processes
are trace equivalent.

A further contribution is the definition of a trace inclusion preorder -

for weakly bound processes. We prove that when p - q, the traces of
p are included in those of q. We then compare this preorder with a trace
inclusion preorder for strongly bound processes. Preorders of processes are a
relevant and non-trivial aspect of subtyping/subeffecting for type and effect
systems [1]. Also, such preorders can be exploited to study the compliance
of contracts with implementations and subcontract relations in calculi for
Web services [4, 5].

We envisage the impact of our approach as follows. Our main result is
the formal definition of an agile methodology for handling the freshness of
names without resorting to explicit binders. Indeed, the overall outcome
of our semantical investigation consists in the full characterization of weak
binders. We have proved that weak binders still enjoy interesting semantic
properties, comparably to what can be obtained through ν-binders. We
have successfully exploited the theory of weak binders to develop the static
machinery (a type and effect system and a model checker) of a linguistic
framework for resource usage control [1]. As a downside, we have found
that weak binders, having a weaker structure than ν-binders, may make the
life hard when going into the proofs.

The paper is organized as follows. We first introduce a calculus with
explicit ν-binders, we give its operational and denotational semantics, and
we show them fully abstract. We then remove ν-binders, and define a de-

2

notational semantics and an equational theory of weakly bound processes.
Then, we define the bindify transformation, and we state its correctness:
the bindification of a weakly bound process p is trace equivalent to p. After
that, we compare the equational theories and the trace inclusion preorders
of strongly bound and weakly bound processes. We conclude by reporting
our experience about using weak binders, and by discussing some related
work. The Appendixes contain the proofs of all our statements.

2 Strongly bound processes

We now introduce a process calculus with name binders, building upon Basic
Process Algebras (BPAs, [2]). Our calculus shares with BPAs the primitives
for sequential composition, for non-deterministic choice, and for recursion
(though with a slightly different syntax). Quite differently from BPAs, our
atomic actions (called events) have a parameter, which indicates the resource
upon which the action is performed. Resources r, r′, . . . ∈ Res are system
objects that can either be already available in the environment or be created
at run-time. Resources can be accessed through a given finite set of actions
α, α′,new, . . . ∈ Act. The special action new represents the creation of a
fresh resource: this means that for each dynamically created resource r, the
event new(r) must precede any other α(r). An event α(r) ∈ Ev abstracts
from accessing the resource r through the action α. We also have events the
target of which is a name n, n′, . . . ∈ Nam, to be bound by an outer ν. Since
the name binders are explicit in this calculus, we call its processes strongly
bound, whose abstract syntax is given in Def. 2.1.

Definition 2.1. Syntax of strongly bound processes

P, Q ::= ε empty process
h variable
α(ρ) event (ρ ∈ Res ∪ Nam)
νn.P resource binding
P · Q sequential composition
P + Q choice
µh.P recursion

In a recursion µh.P , the free occurrences of h in P are bound by µ. In
the construct νn. P , the ν acts as a binder for the free occurrences of the
name n in P . The intended meaning is to keep track of the binding between
n and a freshly created resource. A process is closed when it has no free
names and variables.

The behaviour of a strongly bound process is described by the set of
sequential traces (typically denoted by η, η′, . . . ∈ Ev

∗) of its events. As

3

usual, ε denotes the empty trace, and εη = η = ηε. The trace semantics
JP Kop of a closed, strongly bound process P , is a function from finite set of
resources to sets of traces (Def. 2.2). We first introduce an auxiliary labelled
transition relation P,R

a
−→ P ′,R′ (where a ∈ Ev ∪ {ε} and R ⊂ Res). The

set R in configurations accumulates the resources created at run-time, so
that no resource can be created twice, e.g.

(νn.new(n)) · (νn.new(n)), ∅
ε

−−−−→ new(r0) · (νn.new(n)), {r0}

new(r0)
−−−−−→ νn.new(n), {r0}

/−−−−→ new(r0), {r0}

The labelled transition relation is then exploited in the definition of JP Kop,
which contains two kinds of traces. First, we include in JP Kop all the traces
for terminating executions, i.e. those leading to ε. Then, we add all the
prefixes of all executions, and mark these truncated traces with a trailing !
symbol. Here, we just let ! be a distinguished event not in Ev. Including these
η! prefixes in JP Kop is useful, since they allow us to observe non-terminating
computations.

Definition 2.2. Trace semantics of strongly bound processes

α(r), R
α(r)
−−→ ε, R∪ {r} νn. P, R

ε
−→ P{r/n}, R∪ {r} if r 6∈ R

ε · P, R
ε
−→ P, R P · Q, R

a
−→ P ′ · Q, R′ if P, R

a
−→ P ′, R′

P + Q, R
ε
−→ P, R P + Q, R

ε
−→ Q, R µh. P, R

ε
−→ P{µh. P/h}, R

The trace semantics JP Kop(R) is then defined as

JP Kop(R) = { η | P, R
η
−→ ε, R′ } ∪ { η! | P, R

η
−→ P ′, R′ }

Example 1. Consider the following strongly bound processes:

P0 = µh. α(r) · h P1 = µh. h · α(r) P2 = µh. νn. (ε + α(n) · h)

Then, JP0K
op(∅) = α(r)∗!, i.e. P0 generates traces with an arbitrary, finite

number of α(r). Note that all the traces of P0 are non-terminating (as
indicated by the !) since there is no way to exit from the recursion. Instead,
JP1K

op(∅) = {!}, i.e. P1 loops forever, without generating any events. The
semantics of JP2K

op(∅) consists of all the traces of the form α(r1) · · ·α(rk)
or α(r1) · · ·α(rk)!, for all k ≥ 0 and pairwise distinct resources ri.

The denotational semantics JP Ks
θ of a strongly bound process P is given

below (Def. 2.4) as a function Y in a cpo Ds, to be defined in a while. We
first let D0 be {X ⊆ Ev

∗ ∪ Ev
∗! | ! ∈ X }, that is the cpo of sets X of traces

4

such that ! ∈ X. Then we let Dh be the cpo Pfin(Res) ⇀ D0 (where ⇀
denotes partiality). Finally, Ds is the cpo (Nam → Res) → Dh Intuitively,
JP Ks

θ(χ)(R) contains all the possible traces of P . The first argument χ ∈
Nam → Res records the bindings between names and resources. The second
argument R ∈ Pfin(Res) is a finite set of resources which indicates those
already used, so to make them unavailable for future creations. As usual,
the parameter θ binds the free variables of P (in our case, to values in Dh).

Before giving the semantics, it is convenient to introduce some auxiliary
definitions that help in composing traces sequentially (see Def. 2.3 below).

The operator ⊙ ensures that all the events after a ! are discarded. For
instance, the process P = (µh. h) · α(r) will never fire the event α(r),
because of the infinite loop that precedes the event. The composition
of the semantics of the first component µh. h is { !}, while the seman-
tics of α(r) is { ! , α(r), α(r) !}. Combining the two semantics results in
{ !} ⊙ { ! , α(r), α(r) !} = { !}.

The operator ½ takes two semantics and combines their traces sequen-
tially. While doing that, it records the resources created, so to avoid that a
resource is generated twice. For instance, let P = (νn.new(n))·(νn′.new(n′)).
The traces of the right-hand side νn′.new(n′) must not generate the same
resources used in the left-hand side νn.new(n), e.g. new(r0)new(r0) is not a
possible trace of P .

The definition of ½ exploits the auxiliary operator R, that computes the
set of resources occurring in a trace η. Also, ↓∈ R(η) indicates that η is
terminating, i.e. it does not contain any !s.

Definition 2.3. Let X ∈ D0, and x ∈ Ev∪{ !}. We define x⊙X and η⊙X
as follows:

x ⊙ X =

{

{x η | η ∈ X } if x 6= !

{x} if x = !
(a1 · · · an) ⊙ X = a1 ⊙ · · · ⊙ an ⊙ X

Given Y0, Y1 ∈ Ds, their composition Y0 ½ Y1 is:

Y0 ½ Y1 = λχ,R.
⋃

{ η0 ⊙ Y1(χ)(R∪ R(η0)) | η0 ∈ Y0(χ)(R) }

where R(η) is defined inductively as follows:

R(ε) = {↓} R(η α(r)) = R(η) ∪ {r} if ! 6∈ η R(η !η′) = R(η) \ {↓}

5

Definition 2.4. Denotational semantics of strongly bound processes

JεKs
θ = λχ,R. { ! , ε} JhKs

θ = λχ,R. θ(h)(R)

Jα(ρ)Ks
θ = λχ,R.

{

{ ! , α(ρ), α(ρ) !} if ρ = r

{ ! , α(χ(n)), α(χ(n)) !} if ρ = n
JP · QKs

θ = JP Ks
θ ½ JQKs

θ

Jνn. P Ks
θ = λχ,R.

⋃

r 6∈R JP Ks
θ(χ{r/n})(R∪ {r}) JP + QKs

θ = JP Ks
θ ⊔ JQKs

θ

Jµh.P Ks
θ = λχ,R.

⋃

i≥0

(

λZ. λR̄. JP Ks
θ{Z/h}(χ)(R̄)

)i
(λR.{ !}) (R)

The semantics of an event α(r) comprises the possible “truncations” of
{α(r)}, i.e. ! , α(r) ! and α(r) (notice that ! is always included in the se-
mantics of all P , coherently with the definition of the trace semantics). The
semantics of α(n) is similar, but it looks in χ for the resource associated with
n. The semantics of νn. P joins the semantics of P , where the parameters
R and χ are updated to record the binding of n with r, for all the resources
r not yet used in R. The semantics of P · Q combines the semantics of P
and Q with the operator ½. The semantics of P + Q is the least upper
bound of the semantics of P and Q. The semantics of a recursion µh. P is
the least upper bound of f i(λR.{ !}), where f(Z) = λR̄. JP Ks

θ{Z/h}(χ)(R̄).

Since f is continuous and λR.{ !} is the bottom element of the cpo Dh, then
f i(λR.{ !}) is an ω-chain, and its least upper bound is the least fixed point
of f .

The following theorem states that the denotational semantics of strongly
bound processes is fully abstract with respect to their operational semantics.

Theorem 2.5 (Full abstraction). Let R be a finite sets of resources, and
let ∅ be the empty mapping. Then, for all closed strongly bound processes
P :

JP Kop(R) = JP Ks
∅(∅)(R)

3 Weakly bound processes

In strongly bound processes, the ν-binders precisely define the scope of
names. However, classical equational theories [8] for these processes usually
allow binders to be floated out, towards the top-level, e.g. in P0 + νn. P1 =
νn. P0 + P1, under the usual conditions. Indeed, the binder can always
be brought outside a context, provided that 1) no recursion boundary is
crossed, i.e. in µh. νn.P the binder cannot be moved outside, and 2) no
name in the context is captured. Because of this, it is often convenient to
define a normal form for processes, where all the binders are placed at their

6

top-most position, i.e. at the top-level or just under a recursion. These are
standard and well-known facts about process algebras.

One might wonder what information is actually carried by the presence
of the ν-binders. From an operational point of view, we can see them as
the points where resources are created. In our setting, this information is
also carried by the new events. Therefore, it is interesting to study whether,
under this assumption, we can neglect placing binders in our processes, and
let the new events to define, at least in some loose way, the scope of names.

To this purpose, we now introduce weakly bound processes, which have
no ν-binders (Def. 3.1). For instance, let p = new(n) ·α(n)+new(m) ·α′(m).
Here, the event new(n) binds the name n, while new(m) binds m. We
shall later on define a semantics of weakly bound processes such that p is
equivalent to the strongly bound process (νn.new(n) ·α(n))+ (νm.new(m) ·
α′(m)), as the intuition suggests.

While weakly bound processes may make our reasoning more agile, we
must not neglect that, unlike in the strongly bound case, weakly bound
processes are possible where names have no clear scope. E.g., in new(n) ·
(new(n)+ε)·α(n) it is not clear what binds the last occurrence of n. Roughly,
these troublesome processes are those that can be derived from a strongly
bound process by neglecting to α-convert some name while enlarging the
scope of a ν-binder, yielding to unwanted name captures. We shall return
to this point in Sect. 4.

Definition 3.1. Syntax of weakly bound processes

p, q ::= ε empty process
h variable
α(ρ) event (ρ ∈ Res ∪ Nam)
new(n) resource creation
p · q sequential composition
p + q choice
µh.p recursion

Free names in weakly bound processes have to be dealt with quite pecu-
liarly, because of the absence of ν-binders. Consider e.g. p = p′ ·α(n). To tell
whether n is free in p we have to inspect p′. For example if p′ = new(n), we
shall consider n as non-free; instead, if p′ = ε, the name n is obviously free.
Given p′, we define which names are bound by p′, so to extend the scope of
the names of p′ when it occurs at the left of another process, as in p′ · p′′.
Non-determinism complicates matters: it might happen than a process p′

binds a name to a resource only in some, but not all, of its execution, e.g.
p′ = new(n) + ε. So, we define two sets of names, the must-bound names
bn¤(p) and the may-bound names bn⋄(p), for the names that are bound in

7

every execution of p, and the names that are bound in some execution of
p, respectively (see Def. 3.2). So, if p′ = new(n) + ε, we have bn¤(p′) = ∅
and bn⋄(p′) = {n}. Note that the sets bn¤(p′) and bn⋄(p′) can be seen
as static approximations for the actual run-time bindings created by the
process p′. Of course, bn¤(p) ⊆ bn⋄(p). Note that no “weak” binding can
escape a recursion, as real ν-binders cannot cross recursive contexts. So, in
(µh.new(n) · h + ε) · α(n) the last n is free, and is unrelated to the new(n)
event under the µh. Therefore, the bound names (both must and may) of
a recursion are empty.

Definition 3.2. Must-bound names bn¤(p), may-bound names
bn⋄(p)

bn¤(ε) = bn¤(h) = ∅ bn¤(α(ρ)) =

{

{n} if α = new and ρ = n

∅ otherwise

bn¤(p · q) = bn¤(p) ∪ bn¤(q) bn¤(p + q) = bn¤(p) ∩ bn¤(q) bn¤(µh. p) = ∅

bn⋄(p) =

{

bn¤(p) if p = ε, h, α(ρ), µh. p′

bn⋄(p′) ∪ bn⋄(p′′) if p = p′ + p′′ or p = p′ · p′′

We can now define the free names fn(p) of a weakly bound process p.
This is mostly standard, except that must-bound names are checked to single
out captured names. The choice of using must-bound names instead of may-
bound names is done so that, e.g. in p = (new(n)+ε) ·α(n) we consider n as
free. This has the nice property that, whenever fn(p) = ∅, in no execution
of p we will attempt to fire an event α(n) without a proper binding for n.

Definition 3.3. Free names fn(p)

fn(h) = ∅ fn(α(ρ)) =

{

{n} if ρ = n and α 6= new

∅ otherwise

fn(µh. p) = fn(p) fn(p + q) = fn(p) ∪ fn(q)

fn(ε) = ∅ fn(p · q) = fn(p) ∪ (fn(q) \ bn¤(p))

We now define a denotational semantics of weakly bound processes. Un-
like in the case of strongly bound processes, where the result of the semantics
was a set of event traces, here we also need to keep track of the bindings
generated by the new events. We shall then use sets of pairs (η, χ) in-

8

stead of sets of traces η. Note that this difference – the extra χ – between
the semantic domains for the strongly/weakly bound processes is exactly
the same difference between the classic domains for programming languages
with static/dynamic scoping.

As we did with strongly bound processes in Def. 2.3, we introduce the
auxiliary operators ⊙ and ½ to handle sequential composition.

The operator ⊙ merges two pairs (η, χ), so ensuring that all the events
after a ! are discarded, as well as the bindings created after the !. For
example, (η!, χ) ⊙ (η′, χ′) = (η!, χ), discarding both η′ and χ′. Here we
also use two cpos, D1 and Dw, to play the role of D0 and Ds used for
strongly bound processes. We let D1 be the cpo of sets X of pairs (η′, χ′)
such that there exists a pair in X with η′ = !. Formally, D1 is the cpo
{X ⊆ (Ev

∗ ∪ Ev
∗ !) × (Nam → Res) | ∃χ′. (! , χ′) ∈ X }.

Definition 3.4. Let a ∈ Ev ∪ { !}, X ∈ D1, (η, χ), (η′, χ′) ∈ X. We define
⊙ as follows:

(a, χ) ⊙ (η′, χ′) =

{

(a, χ) if a = !

(aη′, χ′) otherwise

(η, χ) ⊙ (η′, χ′) = (a1, χ) ⊙ · · · ⊙ (ak, χ) ⊙ (η′, χ′) if η = a1 · · · ak

(η, χ) ⊙ X = { (η, χ) ⊙ (η̄, χ̄) | (η̄, χ̄) ∈ X }

The operator ½ takes two semantics Y0 and Y1 and combines their traces
sequentially. In Y0 ½Y1 the bindings (i.e. the χ) generated by Y0 are passed
to Y1, so that e.g. new(n) · α(n) works as expected.

Definition 3.5. Let Dw = (Nam → Res) → Pfin(Res) ⇀ D1 be the cpo of
functions from functions from names to resources, to the finite subsets of Res

to D1 (where ⇀ denotes partiality). Given Y0, Y1 ∈ Dw, their composition
Y0 ½ Y1 is:

Y0 ½ Y1 = λχ,R.
⋃

{ (η0, χ0) ⊙ Y1(χ0)(R∪ R(η0)) | (η0, χ0) ∈ Y0(χ)(R) }

The denotational semantics JpKw
θ of a weakly bound process p is defined

as a function Y ∈ Dw, where we assume that Y (χ)(R) is defined only if
R ⊇ ran(χ). The parameter θ is a mapping from the free variables h of p
to Dh.

9

Definition 3.6. Denotational semantics of weakly bound processes

Below, we let setχI = { (η, χ) | η ∈ I }.

JεKw
θ = λχ,R. setχ{ ! , ε} JhKw

θ = λχ,R. setχθ(h)(R)

Jα(ρ)Kw
θ = λχ,R.

setχ{ ! , α(ρ), α(ρ) !} if ρ = r

setχ{ ! , α(χ(n)), α(χ(n)) !} if ρ = n ∈ dom(χ)

{(! , χ)} ∪
⋃

r 6∈R setχ{r/n}{α(r), α(r) !} if
ρ = n 6∈ dom(χ)
and α = new

Jp · qKw
θ = JpKw

θ ½ JqKw
θ Jp + qKw

θ = JpKw
θ ⊔ JqKw

θ

Jµh.pKw
θ = λχ,R. setχ

⋃

i≥0

(

λZ.λR̄. fst(JpKw
θ{Z/h}(χ|dom(χ)\bn⋄(p))(R̄))

)i
(λR.{ !}) (R)

The semantics above is similar to the one for strongly bound processes,
so we just comment on the differences. First, each trace η has now been
bundled with its generated bindings χ. Related to this, now the new(n)
event creates the actual binding, which augments the χ at hand. Note that
we assume the operators ∪ and ⊔ to be undefined when one of the arguments
is undefined. This must hold also for ⊙ and ½, so making e.g. the semantics
of (new(n)+ ε) ·α(n) undefined when n 6∈ dom(χ), since in one branch α(n)
is evaluated without a proper binding for n.

The semantics of recursion variables h is peculiar. First, note that we
chose the semantics parameter θ so that θ(h) is an element of Dh and not of
Dw. This is because, when recursion is involved, the bindings of names must
not be propagated: this is strictly related to the fact that ν-binders cannot
cross a recursive context in strongly bound processes. For example, in the
strongly bound process µh. νn. P · h · P ′ there is no way for the resource
bound to n to be “passed” to the inner “call” to h; similarly, if the inner
“call” generates a binding, it cannot be “returned” so to interfere with P ′.
Of course, this would change if we allowed a more complex form of recursion
where h can take a resource as an argument. Returning to the semantics of
h, since θ(h) ∈ Dh needs no χ, then it suffices to pass it an R, and then
augment the returned set of traces with χ. This is accomplished by the setχ

function.
The semantics of the recursion µh. p is quite similar to the one for

strongly bound processes. For the reasons explained above, we compute
a fixed point over Dh and not Dw. This means that we have to adapt the
semantics of p, which is in Dw, to a function in Dh. More concretely, we just
need to provide χ to JpKw and ignore the χ returned by it. The latter is done

10

by a trivial left projection, the fst in the actual formula. The χ we pass,
instead, is the top-level χ – the one provided to the whole recursive process
– after the bindings which affect bn⋄(p) have been filtered out. This filtering
is needed to prevent from name confusion e.g. in new(n) · (µh.new(n) · p),
where the outer n is unrelated to the inner one. Aside from this, the fixed
point is computed exactly as for the strongly bound processes, exploiting
the continuity of f(Z) = λR̄. fst(JpKw

θ{Z/h}(χ
′)(R̄)).

4 Bindifying weakly bound processes

To make precise the scope of names in weakly bound processes, we shall
translate them into strongly bound processes, through the transformation
bindify (Def. 4.2). This transformation will insert the ν-binders at the right
points, provided that the introduced scopes of names do not interfere dan-
gerously. We shall call well-bound those weakly bound processes that can be
safely translated into strongly bound ones. To help the intuition, we shall
first give some examples.

Example 2. Consider the weakly bound processes:

p1 = new(n) · new(n) · α(n) p2 = α(n) · new(n) p3 = new(n) + α(n)

p4 = (ε + new(n)) · α(n) p5 = new(n) · (µh. (ε + new(n) · h)) · α(n)

The processes p1, p2, p3, p4 are not well-bound. If p1 were such, its bindifica-
tion would either be νn.new(n) · (νn.new(n)) ·α(n) – where α is performed
on the resource generated by the outer ν-binder – or νn.new(n)·(νn.new(n)·
α(n)) – where α acts on the resource of the inner binder. Because of this
possible ambiguity, we treat p1 as not well-bound. The process p2 is not well-
bound, too, because it would produce an ill-formed trace α(r)new(r) where
the event α(r) is fired before the event new(r) that signals the creation of r.
Similarly, the process p3 is not well-bound, because its bindification would
give rise to the ill-formed trace α(r). The process p4 is not well-bound, be-
cause choosing the branch ε would lead to a similar situation. Observe that
the denotation of p1 contains the non-sense trace new(r)new(r)α(r), while
the semantics of p2, p3 and p4 are undefined, because ½ and ⊔ are strict.
Finally, the process p5 is well-bound, because the µ-binder clearly separates
the scope of the outer new(n) from that of the inner one.

The following definition formalizes when a process is well-bound. The
empty process, variables and events are well-bound. A recursion is well-
bound when its body is such. A choice p + q is well-bound when both p
and q are well-bound. Additionally, we require that the may-bound names
of p are disjoint from the free names of q, and viceversa (e.g. new(n) + α(n)
is not well-bound). A sequence p · q is well-bound when both p and q are
well-bound, and furthermore (i) the may-bound names of q are disjoint from

11

the names of p (e.g. α(n) · new(n) and new(n) · new(n) are not well-bound),
and (ii) the free names of q are either must-bound in p, or they are not
may-bound in p (e.g. (ε + new(n)) · α(n) is not well-bound).

Definition 4.1. Well-bound processes

A weakly bound process p is well-bound when wb(p), defined inductively
as follows:

wb(ε) = wb(h) = wb(α(ρ)) = true wb(µh. p) if wb(p)

wb(p + q) if wb(p),wb(q), bn⋄(p) ∩ fn(q) = bn⋄(q) ∩ fn(p) = ∅

wb(p · q) if wb(p),wb(q), bn⋄(q) ∩ (bn⋄(p) ∪ fn(p)) = (bn⋄(p) \ bn¤(p)) ∩ fn(q) = ∅

We now introduce the bindify transformation, which is defined on well-
bound processes only. The may-bound names are lifted to the leftmost
position of the bindified process, and they are placed within the scope of a
ν-binder. In the case of a recursion µh. p, the may-bound names of p are
lifted to the leftmost position within the recursion, i.e. they do not escape
the scope of the µh.

Definition 4.2. Bindification

If wb(p), the bindification bindify(p) of p is a strongly bound process,
defined as follows:

bindify(p) = νbn⋄(p). β(p)

where the auxiliary operator β is defined inductively as follows:

β(ε) = ε β(α(ρ)) = α(ρ) β(p + q) = β(p) + β(q)

β(h) = h β(µh. p) = µh. bindify(p) β(p · q) = β(p) · β(q)

Example 3. Recall from Sect. 1 the process p = new(n) · α(n) + new(m) ·
α(m). It is easy to check that p is well-bound, and that its may-bound
names are:

bn⋄(p) = bn⋄(new(n) · α(n)) ∪ bn⋄(new(m) · α(m)) = {n, m}

Then the bindification of p is the strongly bound process:

bindify(p) = νn.νm.(new(n) · α(n) + new(m) · α(m))

Example 4. Recall the process p5 = new(n) · (µh. (ε + new(n) · h)) · α(n)
from Ex. 2. It is easy to check that p5 is well-bound. Its may-bound names
are computed as follows:

12

bn⋄(p5) = bn⋄(new(n))∪bn⋄(µh. (ε+new(n)·h))∪bn⋄(α(n)) = {n}∪∅ = {n}

The bindification of p5 is then computed as follows:

bindify(p5) = νn. β
(

new(n) · (µh. (ε + new(n) · h)) · α(n)
)

= νn.
(

β(new(n)) · µh. bindify(ε + new(n) · h) · β(α(n))
)

= νn.new(n) · (µh. νn. β(ε + new(n) · h)) · α(n)

= νn.new(n) · (µh. νn. (ε + new(n) · h)) · α(n)

We now state the correctness of bindification (Theorem 4.3). The “strong”
semantics of bindify(p) contains exactly the traces of the “weak” semantics
of p.

Theorem 4.3. For all closed, weakly bound processes p such that wb(p),
JpKw

∅ (∅)(∅) is defined, and:

Jbindify(p)Ks
∅(∅)(∅) = fst(JpKw

∅ (∅)(∅))

5 Equational theories and trace inclusion

In this section we provide strongly bound and weakly bound processes with
an equational theory and a trace inclusion preorder. We shall state their
correctness, i.e. the equational theory preserves the set of traces, while the
preorder preserves their inclusion. Finally, we shall highlight some differ-
ences between the two calculi.

We first give in Def. 5.1 an equational theory of strongly bound processes.

Definition 5.1. An equational theory of strongly bound processes

The relation = over strongly bound processes is the least congruence in-
cluding α-conversion of names and variables such that:

P + P = P (P + P ′) + P ′′ = P + (P ′ + P ′′) P + P ′ = P ′ + P

(P · P ′) · P ′′ = P · (P ′ · P ′′) ε · P = P = P · ε

(P + P ′) · P ′′ = P · P ′′ + P ′ · P ′′ P · (P ′ + P ′′) = P · P ′ + P · P ′′

µh.µh′.P = µh′.µh.P µh.P = P{µh. P/h} νn.ε = ε

νn.νn′.P = νn′.νn.P νn.(P + P ′) = (νn.P) + P ′ if n 6∈ fn(P ′)

νn.(P · P ′) = P · (νn.P ′) if n 6∈ fn(P) νn.(P · P ′) = (νn.P) · P ′ if n 6∈ fn(P ′)

The operation + is associative, commutative and idempotent; · is asso-
ciative, has identity ε, and distributes over +. The binders µ and ν allow

13

for α-conversion of bound names and variables, and can be rearranged. A
µh can be introduced/eliminated when h does not occur free. A νn can
be extruded when it does not bind a free occurrence of n. A µh. P can be
folded/unfolded as usual.

As expected, the equational theory above is not complete, e.g. JP Ks =
JP ′Ks does not imply P = P ′. E.g., µh. α(r) · h cannot be equated to
µh. α(r) · α(r) · h, yet they have the same traces α(r)∗ ! . However, the
equational theory is sound w.r.t. our semantics, as established by the first
item Theorem 5.3 below.

We then define a preorder P ¹ Q betweeen strongly bound processes.
The preorder ¹ includes equivalence, and it is closed under contexts. Also,
a strongly bound process P can be arbitrarily “weakened” to P + Q.

Definition 5.2. A trace inclusion preorder of strongly bound pro-
cesses

The relation ¹ over strongly bound processes is the least precongruence
such that:

P ¹ Q if P = Q P ¹ P + Q

The following theorem states that the equational theory = and the pre-
order ¹ agree with the semantics of strongly bound processes.

Theorem 5.3. For all closed, strongly bound processes P and Q:

• if P = Q, then JP Ks
∅ = JQKs

∅.

• if P ¹ Q then JP Ks
∅(χ)(R) ⊆ JQKs

∅(χ)(R), for all R and χ.

We now consider how to express an equational theory and a trace inclu-
sion preorder for weak binders, in the same spirit of Def. 5.1 and Def. 5.2.
In spite of their weaker structure, weakly bound processes still share many
semantic-preserving equational properties with strongly bound processes,
as summarized in Def. 5.4. Notably, the equations involving + and · are
identical with respect to Def. 5.1. The recursions µh can be rearranged,
as before. Of course, here we do not have ν-binders, so the α-conversion
of bound names can not be done, in general. As an important excep-
tion, we know that bound names inside a recursion can not escape, so
their scope is completely known. In this case, we allow for α-conversion.
Note that unfolding recursions is not allowed, otherwise we would have
µh.new(n) · h ≈ new(n) · (µh.new(n) · h) ≈ new(n) · new(n) · (µh.new(n) · h),
so causing name confusion — indeed, the first two processes are well-bound,
while the last one is not. As with strong binders, the equational theory be-
low is not complete, yet it is sound w.r.t. the J−Kw semantics, as established

14

by the first item of Theorem 5.6.

Definition 5.4. An equational theory of weakly bound processes

The relation ≈ over weakly bound processes is the least congruence includ-
ing α-conversion of variables such that:

p + p ≈ p (p + p′) + p′′ ≈ p + (p′ + p′′) p + p′ ≈ p′ + p

ε · p ≈ p ≈ p · ε (p · p′) · p′′ ≈ p · (p′ · p′′)

(p + p′) · p′′ ≈ p · p′′ + p′ · p′′ p · (p′ + p′′) ≈ p · p′ + p · p′′

µh.µh′.p ≈ µh′.µh.p µh.p ≈ µh.(p{m/n}) if n ∈ bn⋄(p) and m 6∈ p

Example 5. The equational theories shown above offer an opportunity to
compare strong ν-binders with weak new binders. Consider the following
equation: new(n) · p + new(n) · q ≈ new(n) · (p + q). This is a trivial fact,
since it directly follows from the distributive law. Its equivalent for strongly
bound processes, (νn. P) + (νn. Q) = νn. (P + Q), appears instead to be
non trivial. Indeed, although Def. 5.1 comprises all the classic equations for
ν-binders, the mentioned equation can not be derived from them, since we
can not identify the two binders. Yet, in most process algebras, we expect
the equation to be sound w.r.t. any reasonable process equivalence relation.
So, in this case weak binders offer a simpler view.

We shall now introduce a preorder p -N q on weakly bound processes.
Here, we use a set of names N as an index to the preorder relation. This
index is needed to avoid name confusion, as we shall see below. When
p -N q holds, then the semantics of p is included in that of q (second item
of Theorem. 5.6).

15

Definition 5.5. A trace inclusion preorder of weakly bound pro-
cesses

The relation -N over weakly bound processes is the least preorder such
that:

p -∅ q if p ≈ q p -∅ p + q p -N∪N ′ p′′ if p -N p′ and p′ -N ′ p′′

C(p) -N C(q) if p -N q and N ∩ (bn⋄(C) ∪ fn(C)) = ∅

pσ{µh. p/h} -ran(σ) µh. p if ran(σ) ∩ fn(p) = ∅

where C = p·• | •·p | p+• | •+p is a context, σ : Nam→Nam is an injective
function with dom(σ) = bn⋄(p), and pσ{µh. p/h} is capture-avoiding.

The preorder -N includes ≈-equivalence (Def. 5.4). A process p can
be arbitrarily “weakened” to p + q. The relation is closed under con-
texts, provided that the names in N are disjoint from those in the con-
text. Note that, because of this side condition, -N is not a precongru-
ence, unlike ¹ for strongly bound processes. Folding/unfolding is possible,
but in a weaker form than in Def. 5.1. To avoid name confusion and pre-
serve well-boundedness, the unfolded names must be fresh. For instance,
if p = µh.new(n) · α(n) · h, then we shall have new(n′) · α(n′) · p -{n′} p.
The name n′ in -{n′} is needed to avoid name clashes. For instance, it
prevents from using the previous unfolding in the context C = • · α′(n′),
since the extruded new(n′) would bind the name n′ in α′(n′), as checked by
the context rule above. The side condition on the rule for folding/unfolding
is needed to ensure that all the processes smaller (w.r.t. -) than a well-
bound process are well-bound (Theorem 5.7). Omitting the disjointness
condition between fn(p) and the range of the substitution σ would lead to
situations like α(n′) · new(n′) -{n′} µh. α(n′) · new(n), where the right-hand
side is well-bound, while the left-hand side is not. Substitutions of names
must be coherent with bindification, i.e. they must not affect names that
would be put under a ν-binder by β(−), e.g. (new(n) ·µh.new(n)){m/n} =
new(m) · µh.new(n). Similarly, substitutions can trigger α-conversions to
avoid name captures, e.g. (µh.new(m) · α(n)){m/n} = µh.new(m′) · α(m).

We now formally state that our syntactic preorder agrees with the se-
mantics of weakly bound processes, as it yields trace inclusion. Note that
trace inclusion requires the two semantics to be defined. Otherwise we have
new(n) · µh. α(n) -∅ new(n) · µh. (new(n) + ε) · α(n): when the branch ε
is chosen in the right-hand side, we find χ′(n) = χ|dom(χ)\{n}(n), so α(n)
cannot be evaluated, and the whole semantics is undefined (while the se-

16

mantics of the left-hand side is always defined). Note however that is q is
well-bound, then also p is such (Theorem 5.7), and so by Theorem 4.3 both
the semantics are defined.

Theorem 5.6. For all closed, weakly bound processes p and q:

• if p ≈ q, then JpKw
∅ = JqKw

∅ .

• if p -N q and, then fst(JpKw
∅ (χ)(R)) ⊆ fst(JqKw

∅ (χ)(R)), for all R and
χ such that dom(χ) ∩N = ∅ and both the semantics are defined.

The projection fst in the statement above is necessary. Consider e.g.
p = new(n) -{n} µh. new(m) = q. Here, the semantics of p and q agree
on the η components, i.e. the truncations of new(r) with r 6∈ R, but p will
augment χ with the new binding {r/n}, unlike q which does not affect χ.

The next theorem guarantees that bindify is well-defined, i.e. it maps
≈-equivalent weakly bound processes =-equivalent strongly bound processes.
Moreover, processes smaller (w.r.t. -N) than well-bound processes are well-
bound.

Theorem 5.7. For all weakly bound processes p and q:

• if p ≈ q, then wb(p) if and only if wb(q).

• if p ≈ q and wb(p), then bindify(p) = bindify(q).

• if p -N q and wb(q), then wb(p).

6 Conclusions

We have investigated weak binders – a construct for fresh name generation
– as an alternative for ν-binders in nominal calculi. Weak binders allow
for a looser reasoning, while still admitting a trace-preserving translation
into strong binders. However, this comes at a cost: often, useful properties,
e.g. trace inclusion (Th. 5.6), require more side conditions to be checked
for ensuring sanity. Also, α-conversion of names can only be applied inside
µ-binders. Compositionality is reduced, since e.g. wb(p) and wb(q) do not
automatically imply wb(p · q) which – if needed – must be established by
exploiting further assumptions. In our experiments with weak binders, we
also found they sometimes lead to more intricate proofs, since particular
care must be exercised with corner cases. For instance, handling recursion
in an operational semantics for weakly bound processes seems to be quite
complex. Indeed, näıve unfolding causes name confusion, so one has to resort
to either renaming all bound names so that they are indeed globally fresh,
or to record the “call frames” (entering/leaving the body of a recursion) in
a stack. Since we need to keep track of this, run-time configurations become
more complex, and we found our operational semantics (not presented in this

17

paper) to be too inconvenient to be used in proofs. Even when using the
denotational semantics (Def. 3.6), we felt that writing inductive statements
for weak binders required more trial-and-error steps, w.r.t. strong binders.
However, in some occasions weak binders may become a more agile tool.
For instance, they can exploited to implement a type and effect inference
algorithm for a calculus with side effects and explicit name binders (like [1]),
on top of an existing algorithm for a calculus without binders. Each time a
ν-binder is encountered, a fresh name is generated, similarly to fresh type
variables in Hindley-Milner type inference. After solving the obtained type
and effect constraints through unification, the resulting effect is bindified.
Of course, this is not always possible, e.g. when the effect is not well-bound.
Possible counter-measures consist in suitably extending let-polymorphism
to ν-binders.

Related work

A number of formal techniques have been developed to handle binding and
freshness of names. The permutation model of sets introduced by Fraenkel-
Mostowski has led to an elegant and powerful mathematical theory of nam-
ing [6]. The key observation of this approach is that α-conversion, binding
and freshness can be defined through name permutations (or swappings).
For instance, the freshness axiom for a name of a computational entity (i.e.
an object, a process, a context, etc.) is expressed by saying that the fresh
name does not belong to the support of the computational entity. Notably,
in the permutation model the support of computational entities is finite.
This mathematical theory has been used to model early and late seman-
tics of the π-calculus [7]. Also, it has driven the design of a functional
language, FreshML [16], which includes primitive mechanisms for handling
fresh bindable names. In FreshML freshness is managed by resorting to a
gensym() primitive to dynamically generate names, and a primitive for per-
muting names. Our notion of weakly bound processes exploits the gensym()
primitive without resorting to an explicit primitive for handling name per-
mutations. Indeed, the bindify trasformation singles out the names in the
finite support of a weakly bound process. A monadic denotational seman-
tics for FreshML has been used to handle freshness through a continuation
monad on FM-sets [15]. This semantics allows for translating the usual
domain-theoretic results in the context of FM-sets, and to use them to prove
freshness-related properties.

The λν-calculus presented in [12] extends the pure λ-calculus with names.
In contrast to λ-bound variables, nothing can be substituted for a name, yet
names can be tested for equality. Reduction in λν is confluent, and it allows
for deterministic evaluation. Furthermore, all the observational equivalences
that hold in the pure λ-calculus still hold in λν. This has the practical con-
sequence that all the equational techniques for transforming and verifying

18

pure functional programs are also applicable to programs with local names.
Nominal techniques have been implicitly used for reasoning about the se-
mantics of functional languages with local state in [13], to prove when two
functional programs are equivalent in every evaluation context.

Binding and freshness of names have been a main concern in process
calculi. History-Dependent automata [10, 11] provide an automata-based
model where states are equipped with name permutations to manage fresh-
ness and garbage collections of names. They automatically manage the
creation and deallocation of names, while allowing for a compact represen-
tation of the system behaviour, by collapsing the states that only differ for
the renaming of local names. The π-calculus is extended in [3] with an op-
erational model where names are localized to their owners; each sequential
process has its logical space on names and a local manager generates fresh
names whenever necessary.

References

[1] M. Bartoletti, P. Degano, G. L. Ferrari, and R. Zunino. Types and
effects for resource usage analysis. In Foundations of Software Science
and Computation Structures (FOSSACS), 2007.

[2] J. A. Bergstra and J. W. Klop. Algebra of communicating processes
with abstraction. Theoretical Computer Science, 37:77–121, 1985.

[3] C. Bodei, P. Degano, and C. Priami. Names of the π calculus agents
handled locally. Theoretical Computer Science, 253(2):155–184, 2001.

[4] M. Bravetti and G. Zavattaro. Towards a unifying theory for choreog-
raphy conformance and contract compliance. In Software Composition,
2007.

[5] G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for
web services. In ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 2008.

[6] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

[7] M. J. Gabbay. The pi-calculus in FM. In F. Kamareddine, editor,
Thirty-five years of Automath, volume 28 of Applied Logic Series, pages
247–269. Kluwer, 2003.

[8] R. Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

[9] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes,
I and II. Information and Computation, 100(1):1–40,41–77, September
1992.

19

[10] U. Montanari and M. Pistore. An introduction to history dependent
automata. Electr. Notes Theor. Comput. Sci., 10, 1997.

[11] U. Montanari and M. Pistore. Structured coalgebras and minimal hd-
automata for the π-calculus. Theor. Comput. Sci., 340(3):539–576,
2005.

[12] M. Odersky. A functional theory of local names. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 1994.

[13] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with
local state. Higher order operational techniques in semantics, pages
227–274, 1998.

[14] D. Sangiorgi and D. Walker. The π-Calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press, 2002.

[15] M. R. Shinwell and A. M. Pitts. On a monadic semantics for freshness.
Theoretical Computer Science, 342(1):28–55, 2005.

[16] M. R. Shinwell, A. M. Pitts, and M. Gabbay. FreshML: programming
with binders made simple. In International Conference on Functional
Programming (ICFP), 2003.

20

A Proofs: strongly bound processes

The main result of this appendix is Theorem 2.5, that shows the opera-
tional and the denotational semantics of strongly bound processes are fully
abstract. A number of intermediate definitions and lemmata are necessary,
the proofs of which are contained herewith.

Remark A.1. To simplify the proof of full abstraction, hereafter we shall
extend strongly bound processes with the process !, that models a non-
terminated computation. The labelled transition system in Def. 2.2 is en-
riched with the following rule, that allows for observing the finite prefixes
of non-terminating computations:

P, R
!
−→ ! ,R

The trace semantics JP Kop(R) is then defined as follows:

JP Kop(R) = { η | P, R
η
−→ ε, R′ } ∪ { η ! | P, R

η !
−→ Q, R′ and ! 6∈ η }

Lemma A.2. For all strongly bound processes P and for all R, if η ∈
JP Kop(R) and ! ∈ η, then η = η′ ! for some η′ such that ! 6∈ η′.

Proof. A straightforward inductive argument.

We now define the function R(P), that computes the set of resources
mentioned in P and reachable in some computations of P . To do that, R(P)
performs a sort of reachability analysis, e.g. R(α(r) · (µh. h) ·α(r′)) contains
r but not r′, since the non-terminaing loop µh. h makes α(r′) unreachable.
Having ↓∈ R(P), means that P allows for some terminating computations.
The function T(P) defined below exploits this fact to characterize the pro-
cesses that may terminate.

Definition A.3. For all strongly bound processes P and for all functions
Θ from variables h to Res ∪ {↓}, we define RΘ(P) inductively as follows:

RΘ(ε) = {↓} RΘ(!) = ∅ RΘ(h) = Θ(h) RΘ(νn. P) = RΘ(P)

RΘ(α(ρ)) =

{

{r, ↓} if ρ = r

{↓} otherwise
RΘ(P · Q) =

{

(RΘ(P) \ {↓}) ∪ RΘ(Q) if ↓∈ RΘ(P)

RΘ(P) otherwise

RΘ(P + Q) = RΘ(P) ∪ RΘ(Q) RΘ(µh. P) = RΘ{{↓}∩RΘ{∅/h}(P)/h}(P)

Also, we define TΘ(P) as follows:

TΘ(P) = {↓} ∩ RΘ(P)

21

Example 6. Let P = µh. νn. h · α(r) + α(n). Then:

R∅(P) = R{T{∅/h}(νn. h·α+α(n))/h}(νn. h · α(r) + α(n))

since T{∅/h}(νn. h · α(r) + α(n)) = T{∅/h}(h · α(r)) ∪ T{∅/h}(α(n)) = {↓},
then:

= R{{↓}/h}(νn. h · α(r) + α(n))

= R{{↓}/h}(h · α(r)) ∪ R{{↓}/h}(α(n))

and, since ↓∈ R{{↓}/h}(h) = {↓}:

= R{{↓}/h}(h) ∪ R{{↓}/h}(α(r)) ∪ {↓}

= {↓, r}

Lemma A.4. For all P and Θ, we have that TΘ(P) equals to:

{↓} if P = ε or P = α(ρ)

{↓} ∩ Θ(h) if P = h

∅ if P = !

TΘ(Q) if P = νn. Q

TΘ(P0) ∩ TΘ(P1) if P = P0 · P1

TΘ(P0) ∪ TΘ(P1) if P = P0 + P1

TΘ{∅/h}(Q) if P = µh. Q

Proof. Straightforward structural induction.

Lemma A.5. For all P , h, R, R′, Θ, and for all χ : Nam → Res:

R ⊆ R′ =⇒ TΘ{R/h}(P) ⊆ TΘ{R′/h}(P)(5a)

TΘ(P) = TΘ{TΘ(h)/h}(P)(5b)

TΘ{TΘ{∅/h}(P)/h}(P) = TΘ{∅/h}(P)(5c)

R ⊆ R′ =⇒ RΘ{R/h}(P) ⊆ RΘ{R′/h}(P)(5d)

RΘ(P) ⊆ RΘ(Pχ) ⊆ RΘ(P) ∪ ran(χ)(5e)

RΘ(P) ⊆ RΘ{TΘ(h)/h}(P) ∪ Θ(h)(5f)

RΘ(µh. P) = RΘ{RΘ(µh. P)/h}(P)(5g)

Proof. The item (5a) is implied by (5d). The item (5b) is straightforward by
induction on the size of P . To prove (5c) it suffices to consider two cases. If
TΘ{∅/h}(P) = ∅, then TΘ{TΘ{∅/h}(P)/h}(P) = TΘ{∅/h}(P), which is the thesis.

Otherwise TΘ{∅/h}(P) = {↓}, and so TΘ{TΘ{∅/h}(P)/h}(P) = TΘ{{↓}/h}(P) ⊇

TΘ{∅/h}(P) (the last inclusion is by (5a), since {↓} ⊇ ∅). The thesis follows
by noting that TΘ{∅/h}(P) can only take one of two values, i.e. either ∅ or
{↓}. The item (5d) can be easily proved by induction on the size of P .

We now prove the item (5e) by induction on the size of P .

22

• If P = ε, P = !, P = h, P = α(r), or P = α(n) with n 6∈ dom(χ),
then the thesis is implied by P = Pχ.

• If P = α(n) and n ∈ dom(χ) then the thesis follows from RΘ(P) = {↓},
RΘ(Pχ) = {χ(n), ↓}, and ran(χ) = {χ(n)}.

• If P = P0 · P1, by the induction hypothesis we obtain:

RΘ(P0) ⊆ RΘ(P0χ) ⊆ RΘ(P0) ∪ ran(χ)
RΘ(P1) ⊆ RΘ(P1χ) ⊆ RΘ(P1) ∪ ran(χ)

Note that, since χ : Nam → Res and ↓6∈ Res, then TΘ(P0) = TΘ(P0χ).

– If TΘ(P0) = {↓}, then we obtain:

RΘ(P) = (RΘ(P0) \ {↓}) ∪ RΘ(P1)

⊆ (RΘ(P0χ) \ {↓}) ∪ RΘ(P1χ)

= RΘ(Pχ)

⊆ ((RΘ(P0) ∪ ran(χ)) \ {↓}) ∪ RΘ(P1) ∪ ran(χ)

= (RΘ(P0) ∪ \{↓}) ∪ RΘ(P1) ∪ ran(χ)

= RΘ(P) ∪ ran(χ)

– If instead TΘ(P0) = ∅, then the thesis follows from: RΘ(P) =
RΘ(P0) and RΘ(Pχ) = RΘ(P0χ)

• If P = P0 + P1, the induction hypothesis suffices.

• If P = νn. P ′, then RΘ(P) = RΘ(P ′) and RΘ(Pχ) = RΘ(P ′χ′) where
χ′ = χ |dom(χ)\{n}. By the induction hypothesis we obtain

RΘ(P ′) ⊆ RΘ(P ′χ′) ⊆ RΘ(P ′) ∪ ran(χ′)

Since ran(χ′) ⊆ ran(χ), the thesis holds.

• If P = µh. P ′, then RΘ(P) = RΘ{TΘ{∅/h}(P ′)/h}(P
′) and RΘ(Pχ) =

RΘ{TΘ{∅/h}(P ′χ)/h}(P
′χ). Since TΘ{∅/h}(P

′) = TΘ{∅/h}(P
′χ), the in-

duction hypothesis then suffices.

For (5f), we proceed by induction on the size of P .

• if P = ε, P = α(ρ) or P = !, trivial.

• if P = h′, there are two subcases.

– If h′ = h, then:

RΘ(h) = Θ(h) ⊆ RΘ{TΘ(h)/h}(h) ∪ Θ(h)

23

– If h′ 6= h, then:

RΘ(h′) = Θ(h′) = RΘ{TΘ(h)/h}(h
′) ⊆ RΘ{TΘ(h)/h}(h

′) ∪ Θ(h)

• if P = νn. P ′, then by the induction hypothesis:

RΘ(νn. P ′) = RΘ(P ′)

⊆ RΘ{TΘ(h)/h}(P
′) ∪ Θ(h)

= RΘ{TΘ(h)/h}(νn. P ′) ∪ Θ(h)

• if P = P0 · P1, there are two subcases.

– If TΘ(P0) = {↓}, then:

RΘ(P0 · P1) = RΘ(P0) ∪ RΘ(P1)

and by the induction hypothesis:

⊆ RΘ{TΘ(h)/h}(P0) ∪ RΘ{TΘ(h)/h}(P1) ∪ Θ(h)

by (5b), TΘ{TΘ(h)/h}(P0) = TΘ(P0) = {↓}, thus:

= RΘ{TΘ(h)/h}(P0 · P1) ∪ Θ(h)

– If TΘ(P0) = ∅, then:

RΘ(P0 · P1) = RΘ(P0)

and by the induction hypothesis:

⊆ RΘ{TΘ(h)/h}(P0) ∪ Θ(h)

by (5b), TΘ{TΘ(h)/h}(P0) = TΘ(P0) = ∅, thus:

= RΘ{TΘ(h)/h}(P0 · P1) ∪ Θ(h)

• if P = P0 + P1, trivial application of the induction hypothesis.

• if P = µh′. P ′, there are two subcases.

– If h′ = h, let Θ′ = Θ{TΘ(h)/h}. Then:

RΘ(µh. P ′) = RΘ{TΘ{∅/h}(P ′)/h}(P
′)

= RΘ′{TΘ{∅/h}(P ′)/h}(P
′)

= RΘ′{TΘ′{∅/h}(P ′)/h}(P
′)

= RΘ′(µh. P ′)

⊆ RΘ′(µh. P ′) ∪ Θ(h)

24

– If h′ 6= h, let Θ′ = Θ{TΘ{∅/h′}(P
′)/h′}. Then:

RΘ(µh. P ′) = RΘ′(P ′)

by the induction hypothesis:

⊆ RΘ′{TΘ′ (h)/h}(P
′) ∪ Θ(h)

since Θ′(h) = Θ(h) then TΘ′(h) = TΘ(h), and so:

= RΘ{TΘ(h)/h}{TΘ{∅/h′}(P ′)/h′}(P
′) ∪ Θ(h)

let Θ′′ = Θ{TΘ(h)/h}. Then, TΘ′′{∅/h′}(P
′) = TΘ{TΘ(h)/h}{∅/h′}(P

′) =
TΘ{∅/h′}{TΘ{∅/h′}(h)/h}(P

′) = TΘ{∅/h′}(P
′), and so:

= RΘ{TΘ(h)/h}{TΘ′′{∅/h′}(P ′)/h′}(P
′) ∪ Θ(h)

= RΘ{TΘ(h)/h}(µh′. P ′) ∪ Θ(h)

For (5g), we have that:

RΘ(µh. P) = RΘ{TΘ{∅/h}(P)/h}(P)

by Lemma 5d:

⊆ RΘ{RΘ{∅/h}(P)/h}(P)

again, by Lemma 5d:

⊆ RΘ{RΘ{TΘ{∅/h}(P)/h}(P)/h}(P)

= RΘ{RΘ(µh. P)/h}(P)

by Lemma 5f:

⊆ RΘ{{↓}∩RΘ(µh. P)/h}(P) ∪ RΘ(µh. P)

= RΘ{TΘ(µh. P)/h}(P) ∪ RΘ(µh. P)

by Lemma A.4:

= RΘ{TΘ{∅/h}(P)/h}(P) ∪ RΘ(µh. P)

= RΘ(µh. P)

25

Lemma A.6. For all closed strongly bound processes P :

η ∈ JP Kop(R) =⇒ (R \ R∅(P)) ∩ R(η) = ∅(6a)

R ⊆ R′ =⇒ JP Kop(R) ⊇ JP Kop(R′)(6b)

Proof. The item (a) follows by a simple inspection of the rules in Def. 2.2.
The item (b) is straightforward by induction on the size of P . The only
relevant rule is that for νn. P , for which we have:

Jνn. P Kop(R) =
⋃

r 6∈R

JP{r/n}Kop(R∪ {r})

⊇
⋃

r 6∈R

JP{r/n}Kop(R′ ∪ {r})

⊇
⋃

r 6∈R′

JP{r/n}Kop(R′ ∪ {r})

= Jνn. P Kop(R′)

Lemma A.7. For all strongly bound processes P and P ′:

P, R
η
−→ P ′, R′ =⇒ P, R \ {r}

η
−→ P ′, R′ \ {r} if r ∈ R \ R(η)(7a)

P, R
η
−→ P ′, R′ =⇒ P, R∪ {r}

η
−→ P ′, R′ ∪ {r} if r 6∈ R′(7b)

P{r/n}, R
η
−→ ε, R′ =⇒ P{r′/n}, R

η
−→ ε, R′ if r 6∈ R(η)(7c)

P{r/n}, R
η
−→ ε, R′ =⇒ P{r′/n}, R{r′/r}

η
−→ ε, R′{r′/r}

if r 6∈ R(η) and r′ 6∈ R′(7d)

Proof. The first three items are straightforward by induction on the number
of transitions. For (7d), we proceed by induction on the number of tran-
sitions. In the base case there are zero transitions and the thesis trivially
holds. Otherwise, let σ = {r′/r}. We consider the following exhaustive
cases.

• if P = α(ρ), there are the following subcases:

– If ρ ∈ Res, there are two subcases. If ρ = r̄ and r̄ = r, then
r ∈ R(η), so contradicting the hypothesis. If ρ = r̄ and r̄ 6= r,
trivial.

– if ρ ∈ Nam, then ρ = n, otherwise the semantics of P{r/n} is
undefined. Thus, η = α(r), so contradicting r 6∈ R(η).

• if P = !, contradiction with the hypothesis.

• if P = νm. P̄ , then we consider two further subcases.

26

– if n 6= m, we have:

(νm. P){r/n}, R
ε
−→ P{r/n}{r̄/m}, R∪ {r̄}

η
−→ ε, R′

for some r̄ 6∈ R. There are two further subcases:

∗ if r̄ = r, then by the induction hypothesis:

P{r̄/m}{r′/n}, (R∪ {r̄})σ
η
−→ ε, R′σ

since r̄ = r:

P{r′/n}{r̄/m}, Rσ ∪ {r′}
η
−→ ε, R′σ

Since r̄ = r 6∈ R(η), then by (7c):

P{r′/n}{r′/m}, Rσ ∪ {r′}
η
−→ ε, R′σ

Since r′ 6∈ R′ ⊇ R and r = r̄ 6∈ R, then r′ 6∈ Rσ, so we
conclude:

(νm. P){r′/n}, Rσ
ε
−→ P{r′/m, r′/n}, Rσ ∪ {r′}

∗ if r̄ 6= r, by the induction hypothesis:

P{r̄/m}{r′/n}, (R∪ {r̄})σ
η
−→ ε, R′σ

and since r̄ 6= r:

P{r̄/m}{r′/n}, Rσ ∪ {r̄}
η
−→ ε, R′σ

Since r̄ 6∈ R and r̄ 6= r then r̄ 6∈ Rσ, so we conclude:

(νm. P){r′/n}, Rσ
ε
−→ P{r′/n}{r̄/m}, Rσ ∪ {r̄}

– If n = m, we have (νm. P){r/n} = νm. P and the proof is similar
yet simpler of that for the case n 6= m.

• if P = P0 · P1, then we can easily show that if P{r/n},R
η
−→ ε,R′,

then η = η0η1 for two shorter derivations:

P0{r/n},R
η0
−→ ε, R̄ P1{r/n}, R̄

η1
−→ ε,R′

Therefore, by the induction hypothesis:

P0{r
′/n},Rσ

η0
−→ ε, R̄σ P1{r

′/n}, R̄σ
η1
−→ ε,R′σ

which implies the thesis.

27

• if P = P0 + P1, the induction hypothesis suffices.

• if P = µh.P̄ , then P{r/n} = µh. (P̄{r/n}), and thus the thesis follows
directly from the induction hypothesis.

Lemma A.8. For all strongly bound processes P, P ′:

P, R
a
−→ P ′,R′ =⇒ JP Kop(R) ⊇ a ⊙ JP ′Kop(R′)

Proof. By cases on the form of P . There are the following cases:

• if P = α(r) then P ′ = ε, a = α(r) and R′ = R. Then:

JP Kop(R) = {α(r)} = α(r) ⊙ {ε} = α(r) ⊙ JP ′Kop(R′)

• if P = !, then P ′ = ! and R′ = R. Thus:

J!Kop(R) = {!} =! ⊙ {!} = ! ⊙ J!Kop(R′)

• if P = νn. P̄ , then P ′ = P̄{r/n}, for some r 6∈ R, and a = ε, R′ =
R∪ {r}.

JP Kop(R) =
⋃

r′ 6∈R

JP̄{r′/n}Kop(R∪ {r′}) ⊇ JP ′Kop(R′) = ε⊙ JP ′Kop(R′)

• if P = P0 ·P1, there are two further subcases. If P0 = ε, then P ′ = P1,
a = ε and R′ = R. Thus, JP Kop

R = JP ′Kop
R′ = ε ⊙ JP ′Kop

R′ . Otherwise, if

P0 6= ε, then P0,R
a
−→ P ′

0,R
′, and so P ′ = P ′

0 · P1. Thus:

JP Kop
R = { η | P0 · P1, R

η
−→ ε, R̄ } ∪ { η! | P0 · P1, R

η!
−→ P̄ , R̄ }

⊇ { a η | P ′
0 · P1, R

′ η
−→ ε, R̄ } ∪ { a η ! | P ′

0 · P1, R
′ η!
−→ P̄ , R̄ }

= a ⊙ JP ′
0 · P1K

op(R′)

= a ⊙ JP ′Kop(R′)

• if P = P0 + P1, straightforward.

• if P = µh. P ′′, then a = ε, P ′ = P ′′{P/h} and R′ = R. Therefore:

JP Kop
R ⊇ { ε η | P ′′{P/h}, R′ η

−→ ε, R̄ } ∪ { ε η ! | P ′′{P/h}, R′ η!
−→ P̄ , R̄ }

= ε ⊙ JP ′Kop(R′)

28

We now introduce a further denotational semantics J−Ksub of strongly
bound processes. The main difference from J−Ks of Def. 2.4 is the way
the two semantics handle the case νn. P . In Jνn. P Ks, the freshly created
resource r is used to extend the environment χ with the binding {r/n}.
Instead, in Jνn. P Ksub the substitution {r/n} is performed directly on P —
hence the environment χ can be omitted. Since substitutions are also used
by J−Kop, in the proof of full abstraction we shall conveniently use J−Ksub as
a bridge between J−Kop and J−Ks.

Definition A.9. Substitution semantics of strongly bound processes

The substitution semantics JP Ksub
θ of a strongly bound process P such that

fn(P) = ∅ is defined below. Let D0 be the following cpo of sets of traces
ordered by set inclusion: D0 = {X ⊆ (Ev ∪ { !})∗ | ! ∈ X ∧ ∀η ∈
X : η ! ∈ X }. The set { !} is the bottom element of D0. Then, let
Dsub = Pfin(Res) → D0 be the cpo of functions from the finite subsets of
Res to D0. Note that the bottom element ⊥ of Dsub is λR. { !}. Then, the
semantics of P (parametrized by θ) is a function in Dsub. The parameter
θ is a function that maps each variable h to a function in Dsub. We require
dom(θ) ⊇ fv(P). The semantics JP Ksub

θ is inductively defined through the
following equations.

JεKsub
θ = λR. { ! , ε}

Jα(ρ)Ksub
θ = λR. { ! , α(ρ), α(ρ) !} if ρ ∈ Res

Jνn. P Ksub
θ = λR.

⋃

r 6∈R JP{r/n}Ksub
θ (R∪ {r})

JP · P ′Ksub
θ = JP Ksub

θ ½ JP ′Ksub
θ

JP + P ′Ksub
θ = JP Ksub

θ ⊔ JP ′Ksub
θ

J!Ksub
θ = ⊥

JhKsub
θ = θ(h)

Jµh.P Ksub
θ =

⊔

i≥0

f i(⊥) where f(Y) = JP Ksub
θ{Y/h}

We first check that the above semantics is well-defined. Lemma A.10
proves that the image of the semantics function is indeed D0. Lemma A.13
guarantees that the least upper bound in the last equation exists (since f is
monotone). Also, since f is continuous, by the Knaster-Tarski theorem the
semantics of µh. P is the least fixed point of f .

Lemma A.10. For all strongly bound processes P , for all θ and R, ! ∈
JP Ksub

θ (R).

Proof. Trivial.

29

Lemma A.11. The structure (Dsub,⊔, ½, id⊔, id½), where id⊔ = ⊥ and
id½ = λR.{ ! , ε} is a semi-ring.

Proof. It is easy to check that ⊔ and ½ are associative, id⊔, id½ are their
identities, and that, for all X, Y, Z ∈ Dden, (X ⊔ Y) ½ Z = X ½ Z ⊔ Y ½ Z
and Z ½ (X ⊔ Y) = (Z ½ X) ⊔ (Z ½ Y).

Lemma A.12. Let {Yi}i and {Zi}i be subsets of Dsub. Then:
⊔

i

(Yi ½ Zi) =
(

⊔

i

Yi

)

½
(

⊔

i

Zi

)

Proof. We prove the following three facts. For all W ∈ Dsub:

W ½
⊔

i

Zi =
⊔

i

(W ½ Zi)(12a)

(
⊔

i

Zi) ½ W =
⊔

i

(Zi ½ W)(12b)

For (12a), we have that:

W ½
⊔

i

Zi = λR.
⋃

{ η0 ⊙ (
⊔

i

Zi)(R∪ R(η0)) | η0 ∈ W (R) }

= λR.
⋃

{ η0 ⊙
⋃

i

Zi(R∪ R(η0)) | η0 ∈ W (R) }

= λR.
⋃

{
⋃

i

η0 ⊙ Zi(R∪ R(η0)) | η0 ∈ W (R) }

= λR.
⋃

i

⋃

{ η0 ⊙ Zi(R∪ R(η0)) | η0 ∈ W (R) }

=
⊔

i

λR.
⋃

{ η0 ⊙ Zi(R∪ R(η0)) | η0 ∈ W (R) }

=
⊔

i

(W ½ Zi)

For (12b), we have that:

(
⊔

i

Zi) ½ W = λR.
⋃

{ η0 ⊙ W (R∪ R(η0)) | η0 ∈ (
⊔

i

Zi)(R) }

= λR.
⋃

{ η0 ⊙ W (R∪ R(η0)) | η0 ∈
⋃

i

Zi(R) }

= λR.
⋃

i

⋃

{ η0 ⊙ W (R∪ R(η0)) | η0 ∈ Zi(R) }

=
⊔

i

λR.
⋃

{ η0 ⊙ W (R∪ R(η0)) | η0 ∈ Zi(R) }

=
⊔

i

(Zi ½ W)

30

Summing up:

(

⊔

i

Yi

)

½
(

⊔

i

Zi

)

=
⊔

j

(

⊔

i

Yi

)

½ Zj by (12a)

=
⊔

j

⊔

i

(Yi ½ Zj) by (12b)

=
⊔

i

(Yi ½ Zi)

which concludes the proof.

Lemma A.13. For all strongly bound processes P such that fn(P) = ∅, and
for all θ such that dom(θ) ∪ {h} ⊇ fv(P), the function fP (Y) = JP Ksub

θ{Y/h}
is continuous.

Proof. By induction on the size of P . Let {Yi}i be a ω-chain of elements
in Dsub. We have the following cases on P :

• the cases P = ε, P = α(r), P = ! are trivial.

• if P = νn. P ′, then:

fP (
⊔

i

Yi) = λR.
⋃

r 6∈R

fP ′{r/n}(
⊔

i

Yi)(R∪ {r})

Then, by the induction hypothesis:

= λR.
⋃

r 6∈R

(

⊔

i

fP ′{r/n}(Yi)
)

(R∪ {r})

= λR.
⋃

r 6∈R

⋃

i

fP ′{r/n}(Yi)(R∪ {r})

= λR.
⋃

i

⋃

r 6∈R

fP ′{r/n}(Yi)(R∪ {r})

=
⊔

i

λR.
⋃

r 6∈R

fP ′{r/n}(Yi)(R∪ {r})

=
⊔

i

fP (Yi)

• if P = P ′ · P ′′, then:

fP (
⊔

i

Yi) = JP ′ · P ′′Ksub
θ{

F

i Yi/h}

= JP ′Ksub
θ{

F

i Yi/h} ½ JP ′′Ksub
θ{

F

i Yi/h}

= fP ′(
⊔

i

Yi) ½ fP ′′(
⊔

i

Yi)

31

and, by the induction hypothesis:

=
⊔

i

fP ′(Yi) ½
⊔

i

fP ′′(Yi)

=
⊔

i

JP ′Ksub
θ{Yi/h} ½

⊔

i

JP ′′Ksub
θ{Yi/h}

by Lemma A.12:

=
⊔

i

(

JP ′Ksub
θ{Yi/h} ½ JP ′′Ksub

θ{Yi/h}

)

=
⊔

i

JP Ksub
θ{Yi/h}

=
⊔

i

fP (Yi)

• if P = P ′ + P ′′, trivial.

• if P = µh′. P ′, then:

fP (
⊔

i

Yi) =
⊔

n≥0

(λY ′. JP ′Ksub
θ{

F

i Yi/h}{Y ′/h′})
n(⊥)

if h = h′, then:

=
⊔

n≥0

(λY ′. JP ′Ksub
θ{Y ′/h′})

n(⊥)

=
⊔

i

⊔

n≥0

(λY ′. JP ′Ksub
θ{Y ′/h′})

n(⊥)

=
⊔

i

⊔

n≥0

(λY ′. JP ′Ksub
θ{Yi/h}{Y ′/h′})

n(⊥)

=
⊔

i

fP (Yi)

otherwise, if h 6= h′, then:

=
⊔

n≥0

(λY ′. JP ′Ksub
θ{Y ′/h′}{

F

i Yi/h})
n(⊥)

and by the induction hypothesis:

=
⊔

n≥0

(λY ′.
⊔

i

JP ′Ksub
θ{Y ′/h′}{Yi/h})

n(⊥)

=
⊔

n≥0

(
⊔

i

λY ′. JP ′Ksub
θ{Y ′/h′}{Yi/h})

n(⊥)

32

by the induction hypothesis on P ′, fP ′ is continuous – and hence mono-
tone – then {λY ′. JP ′Ksub

θ{Yi/h}}i is an ω-chain, and so:

=
⊔

i

⊔

n≥0

(λY ′. JP ′Ksub
θ{Y ′/h′}{Yi/h})

n(⊥)

=
⊔

i

⊔

n≥0

(λY ′. JP ′Ksub
θ{Yi/h}{Y ′/h′})

n(⊥)

=
⊔

i

fP (Yi)

Lemma A.14. We say Y ∈ Dsub anti-monotone when R ⊆ R′ implies
Y (R) ⊇ Y (R′) for all R,R′. For all P and anti-monotone θ, JP Ksub

θ is
anti-monotone.

Proof. By induction on the size of P . There are the following cases:

• if P = ε, P = !, P = α(r), trivial.

• if P = h, the thesis is implied by the anti-monotonicity of θ.

• if P = P0 · P1 and P = P0 + P1, straightforward application of the
induction hypothesis.

• if P = νn. P ′, we have that:

JP Ksub
θ (R) =

⋃

r 6∈R

JP{r/n}Ksub
θ (R∪ {r})

⊆
⋃

r 6∈R′

JP{r/n}Ksub
θ (R∪ {r})

and by the induction hypothesis, since R′ ∪ {r} ⊆ R ∪ {r}:

⊆
⋃

r 6∈R′

JP{r/n}Ksub
θ (R′ ∪ {r})

= JP Ksub
θ (R′)

• if P = µh. P ′, we prove that if Y is anti-monotone, then also f(Y) =
JP ′Ksub

θ{Y/h} is anti-monotone. Since θ and Y are anti-monotone, then

θ{Y/h} is anti-monotone, so by the induction hypothesis:

f(Y)(R) = JP ′Ksub
θ{Y/h}(R) ⊇ JP ′Ksub

θ{Y/h}(R
′) = f(Y)(R′)

From here it is simple to check that for all n, fn(⊥) is anti-monotone,
and so this implies that JP Ksub

θ is anti-monotone.

33

Definition A.15. For all Y ∈ Dsub, we define R(Y) and T(Y) as follows:

R(Y) =
⋂

R

R(Y (R))

T(Y) = {↓} ∩ R(Y)

Lemma A.16. For all Y ∈ Dsub:

T(Y) =

{

∅ if ∀R : η ∈ Y (R) =⇒ ! ∈ η

{↓} otherwise

Proof. First note that, by a straightforward inspection of the rules in Def. A.9,
it follows that, for all Y ∈ Dsub:

(1) ∃R : ∃η ∈ Y (R) : ! 6∈ η ⇐⇒ ∀R : ∃η ∈ Y (R) : ! 6∈ η

To prove the main statement,

T(Y) = ∅ ⇐⇒ ↓6∈ R(Y)

⇐⇒ ∃R :↓6∈ R(Y (R))

⇐⇒ ∃R : ∀η ∈ Y (R) :↓6∈ R(η)

⇐⇒ ∃R : ∀η ∈ Y (R) : ! ∈ η

by (1), used contrapositively, we obtain the thesis:

⇐⇒ ∀R : ∀η ∈ Y (R) : ! ∈ η

Example 7. The function R is not continuous.
Let {ri}i∈ω a set of distinct resources. Let {Yi}i∈ω a family of functions

in Dsub, defined as

Yi = λR. {α(rk) | k > |R| − i }

where |R| denotes the cardinality of the finite set R. This family is actually
an ω-chain, since

k > |R| − i =⇒ k > |R| − (i + 1)

34

Then,

R(
⊔

i

Yi) =
⋂

R

⋃

{R(η) | η ∈ (
⊔

i

Yi)(R) }

=
⋂

R

⋃

{R(η) | η ∈
⋃

i

Yi(R) }

=
⋂

R

⋃

i

⋃

{R(η) | η ∈ Yi(R) }

=
⋂

R

⋃

i

{ rk | k > |R| − i }

=
⋂

R

{ rk | k ∈ ω }

= { rk | k ∈ ω }

However,

⋃

i

R(Yi) =
⋃

i

⋂

R

⋃

{R(η) | η ∈ Yi(R) }

=
⋃

i

⋂

R

{ rk | k > |R| − i }

=
⋂

R

∅

= ∅

Therefore R(
⊔

i Yi) 6=
⋃

i R(Yi), proving that R is not continuous.

Lemma A.17. For all monotone non-increasing Y , and for all ω-chain {Ri}i

such that
⋃

i Ri = Res:

R(Y) =
⋂

i

⋃

{R(η) | η ∈ Y (Ri) }

Proof. The inclusion ⊆ follows by set theory, while ⊇ is implied by Lemma A.14.

Lemma A.18. For all Y ∈ Dsub and for all R, T(Y) = T(Y (R)).

Proof. Straightforward.

Lemma A.19. For all strongly bound processes P with fn(P) = ∅:

R(JP Ksub
θ) = RR(θ)(P)

for all θ such that: ∀R ∀h ∈ fv(P) : R(θ(h)(R)) ⊆ R(θ(h)) ∪ (Res \ R).

35

Proof. We prove the following, stronger statement. For all P with fn(P) = ∅
and for all θ,R:

(2) RR(θ)(P) ⊆ R(JP Ksub
θ (R)) ⊆ RR(θ)(P) ∪ (Res \ R)

First we show that the statement A.19 is implied by (2). We prove the
double inclusion:

RR(θ)(P) ⊆
⋂

R

R(JP Ksub
θ (R)) = R(JP Ksub

θ)

⊆
⋂

R

(

RR(θ)(P) ∪ (Res \ R)
)

⊆ RR(θ)(P) ∪
⋂

R

(Res \ R)

= RR(θ)(P) ∪ ∅

= RR(θ)(P)

To prove (2), we proceed by induction on the size of P .

• if P = ε, then RR(θ)(ε) = {↓} = R({ ! , ε}) = R(JεKsub
θ (R)).

• if P = α(ρ), since fn(P) = ∅ then it suffices to consider the case ρ = r.
We have that:

R(Jα(r)Ksub
θ (R)) = R({ ! , α(r)}) = {r, ↓} = RR(θ)(α(r))

• if P = h, then:

RR(θ)(h) = R(θ)(h)

= R(θ(h))

=
⋂

R

R(θ(h)(R))

⊆ R(θ(h)(R))

= R(JhKsub
θ (R))

= R(θ(h)(R))

and since by assumption R(θ(h)(R)) ⊆ R(θ(h)) ∪ (Res \ R):

⊆ R(θ(h)) ∪ (Res \ R)

= RR(θ)(h) ∪ (Res \ R)

• If P = P0 · P1, there are two subcases.

36

– If TR(θ)(P0) = ∅, then:

RR(θ)(P0 · P1) = RR(θ)(P0)

by the induction hypothesis:

⊆ R(JP0K
sub
θ (R))

now, JP1K
sub
θ 6= ∅ by Lemma A.10. Since by the induction hypoth-

esis and by Lemma A.18 TR(θ)(P0) = T(JP0K
sub
θ) = T(JP0K

sub
θ (R)):

= R(JP0 · P1K
sub
θ (R))

= R(JP0K
sub
θ (R))

and by the induction hypothesis:

⊆ RR(θ)(P0) ∪ (Res \ R)

= RR(θ)(P0 · P1) ∪ (Res \ R)

– If TR(θ)(P0) = {↓}, we first prove that:

R(JP Ksub
θ) = R(JP0K

sub
θ ½ JP1K

sub
θ)

=
⋂

R

⋃

{R(η0 ⊙ η1) |
η0 ∈ JP0K

sub
θ (R)

η1 ∈ JP1K
sub
θ (R∪ R(η0))

}(3)

⊇ R(JP0K
sub
θ) ∪ R(JP1K

sub
θ)(4)

Let r ∈ (4). We have two further subcases.

∗ If r ∈ R(JP0K
sub
θ), then for all R, there exists η0 ∈ JP0K

sub
θ (R)

such that r ∈ R(η0). Then, by Lemma A.10, take an η1 ∈
JP1K

sub
θ (R ∪ R(η0)) 6= ∅. Then r ∈ R(η0) ⊆ R(η0 ⊙ η1). This

proves r ∈ (3).

∗ If r ∈ R(JP1K
sub
θ), then for all R′ there exists η1 ∈ JP1K

sub
θ (R′)

such that r ∈ R(η1). To show r ∈ (3), we need to prove that
for all R there exists η0, η1 such that η0 ∈ JP0K

sub
θ (R), η1 ∈

JP1K
sub
θ (R ∪ R(η0)), and r ∈ R(η0 ⊙ η1). Since T(JP0K

sub
θ) =

{↓}, we can choose an η0 ∈ JP0K
sub
η (R) with ! 6∈ η0. Then,

by choosing R′ = R ∪ R(η0), we obtain that there exists
η1 ∈ JP1K

sub
θ (R ∪ R(η0)) such that r ∈ R(η1). We conclude

the proof by R(η0 ⊙ η1) = R(η0) ∪ R(η1), since ! 6∈ η0.

Therefore:

RR(θ)(P0 · P1) = RR(θ)(P0) ∪ RR(θ)(P1)

37

by the induction hypothesis:

= R(JP0K
sub
θ) ∪ R(JP1K

sub
θ)

since (4) ⊆ (3):

⊆ R(JP0 · P1K
sub
θ)

⊆ R(JP0 · P1K
sub
θ (R))

For the other inclusion, we have that:

R(JP0 · P1K
sub
θ (R)) =

⋃

{R(η0 ⊙ η1) | η0 ∈ JP0K
sub
θ (R), η1 ∈ JP1K

sub
θ (R∪ R(η0)) }

by Lemma A.14:

⊆
⋃

{R(η0 ⊙ η1) | η0 ∈ JP0K
sub
θ (R), η1 ∈ JP1K

sub
θ (R)) }

⊆ R(JP0K
sub
θ)(R) ∪ R(JP1K

sub
θ)(R)

and by the induction hypothesis:

⊆ RR(θ)(P0) ∪ RR(θ)(P1) ∪ (Res \ R)

= RR(θ)(P0 · P1) ∪ (Res \ R)

• If P = P0 + P1, we have that:

RR(θ)(P0 + P1) = RR(θ)(P0) ∪ RR(θ)(P1)

by the induction hypothesis:

⊆ R(JP0K
sub
θ (R)) ∪ R(JP1K

sub
θ (R))

=
⋃

{R(η) | η ∈ JP0K
sub
θ (R) } ∪

⋃

{R(η) | η ∈ JP1K
sub
θ (R) }

=
⋃

{R(η) | η ∈ JP0K
sub
θ (R) ∪ JP1K

sub
θ (R) }

= R(JP0 + P1K
sub
θ (R))

= R(JP0K
sub
θ (R)) ∪ R(JP1K

sub
θ (R))

by the induction hypothesis:

⊆ RR(θ)(P0) ∪ RR(θ)(P1) ∪ (Res \ R)

= RR(θ)(P0 + P1) ∪ (Res \ R)

38

• If P = νn. P ′, we have

R(JP Ksub
θ (R)) = R(

⋃

r 6∈R

JP ′{r/n}Ksub
θ (R∪ {r}))

=
⋃

r 6∈R

R(JP ′{r/n}Ksub
θ (R∪ {r}))(5)

Also, we have that:

RR(θ)(P) = RR(θ)(P
′)

using a simple inductive argument:

⊆
⋃

r 6∈R

RR(θ)(P
′{r/n})

by the induction hypothesis:

⊆ (5)

⊆
⋃

r 6∈R

(

RR(θ)(P
′{r/n}) ∪ (Res \ (R∪ {r}))

)

by a simple inductive argument on P ′

⊆
⋃

r 6∈R

(

RR(θ)(P
′) ∪ {r} ∪ (Res \ (R∪ {r}))

)

= RR(θ)(P
′) ∪ (Res \ R) ∪

⋃

r 6∈R

(Res \ (R∪ {r}))

= RR(θ)(P
′) ∪ (Res \ R) ∪ (Res \

⋂

r 6∈R

(R∪ {r}))

= RR(θ)(P
′) ∪ (Res \ R) ∪ (Res \ R)

= RR(θ)(P) ∪ (Res \ R)

• If P = µh. P ′, first note that:

(6) R(JP Ksub
θ (R)) = R(

⊔

n≥0

fn(⊥)(R)) =
⋃

n≥0

R(fn(⊥)(R))

We now prove the inclusion RR(Θ)(P) ⊆ R(JP Ksub
θ (R)). We have that:

RR(Θ)(µh. P ′) = RR(θ){TR(θ){∅/h}(P ′)/h}(P
′)

by Lemma 5d:

⊆ RR(θ){RR(θ){∅/h}(P ′)/h}(P
′)

39

and by the induction hypothesis:

= R
R(θ){R(JP ′Ksub

θ{⊥/h})/h}
(P ′)

by the induction hypothesis again:

⊆ R(JP ′Ksub

θ{JP ′Ksub
θ{⊥/h}/h}

(R))

= R(f2(⊥)(R))

⊆
⋃

n≥0

R(fn(⊥)(R))

We now show by induction on n ≥ 0 that:

R(fn(⊥)(R)) ⊆ RR(θ)(P) ∪ (Res \ R)

The base case is trivial, since R(⊥(R)) = R({ !}) = ∅.

For the inductive case n > 0, we have that:

R(fn(⊥)(R)) = R(JP ′Ksub
θ{fn−1(⊥)/h}(R))

by the induction hypothesis on the size of P :

⊆ RR(θ){R(fn−1(⊥))/h}(P
′) ∪ (Res \ R)

⊆ RR(θ){
T

R R(fn−1(⊥)(R))/h}(P
′) ∪ (Res \ R)

by the induction hypothesis on n and Lemma 5d:

⊆ R
R(θ){

T

R

(

RR(θ)(µh. P ′)(R)∪(Res\R)
)

/h}
(P ′) ∪ (Res \ R)

= RR(θ){RR(θ)(µh. P ′)/h}(P
′) ∪ (Res \ R)

and so by Lemma 5g:

= RR(Θ)(µh. P ′) ∪ (Res \ R)

Summing up:

⋃

n≥0

R(fn(⊥)(R)) ⊆
⋃

n≥0

RR(Θ)(µh. P ′)∪(Res\R) = RR(Θ)(µh. P ′)∪(Res\R)

which concludes the proof.

40

Lemma A.20. For all P , θ, R, we have that:

η ∈ JP Ksub
θ (R) =⇒ (R \ RR(θ)(P)) ∩ R(η) = ∅

Proof. By induction on the size of P . We have the following cases:

• The cases ε, ! and h are trivial.

• If P = α(r), then R(η) = {r} ⊆ RR(θ)(P), which implies the thesis.

• If P = νn. P ′, then η ∈ JP ′{r/n}Ksub
θ (R∪ {r}) for some r 6∈ R. Then:

(R \ RR(θ)(P)) ∩ R(η) = (R \ RR(θ)(P
′{r/n}) ∩ R(η)

⊆ ((R∪ {r}) \ RR(θ)(P
′{r/n}) ∩ R(η) = ∅

where the last equation follows by the induction hypothesis.

• If P = P0 ·P1, then for all η0 ∈ JP0K
sub
θ (R) and for all η1 ∈ JP1K

sub
θ (R∪

R(η0)), the induction hypothesis of (a) gives:

(R \ RR(θ)(P0)) ∩ R(η0) = ∅

((R∪ R(η0)) \ RR(θ)(P1)) ∩ R(η1) = ∅

Let η ∈ JP Ksub
θ (R), i.e. η ∈ η0 ⊙ JP1K

sub
θ (R ∪ R(η0)) for some η0 ∈

JP0K
sub
θ (R). There are two subcases.

If ! ∈ η0, then η = η0, and:

(R \ RR(θ)(P)) ∩ R(η) ⊆ (R \ RR(θ)(P0)) ∩ R(η0) = ∅

Otherwise, if ! 6∈ η0, then ↓∈ RR(θ)(P0) by Lemma A.19(c), and so:

(R \ RR(θ)(P)) ∩ R(η) = (R \ (RR(θ)(P0) ∪ RR(θ)(P1)) ∩ (R(η0) ∪ R(η1))

= (R \ RR(θ)(P0)) ∩ (R \ RR(θ)(P1)) ∩ (R(η0) ∪ R(η1))

⊆
(

(R \ RR(θ)(P0)) ∩ R(η0)
)

∪
(

(R \ RR(θ)(P1)) ∩ R(η1)
)

⊆ ∅ ∪ ((R∪ R(η0)) \ RR(θ)(P1)) ∩ R(η1)

= ∅

• If P = P0 + P1, the thesis follows directly from the induction hypoth-
esis.

• If P = µh. P ′, let η ∈ (
⊔

i Yi)(R), where Y0 = ⊥ and Yi+1 = JP ′Ksub
θ{Yi/h}.

Then, there exists k such that η ∈ Yk(R). If k = 0, then η = ! and the
thesis follows trivially. Otherwise, we have that:

(R \ R(JP Ksub
θ)) ∩ R(η) = (R \ R(

⊔

i

Yi)) ∩ R(η)

41

since R is monotone, then R(
⊔

i Yi) ⊇
⋃

i R(Yi), and so:

⊆ (R \
⋃

i

R(Yi)) ∩ R(η)

=
⋂

i

((R \ R(Yi)) ∩ R(η))

⊆ (R \ R(Yk)) ∩ R(η)

⊆ (R \ R(JP ′Ksub
θ{Yk−1/h})) ∩ R(η)

by Lemma A.19:

= (R \ RR(θ{Yk−1/h})(P
′)) ∩ R(η)

= ∅

where the last equality follows directly from the induction hypothesis.

Lemma A.21. Let P be a strongly bound processes with fn(P) = ∅, let
θ be a function such that dom(θ) = {h1, . . . , hk} ⊇ fv(P) and θ(hi)(R̄) ⊆
JPiK

op(R̄) for all i ∈ 1..k and for all R̄ ⊇ R, and let R ⊇ RR(θ)(P) be a finite
set of resources. Then:

JP Ksub
θ (R) ⊆ JP{P1/h1, · · · , Pk/hk}K

op(R)

Proof. By induction on the size of P . Let η ∈ JP Ksub
θ (R). If η = !, then by

Def. 2.2 the thesis follows trivially. Otherwise, there are the following cases:

• if P = ε, then η = ε ∈ JεKop(R).

• if P = !, then η = ! – already considered.

• if P = α(r), there are two subcases.

If η = α(r), since α(r), R
α(r)
−−→ ε, R, then:

α(r) ∈ JP Kop(R) = JP{P1/h1, · · · , Pk/hk}K
op(R)

If η = α(r) ! , similar to the case above.

• if P = h, then, by the hypothesis dom(θ) ⊇ fv(P), we have that
h = hi for some i ∈ 1..k, and JP Ksub

θ = JhiK
sub
θ = θ(hi). By assumption,

θ(hi)(R) ⊆ JPiK
op(R). Thus, JP Ksub

θ (R) ⊆ Jhi{P1/h1, · · · , Pk/hk}K
op(R) =

JPiK
op(R).

42

• if P = νn. P̄ , then η ∈ JP̄{r/n}Ksub
θ (R ∪ {r}) for some r 6∈ R. By the

induction hypothesis:

JP̄{r/n}Ksub
θ (R∪ {r}) ⊆ JP̄{r/n}{P1/h1, · · · , Pk/hk}K

op(R∪ {r})

Since P{P1/h1, · · · , Pk/hk}, R
ε
−→ P̄{P1/h1, · · · , Pk/hk}{r/n}, R ∪

{r} then by Lemma A.8:

ε⊙JP̄{P1/h1, · · · , Pk/hk}{r/n}Kop(R∪{r}) ⊆ JP{P1/h1, · · · , Pk/hk}K
op(R)

Since JPiK
sub
θ is defined, then fn(Pi) = ∅ for all i ∈ 1..k, and so:

P̄{r/n}{P1/h1, · · · , Pk/hk} = P̄{P1/h1, · · · , Pk/hk}{r/n}

Summing up, we have proved that η ∈ JP{P1/h1, · · · , Pk/hk}K
op(R).

• if P = P ′ ·P ′′, then η ∈ (JP ′Ksub
θ ½JP ′′Ksub

θ)(R). By Def. 2.3, η = η0⊙η1

for some η0 ∈ JP ′Ksub
θ (R) and η1 ∈ JP ′′Ksub

θ (R∪ R(η0)). By the induc-
tion hypothesis, η0 ∈ JP ′{P1/h1, · · · , Pk/hk}K

op(R). By Lemma A.2,
we have two cases.

– We have η0 = η′0 ! for some !-free η′0. In this case η = η0 by

Def. 2.3. Since P ′{P1/h1, · · · , Pk/hk},R
η′
0 !

−−→ P̄ , R̄ for some P̄
and R̄. A simple inductive argument then yields:

P{P1/h1, · · · , Pk/hk},R
η′
0 !

−−→ P̄ · (P ′′{P1/h1, · · · , Pk/hk}), R̄

Therefore η ∈ JP{P1/h1, · · · , Pk/hk}K
op(R), which is the thesis.

– We have ! 6∈ η0, and so η = η0η1. Since η0 ∈ JP ′{P1/h1, · · · , Pk/hk}K
op(R),

then by definition:

P ′{P1/h1, · · · , Pk/hk},R
η0
−→ ε, R̄

for some R̄ ⊇ R ∪ R(η0). Similarly, by the induction hypothesis
on P ′′, we have that η1 ∈ JP ′′{P1/h1, · · · , Pk/hk}K

op(R∪Rη0), so
for some R′:

P ′′{P1/h1, · · · , Pk/hk}, (R∪ R(η0))
η1
−→ ε,R′

By simple set-theoretic arguments, we have:

R̄ = Ra ∪Rb = (R̄ ∩ (R∪ R(η0))) ∪ (R̄ \ (R∪ R(η0)))

Since R̄ ⊇ R ∪ R(η0), then Ra = R ∪ R(η0). We shall now
construct a derivation:

P ′{P1/h1, · · · , Pk/hk},R
η0
−→ ε, R̄′

43

with R̄′ = Ra∪R′
b for some R′

b disjoint from R′. The intuition is
that Rb contains only “garbage” resources, e.g. those vacuously
generated by νn. P with n 6∈ P . To construct this derivation, we
α-convert the resources in Rb by repeatedly applying Lemma 7d.

Take the set of resources R′
b such that |R′

b| = |Rb| and R′
b ∩ (R̄∪

R′) = ∅. Let σ be a bijection mapping Rb into R′
b. Moreover,

let n be an arbitrary name: clearly, n is not free in the closed
process P ′{P1/h1, · · · , Pk/hk}.

Take a resource r ∈ Rb: we now use Lemma 7d and α-convert it to
rσ ∈ R′

b. To this purpose, we note that P ′{P1/h1, · · · , Pk/hk} =
P ′{P1/h1, · · · , Pk/hk}{r/n}. The hypoteses of the lemma are
satisfied: r 6∈ R(η0) since Rb∩R(η) = (R̄\(R∪R(η0)))∩R(η0) = ∅,
and rσ 6∈ R̄ since R′

b was chosen to this aim. Of course, we can re-
turn to the original process with P ′{P1/h1, · · · , Pk/hk}{rσ/n} =
P ′{P1/h1, · · · , Pk/hk}. Therefore:

P ′{P1/h1, · · · , Pk/hk},R{rσ/r}
η0
−→ ε, R̄{rσ/r}

By a simple inductive argument, we similarly α-convert the other
resources in Rb: the hypotheses of Lemma 7d do not change, ex-
cept that we must ensure rσ 6∈ R̄σ′ where σ′ is the result of the
previously performed α-conversions. This is however straight-
forward, since rσ 6∈ R̄, and rσ 6∈ ran(σ′). We have therefore
constructed a derivation for:

P ′{P1/h1, · · · , Pk/hk},Rσ
η0
−→ ε, R̄′

Since R ∩ dom(σ) = R ∩ Rb = R ∩ (R ∪ R(η0)) = R, so by
definition of R̄′:

P ′{P1/h1, · · · , Pk/hk},R
η0
−→ ε, (R∪ Rη0) ∪R′

b

To prove the thesis, we now exploit R′
b ∩ R′ = ∅ and apply

Lemma 7b to every r ∈ R′
b, obtaining:

P ′′{P1/h1, · · · , Pk/hk}, (R∪ Rη0) ∪R′
b

η0
−→ ε,R′ ∪R′

b

We then can conclude by:

(P ′ · P ′′){P1/h1, · · · , Pk/hk},R
η0η1
−−−→ ε,R′ ∪R′

b

which implies η ∈ JP{P1/h1, · · · , Pk/hk}K
op(R).

• if P = P ′ + P ′′, then η ∈ JP ′Ksub
θ (R) or η ∈ JP ′′Ksub

θ (R). In the first
case, by induction hypothesis η ∈ JP ′{P1/h1, · · · , Pk/hk}K

op(R). Since
P{P1/h1, · · · , Pk/hk}, R

ε
−→ P ′{P1/h1, · · · , Pk/hk}, R so by Lemma A.8:

JP ′{P1/h1, · · · , Pk/hk}K
op(R) = ε ⊙ JP ′{P1/h1, · · · , Pk/hk}K

op(R)

⊆ JP{P1/h1, · · · , Pk/hk}K
op(R)

which is the thesis. The other case is similar.

44

• if P = µh. P ′, then η ∈ fn(J!Ksub
θ)(R), for some n ≥ 0. By induction

on n, we prove that, for all n ≥ 0:

∀R̄ ⊇ R fn(⊥) (R̄) ⊆ JP{P1/h1, · · · , Pk/hk}K
op(R)

The base case n = 0 is trivial, since ! is always included in the right-
hand side. For the inductive case n > 0, we have that:

fn+1(⊥) (R̄) = f(fn(⊥))(R̄)

= JP ′Ksub
θ{fn(⊥)/h} (R̄)

by the induction hypothesis on n, fn(⊥)(R̄) ⊆ JP{P1/h1, · · · , Pk/hk}K
op(R)

for all R ⊆ R̄. Then, by the induction hypothesis on the size of P :

⊆ JP ′{P1/h1, · · · , Pk/hk, P{P1/h1, · · · , Pk/hk}/h}Kop(R̄)

and by Lemma 6b:

⊆ JP ′{P1/h1, · · · , Pk/hk, P{P1/h1, · · · , Pk/hk}/h}Kop(R)

= ε ⊙ JP ′{P1/h1, · · · , Pk/hk, P{P1/h1, · · · , Pk/hk}/h}Kop(R)

since P{P1/h1, · · · , Pk/hk}
ε
−→ P ′{P1/h1, · · · , Pk/hk}{P{P1/h1, · · · , Pk/hk}/h},

then by Lemma A.8:

⊆ JP{P1/h1, · · · , Pk/hk}K
op(R)

which concludes the proof.

Lemma A.22. For all strongly bound processes P, P ′ with fn(P) = fn(P ′) =
∅, for all θ such that dom(θ) ⊇ fv(P) ∪ fv(P ′), and for all h 6∈ fv(P ′):

JP{P ′/h}Ksub
θ = JP Ksub

θ{JP ′Ksub
θ /h}

Proof. We proceed by induction on the size of P . Let θ′ = θ{JP ′Ksub
θ /h}.

• If P = ε, P = α(r) or P = !, the thesis follows trivially, because the
substitution is vacuous.

• If P = h′, there are two subcases. If h′ = h, then:

Jh{P ′/h}Ksub
θ = JP ′Ksub

θ = JhKsub
θ′

Otherwise, if h′ 6= h, then P{P ′/h} = P .

45

• If P = νn. P̄ , then:

Jνn. P̄{P ′/h}Ksub
θ = λR.

⋃

r 6∈R

JP̄{P ′/h}{r/n}Ksub
θ (R∪ {r})

since fn(P ′) = ∅ by hypothesis, then P ′{r/n} = P ′, and so:

= λR.
⋃

r 6∈R

JP̄{r/n}{P ′/h}Ksub
θ (R∪ {r})

and, by the induction hypothesis:

= λR.
⋃

r 6∈R

JP̄{r/n}Ksub
θ′ (R∪ {r})

= Jνn. P̄ Ksub
θ′

• If P = P0 · P1, then:

J(P0 · P1){P
′/h}Ksub

θ = JP0{P
′/h} · P1{P

′/h}Ksub
θ

= JP0{P ′/h}Ksub
θ ½ JP1{P ′/h}Ksub

θ

= JP0K
sub
θ′ ½ JP1K

sub
θ′

= JP Ksub
θ′

• If P = P0 + P1, then, by the induction hypothesis:

J(P0 + P1){P
′/h}Ksub

θ = JP0{P
′/h}Ksub

θ ⊔ JP1{P
′/h}Ksub

θ

= JP0K
sub
θ′ ⊔ JP1K

sub
θ′

= JP Ksub
θ′

• If P = µh′. P̄ , there are two subcases. If h′ = h, then P{P ′/h} = P ,
and so the statement holds trivially. Otherwise h′ 6= h, and so we
have:

Jµh′. P̄{P ′/h}Ksub
θ =

⊔

n≥0

(

λY. JP̄{P ′/h}Ksub
θ{Y/h′}

)n
(⊥)

and, by the induction hypothesis:

=
⊔

n≥0

(

λY. JP̄ Ksub
θ′{Y/h′}

)n
(⊥)

= Jµh′. P̄ Ksub
θ′

which concludes the proof.

46

Lemma A.23 (Unfolding). For all strongly bound processes P , and for
all θ:

Jµh. P Ksub
θ = JP Ksub

θ{Jµh. P Ksub
θ /h}

Proof. By Def. A.9, Jµh. P Ksub
θ =

⊔

i≥0 f i(⊥), where f(Y) = JP Ksub
θ{Y/h}.

Thus:

JP{µh. P/h}Ksub
θ = JP Ksub

θ{Jµh. P Ksub
θ /h}

by Lemma A.22

= f(Jµh. P Ksub
θ) by def. of f

= f(
⊔

i≥0

f i(⊥))

=
⊔

i≥0

f i(⊥)
⊔

i≥0

f i(⊥) is a fixed point of f

= Jµh. P Ksub
θ

Lemma A.24. Let P, P ′ be closed, strongly bound process, let R,R′ be
finite sets of resources, and let θ0 = ∅. Then:

P, R
a
−→ P ′, R′ =⇒ JP Ksub

θ0
(R) ⊇ a ⊙ JP ′Ksub

θ0
(R′)

Proof. We proceed by induction on the size of P . We first consider the case

P, R
!
−→ ! , R. In this case, ! ⊙ J !Ksub

θ0
(R′) = { !} ⊆ JP Ksub

θ0
(R). Otherwise,

we consider the following exhaustive cases:

• If P = ε or P = !, then the only applicable rule is P,R
!
−→ ! ,R, which

we have already considered.

• If P = α(r), then a = α(r) and P ′ = ε. We have Jα(r)Ksub
θ0

(R) =

{ ! , α(r), α(r) !} ⊇ α(r) ⊙ {ε, !} = α(r) ⊙ JεKsub
θ0

(R).

• If P = νn. P̄ , then a = ε, P ′ = P̄{r/n} for some r 6∈ R, and R′ =
R ∪ {r}. We have Jνn. P̄ Kθ0

(R) =
⋃

r′ 6∈R JP̄{r′/n}Ksub
θ0

(R ∪ {r′}) ⊇

JP̄{r/n}Kθ0
(R∪ {r}) = ε ⊙ JP ′Kθ0

(R′).

• If P = P0 + P1, then P ′ = Pi with i ∈ {0, 1}, R′ = R and a = ε. We
have JP0 + P1K

sub
θ0

(R) = JP0K
sub
θ0

(R) ⊔ JP1K
sub
θ0

(R) ⊇ ε ⊙ JP ′Ksub
θ0

(R).

• If, P = P0 · P1 we have two subcases:

47

– If P0 = ε and a = ε, then P ′ = P1 and R′ = R. We have:

Jε · P1K
sub
θ0

(R) =
(

JεKsub
θ0

½ JP1K
sub
θ0

)

(R)

=
(

(λR′. {ε, !}) ½ JP1K
sub
θ0

)

(R)

= {ε, !} ⊙ JP1K
sub
θ0

(R)

⊇ ε ⊙ JP1K
sub
θ0

(R)

– Otherwise, P0, R
a
−→ P ′

0, R′ and P ′ = P ′
0 · P1. The induction

hypothesis gives JP0K
sub
θ0

(R) ⊇ a ⊙ JP ′
0K

sub
θ0

(R′), from which we
obtain:

JP0 · P1K
sub
θ0

(R) = (JP0K
sub
θ0

½ JP1K
sub
θ0

)(R)

= { η0 ⊙ JP1K
sub
θ0

(R∪ R(η0)) | η0 ∈ JP0K
sub
θ0

(R) }

by the induction hypothesis, JP0K
sub
θ0

(R) ⊇ a⊙ JP ′
0K

sub
θ0

(R′), thus:

⊇ { η0 ⊙ JP1K
sub
θ0

(R∪ R(η0)) | η0 ∈ a ⊙ JP ′
0K

sub
θ0

(R′) }

since R ⊆ R′, then by Lemma A.14:

⊇ { η0 ⊙ JP1K
sub
θ0

(R′ ∪ R(η0)) | η0 ∈ a ⊙ JP ′
0K

sub
θ0

(R′) }

= a ⊙ { η0 ⊙ JP1K
sub
θ0

(R′ ∪ R(η0)) | η0 ∈ JP ′
0K

sub
θ0

(R′) }

= a ⊙ JP ′
0 · P1K

sub
θ0

(R′)

• If P = µh. P̄ , then a = ε, R′ = R, and P ′ = P̄{P/h}. Therefore:

JP Ksub
θ0

(R) =
(

⊔

n≥0

fn(⊥)
)

(R)

since, by Lemma A.13, f is continuous, then by the Knaster-Tarski
theorem:

= f
(

⊔

n≥0

fn(⊥)
)

(R)

= f(JP Ksub
θ0

)(R)

= JP̄ Ksub

θ{JP Ksub
θ0

/h}
(R)

and, by Lemma A.22:

= JP̄{P/h}Ksub
θ0

(R)

= ε ⊙ JP ′Ksub
θ (R)

which concludes the proof.

48

Lemma A.25. Let P be a closed, strongly bound process, and let R be a
finite set of resources. Then:

JP Kop(R) = JP Ksub
∅ (R)

Proof. We first prove the inclusion JP Kop(R) ⊆ JP Ksub
∅ (R). Let η ∈ JP Kop

R .
Then, η = a1 · · · ak, and there exists a chain of transitions:

P,R
a1−→ P1,R1

a2−→ · · ·
ak−→ Pk,Rk

where R′ = Rk \ R, and either Pk = ε, or ak = ! (in the second case,
Lemma A.2 implies that ai 6= ! for all i < k). Using Lemma A.24 for k − 1
times, we obtain:

a1 ⊙ a2 ⊙ · · · ⊙ ak ⊙ JPkK
sub
∅ (Rk) ⊆ JP Ksub

∅ (R)

Now we consider the two cases Pk = ε and ak = !. If Pk = ε, then
JPkK

sub
∅ (Rk) = {ε}, and so η ⊙ {ε} = {η}. Thus, in both cases we have:

{η} = η ⊙ JPkK
sub
∅ (Rk) ⊆ JP Ksub

∅ (R)

which proves the inclusion JP Kop(R) ⊆ JP Ksub
∅ (R). The other inclusion

follows directly from Lemma A.21 (note that fv(P) = ∅ by hypothesis).

Lemma A.26. For all strongly bound P , for all R, θ and χ such that
fn(Pχ) = ∅:

JPχKsub
θ (R) = JP Ks

θ(χ)(R)

Proof. By induction on the size of P . There are the following cases:

• if P = ε, P = !, P = h or P = α(ρ), trivial.

• if P = νn. P ′, then:

JPχKsub
θ (R) =

⋃

r 6∈R

JP ′χ{r/n}Ksub
θ (R∪ {r})

and by the induction hypothesis:

=
⋃

r 6∈R

JP ′Ks
θ(χ{r/n})(R∪ {r})

= JP Ks
θ(χ)(R)

49

• if P = P0 · P1, then:

JPχKsub
θ (R) = (JP0χKsub

θ ½ JP1χKsub
θ)(R)

= { η0 ⊙ η1 | η0 ∈ JP0χKsub
θ (R), η1 ∈ JP1χKsub

θ (R∪ R(η0)) }

and by the induction hypothesis:

= { η0 ⊙ η1 | η0 ∈ JP0K
s
θ(χ)(R), η1 ∈ JP1K

s
θ(χ)(R∪ R(η0)) }

= (JP0K
s
θ ½ JP1K

s
θ)(χ)(R)

= JP Ks
θ(χ)(R)

• if P = P0 + P1, straightforward by the induction hypothesis.

• if P = µh. P ′, then let:

JPχKsub
θ (R) =

⋃

n≥0

(λZ. JP ′χKsub
θ{Z/h})

n(⊥Dsub
) (R)

by the induction hypothesis, since fn(P ′χ) = fn(Pχ) = ∅:

=
⋃

n≥0

(λZ. λR̄. JP ′Ks
θ{Z/h}(χ)(R̄))n(⊥Dsub

) (R)

= JP Ks
θ(χ)(R)

which concludes the proof.

Theorem 2.5 (Full abstraction). For all closed strongly bound processes
P , and for all finite sets of resources R:

JP Kop(R) = JP Ks
∅(R)(∅)

Proof. By Lemmata A.25 and A.26, the hypotheses of which are trivially
satisfied:

JP Kop(R) = JP Ksub
∅ (R) = JP Ks

∅(∅)(R)

50

B Proofs: weakly bound processes

In this Appendix we prove some intermediate results about weakly bound
processes. These will be exploited in App. C and in App. D to show the
correctness of the bindify transformation and of the trace inclusion preorder,
respectively.

Lemma B.1. For all weakly bound processes p:

fn(p) ∩ bn¤(p) = ∅(1a)

Fn(p) ⊇ fn(p) ∪ bn⋄(p)(1b)

Proof. Straightforward by induction on the structure of p.

The following lemma ensures that the condition R ⊇ ran(χ) is always
respected by the intermediate results of Def. 3.6. Therefore, in what follows
we shall always omit to explicitly check this condition.

Lemma B.2. For all weakly bound processes p, and for all R, χ:

(η, χ′) ∈ JpKw
θ (χ)(R) ∧R ⊇ ran(χ) =⇒ R∪ R(η) ⊇ ran(χ′)

Proof. The only rule that widens ran(χ) is that for new(n). In that case,
χ(n) ∈ R(η), so the condition of the Lemma is satisfied. Also, note that in
the case p = µh. p′, the operator setχ sets χ′ = χ.

Definition B.3. For all Y ∈ Dw, we define T(Y) and R(Y) as follows:

R(Y) =
⋂

R,χ

R(fst(Y (χ)(R)))

T(Y) = {↓} ∩ R(Y)

Lemma B.4. For all Y ∈ Dw:

T(Y) =

{

∅ if ∀R, χ. (η, χ′) ∈ Y (χ)(R) =⇒ ! ∈ η

{↓} otherwise

Proof. Similar to the proof of Lemma A.16.

Definition B.5. We say that Y ∈ Dw is sane if and only if, for all R, χ:

Y (χ)(R) 6= ∅(5a)

Y (χ)(R) ⊇ Y (χ)(R′) if R ⊆ R′(5b)

(η, χ′) ∈ Y (χ̄)(R) =⇒ χ′ ⊇ χ̄(5c)

(η, χ′{r/n}) ∈ Y (χ{r/n})(R) ∧ r 6∈ η =⇒ (η, χ′) ∈ Y (χ)(R)(5d)

if r 6∈ R(η) ∧ n 6∈ dom(χ′) :(5e)

(η, χ′) ∈ Y (χ)(R) =⇒ (η, χ′{r/n}) ∈ Y (χ{r/n})(R∪ {r})

(η, χ′) ∈ Y (χ)(R) =⇒ R(Y) ⊆ R(η) ⊆ R(Y) ∪ ran(χ) ∪ (Res \ R)(5f)

51

We say that Z ∈ Dsub is sane if λR, χ.setχZ(R) is sane.
We say that θ is sane if θ(h) is sane for all h ∈ dom(θ).

Lemma B.6. For all weakly bound processes p and sane θ:

JpKw
θ is sane(6a)

f(Z) = λR̄. fst(JpKw
θ{Z/h}(χ)(R̄)) is sane, for all χ and sane Z ∈ Dsub(6b)

Proof. The item (5a) follows trivially from Def. 3.6. In the case p = new(n)
with n 6∈ dom(χ), since R is finite we can always choose r 6∈ R.

For (5b), let R ⊆ R′. By induction on p, there are the following cases:

• if p = ε, p = !, trivial.

• if p = α(ρ), the only non-trivial case is when R affects the result, i.e.
when α = new and ρ = n 6∈ dom(χ). In this case, we have that:

Jnew(n)Kw
θ (χ)(R) = {(! , χ)} ∪

⋃

r 6∈R

setχ{r/n}{new(r),new(r) !}

⊇ {(! , χ)} ∪
⋃

r 6∈R′

setχ{r/n}{new(r),new(r) !}

= Jnew(n)Kw
θ (χ)(R′)

• if p = h, the thesis is implied by the sanity of θ.

• if p = p0 · p1 and p = p0 + p1, straightforward application of the
induction hypothesis.

• if p = µh. p′, it suffices to prove that if Z ∈ Dsub is anti-monotone,
then also f(Z) = λR̄. fst(Jp′Kw

θ{Z/h}(χ
′)(R̄)) is anti-monotone. This

follows directly from item (6b).

For (5c), let (η, χ′) ∈ JpKw
θ (χ)(R). There are the following cases:

• if p = ε or p = !, trivial.

• if p = α(ρ), the only non-trivial case is when χ′ 6= χ, i.e. when α = new
and ρ = n 6∈ dom(χ). In this case, we have that:

(η, χ′) ∈ Jnew(n)Kw
θ (χ)(R) = {(! , χ)}∪

⋃

r 6∈R

setχ{r/n}{new(r),new(r) !}

Thus, either χ′ = χ or χ′ = χ{r/n} ⊇ χ.

• if p = h, the thesis is implied by the sanity of θ.

52

• if p = p0 · p1, then (η, χ′) = (η0, χ0) ⊙ (η1, χ1), where:

(η0, χ0) ∈ Jp0K
w
θ (χ)(R)

(η1, χ1) ∈ Jp1K
w
θ (χ0)(R∪ R(η0))

By the induction hypothesis on p0, χ0 ⊇ χ, which implies the thesis in
the case ! ∈ η0. If ! 6∈ η0, then the induction hypothesis on p1 gives
χ1 ⊇ χ0, and summing up χ1 ⊇ χ.

• if p = p0 +p1, straightforward application of the induction hypothesis.

• if p = µh. p′, the thesis follows directly from item (6b).

For (5d), let (η, χ′{r/n}) ∈ JpKw
θ (χ{r/n})(R), with r 6∈ η. There are the

following cases:

• if p = ε or p = !, trivial.

• if p = α(ρ), there are two subcases. If ρ 6= n the binding {r/n} is
immaterial, and so the thesis follows directly. The case ρ = n is also
trivial, because η = α(r) contradicts the hypothesis r 6∈ R(η).

• if p = h, the thesis is implied by the sanity of θ.

• if p = p0 · p1, then (η, χ′{r/n}) = (η0, χ0) ⊙ (η1, χ1), where:

(η0, χ0) ∈ Jp0K
w
θ (χ{r/n})(R)

(η1, χ1) ∈ Jp1K
w
θ (χ0)(R∪ R(η0))

Since r 6∈ η implies r 6∈ η0, and by (5c) χ0 ⊇ χ{r/n} (i.e. χ0 =
χ̄0{r/n}, for some χ̄0) then by the induction hypothesis on p0:

(η0, χ̄0) ∈ Jp0K
w
θ (χ)(R)

If ! ∈ η0, then χ′ = χ̄0 proves the thesis. Otherwise, ! 6∈ η0, and by
the induction hypothesis on p1:

(η1, χ
′) ∈ Jp1K

w
θ (χ̄0)(R)

Summing up, we have the thesis (η, χ′) ∈ Jp0 · p1K
w
θ (χ)(R).

• if p = p0 +p1, straightforward application of the induction hypothesis.

• if p = µh. p′, the thesis follows directly from item (6b).

For (5e), let (η, χ′) ∈ JpKw
θ (χ)(R) let r 6∈ R(η), and n 6∈ dom(χ′). There

are the following cases:

• if p = ε or p = !, trivial.

53

• if p = α(ρ), the only non-trivial case is when α = new and ρ = n 6∈
dom(χ). We have that η = α(r′) and χ′ = χ{r′/n} for some r′ 6∈ R.
Since r 6∈ R ∪ R(η) = R ∪ {r′}, then also r′ 6∈ R ∪ {r}, which implies
the thesis.

• if p = h, the thesis is implied by the sanity of θ.

• if p = p0 · p1, then (η, χ′) = (η0, χ0) ⊙ (η1, χ1), where:

(η0, χ0) ∈ Jp0K
w
θ (χ)(R)

(η1, χ1) ∈ Jp1K
w
θ (χ0)(R∪ R(η0))

By the induction hypothesis applied on p0 and on p1:

(η0, χ0{r/n}) ∈ Jp0K
w
θ (χ{r/n})(R∪ {r′}) ∀r′ 6∈ R ∪ R(η0)

(η1, χ1{r/n}) ∈ Jp1K
w
θ (χ0{r/n})(R∪ R(η0) ∪ {r′}) ∀r′ 6∈ R ∪ R(η0) ∪ R(η1)

If ! ∈ η0, the first item above suffices. Otherwise, R(η) = R(η0)∪R(η1),
and summing up, (η, χ′{r/n}) ∈ JpKw

θ (χ{r/n})(R ∪ {r′}) for all r′ 6∈
R ∪ R(η).

• if p = p0 +p1, straightforward application of the induction hypothesis.

• if p = µh. p′, the thesis follows directly from item (6b).

For the item 5f, the proof proceeds similarly to the proof of Lemma A.19.

Lemma B.7. For all weakly bound processes p and sane θ:

JpKw
θ (χ)(R) ⊆

⋃

r 6∈R

JpKw
θ (χ)(R∪ {r})

Proof. We prove the following, stronger statement:

(7) (η, χ′) ∈ JpKw
θ (χ)(R) =⇒ (η, χ′) ∈

⋂

r 6∈R∪R(η) JpKw
θ (χ)(R∪ {r})

Let (η, χ′) ∈ JpKw
θ (χ)(R), let r 6∈ R(η), and choose n 6∈ dom(χ′). By

Lemma B.6, JpKw
θ (χ)(R) is sane, and thus by (5e):

(η, χ′{r/n}) ∈ JpKw
θ (χ{r/n})(R∪ {r})

Therefore, by (5d):
(η, χ′) ∈ JpKw

θ (χ)(R∪ {r})

Lemma B.8. For all weakly bound processes p and sane θ, R(JpKw
θ) =

RR(θ)(p).

54

Proof. The thesis follows from the following stronger statement, implied by
Lemma B.6:

RR(θ)(p) ⊆ R(JpKw
θ (χ))(R) ⊆ RR(θ)(p) ∪ ran(χ) ∪ (Res \ R)

Lemma B.9. For all weakly bound processes p, if (η, χ′) ∈ JpKw
θ (χ)(R)

then:

ran(χ′) ⊆ ran(χ) ∪ R(η)(9a)

dom(χ′) ⊆ dom(χ) ∪ bn⋄(p)(9b)

∀n 6∈ p : (η, χ′|dom(χ′)\{n}) ∈ JpKw
θ (χ|dom(χ)\{n})(R)(9c)

∀n ∈ bn¤(p) : ! ∈ η ∨ χ′(n) ∈ R(η)(9d)

Proof. The first three items are straightforward by induction on the size of
p. For (9d), by induction on the size of p there are the following cases:

• if p = ε, p = α(ρ) with α 6= new, p = !, p = h, or p = µh. p′, the
precondition is false.

• if p = new(n), immediate by definition.

• if p = p0 · p1, then n ∈ bn¤(p0) or n ∈ bn¤(p1). If ! ∈ η, there is
nothing to prove. Otherwise, η = η0⊙η1, where (η0, χ0) ∈ Jp0K

w
θ (χ)(R)

and (η1, χ
′) ∈ Jp1K

w
θ (χ0)(R∪ R(η0)). There are two subcases.

If n ∈ bn¤(p0), then by the induction hypothesis χ0(n) ∈ R(η0). The
thesis follows by R(η) ⊇ R(η0) and by Def. 5c, which implies χ′(n) =
χ0(n).

If n ∈ bn¤(p1), then by the induction hypothesis χ′(n) ∈ R(η1), which
implies the thesis.

• if p = p0 + p1, then n ∈ bn¤(p0) and n ∈ bn¤(p1). The thesis then
follows by the induction hypothesis.

55

C Proofs: correctness of bindification

In this Appendix we shall establish in Theorem 4.3 the correctness of bin-
dification, i.e. that JpKw

∅ = Jbindify(p)Ks
∅ for each well-bound p. Some inter-

mediate results and definitions precede the proof of the main theorem.

Definition C.1. For all η, χ and n ∈ Nam, we define:

fltn((η, χ)) =

{

(η, χ) if χ(n) ∈ R(η)

(η, χ|dom(χ)\{n}) otherwise

Definition C.2. We say Y ∈ Dw is anticipating on n if, for all χ such that
n 6∈ dom(χ) and R ⊇ R(Y) such that Y (χ)(R) is defined:

Y (χ)(R) = fltn(
⋃

r 6∈R

Y (χ{r/n})(R∪ {r}))

We say that Y ∈ Dsub is anticipating if λR, χ. setχY (R) is anticipating on
Nam.

Lemma C.3. For all weakly bound processes p, for all anticipating θ such
that dom(θ) ⊇ fv(p), and for all n 6∈ fn(p), JpKw

θ is anticipating on n.

Proof. Let R ⊇ R(JpKw
θ) = RR(θ)(p) (by Lemma B.8) and let χ be such that

n 6∈ dom(χ) ⊇ fn(p). By induction on the size of p, there are the following
cases:

• If p = ε, p = !, trivial.

• If p = α(r′) – where possibly α = new – then:

fltn(
⋃

r 6∈R

Jα(r′)Kw
θ (χ{r/n})(R∪ {r}))

= fltn(
⋃

r 6∈R

setχ{r/n}{ ! , α(r′), α(r′) !})

=
⋃

r 6∈R

fltn(setχ{r/n}{ ! , α(r′), α(r′) !})

since r 6∈ R ⊇ RR(θ)(α(r′)) ∋ r′, and n 6∈ dom(χ):

=
⋃

r 6∈R

setχ{ ! , α(r′), α(r′) !}

= Jα(r′)Kw
θ (χ)(R)

56

• If p = α(n′), with α 6= new, then n′ ∈ fn(p) 6∋ n. Therefore, n′ 6= n,
so:

fltn(
⋃

r 6∈R

Jα(n′)Kw
θ (χ{r/n})(R∪ {r}))

= fltn(
⋃

r 6∈R

setχ{r/n}{ ! , α(χ(n′)), α(χ(n′)) !})

=
⋃

r 6∈R

fltn(setχ{r/n}{ ! , α(χ(n′)), α(χ(n′)) !})

since χ(n′) ∈ ran(χ) ⊆ R 6∋ r and n 6∈ dom(χ), then:

=
⋃

r 6∈R

setχ{ ! , α(χ(n′)), α(χ(n′)) !}

= Jα(χ(n′))Kw
θ (χ)(R)

• If p = new(n), the thesis follows by definition, since:

{(! , χ), (new(r), χ{r/n}), (new(r) ! , χ{r/n})}

= fltn(setχ{r/n}{ ! ,new(r),new(r) !})

• If p = h, then:

fltn(
⋃

r 6∈R

JhKw
θ (χ{r/n})(R∪ {r})) = fltn(

⋃

r 6∈R

setχ{r/n}θ(h)(R∪ {r}))

since λR, χ. setχθ(h)(R) is anticipating:

= setχθ(h)(R)

= JhKw
θ (χ)(R)

• If p = p0 · p1, we prove the two inclusions separately. For ⊆, let:

(η, χ′) ∈ JpKw
θ (χ)(R) = { (η0, χ0)⊙(η1, χ1) |

(η0, χ0) ∈ Jp0K
w
θ (χ)(R)

(η1, χ1) ∈ Jp1K
w
θ (χ0)(R∪ R(η0))

}

Since n 6∈ fn(p) ⊇ fn(p0), and R ⊇ RR(θ)(p) ⊇ RR(θ)(p0), then by the
induction hypothesis on p0 we have that:

(η0, χ̄0) ∈ Jp0K
w
θ (χ{r/n})(R∪ {r})

for some r, χ̄0 such that (η0, χ0) = fltn((η0, χ̄0)). There are two sub-
cases:

57

– If r ∈ R(η0), then R(η0) ∪ {r} = R(η0) and χ̄0 = χ0. Then:

(η1, χ1) ∈ Jp1K
w
θ (χ0)(R∪ R(η0) ∪ {r})

and thus we conclude:

(η, χ′) = (η0, χ0) ⊙ (η1, χ1) ∈
⋃

r 6∈R

Jp0 · p1K
w
θ (χ{r/n})(R∪ {r})

Since r ∈ R(η), the thesis follows from fltn((η, χ′)) = (η, χ′).

– If r 6∈ R(η0), then (η0, χ0) = fltn((η0, χ̄0)) implies that n 6∈
dom(χ0). We consider two further subcases.

∗ if ! ∈ η0, then (η0, χ̄0) ∈ Jp0K
w
θ (χ{r/n})(R ∪ {r}) implies

that:
(η0, χ̄0) ∈ Jp0 · p1K

w
θ (χ{r/n})(R∪ {r})

The thesis follows from fltn((η0, χ̄0)) = (η0, χ0).

∗ if ! 6∈ η0, then R ⊇ RR(θ)(p0·p1) = RR(θ)(p0)∪RR(θ)(p1). Since

n 6∈ fn(p) = fn(p0) ∪ (fn(p1) \ bn¤(p0)), then n 6∈ fn(p1) or
n ∈ bn¤(p0). The case n ∈ bn¤(p0) is not possible, since
by Lemma 9d this would imply n ∈ dom(χ0). Therefore,
n 6∈ fn(p1), so by the induction hypothesis on p1:

(η1, χ̄1) ∈ Jp1K
w
θ (χ0{r

′/n})(R∪ R(η0) ∪ {r′})

for some r′ 6∈ R ∪ R(η0) and χ̄1 such that fltn((η1, χ̄1)) =
(η1, χ1). Since Jp0K

w
θ is sane and n 6∈ dom(χ0), then by

Def. 5e:

(η0, χ0{r
′/n}) ∈ Jp0K

w
θ (χ{r′/n})(R∪ {r′})

where r′ 6∈ R(η0). Summing up:

(η0, χ0)⊙(η1, χ̄1) = (η0, χ0{r
′/n})⊙(η1, χ̄1) ∈ Jp0 · p1K

w
θ (χ{r′/n})(R∪{r′})

Since r′ 6∈ R(η0), then the thesis follows from:

fltn((η0, χ0) ⊙ (η1, χ̄1)) = fltn((η0η1, χ̄1))

= (η0, χ0) ⊙ fltn((η1, χ̄1))

= (η0, χ0) ⊙ (η1, χ1)

= (η, χ′)

To prove ⊇, let (η, χ̄′) ∈ Jp0 · p1K
w
θ (χ{r/n})(R ∪ {r}) for some r 6∈ R

and n 6∈ dom(χ). Thus (η, χ̄′) = (η0, χ̄0) ⊙ (η1, χ̄1), where:

(η0, χ̄0) ∈ Jp0K
w
θ (χ{r/n})(R∪{r}) (η1, χ̄1) ∈ Jp1K

w
θ (χ̄0)(R∪R(η0)∪{r})

By the induction hypothesis on p0, we have that fltn((η0, χ̄0)) ∈ Jp0K
w
θ (χ)(R).

There are two subcases.

58

– If r ∈ R(η0), then, fltn((η0, χ̄0)) = (η0, χ̄0). By hypothesis:

(η1, χ̄1) ∈ Jp1K
w
θ (χ̄0)(R∪ R(η0) ∪ {r})

then, since r ∈ R(η0):

(η1, χ̄1) ∈ Jp1K
w
θ (χ̄0)(R∪ R(η0))

Summing up,

(η0, χ̄0) ⊙ (η1, χ̄1) ∈ Jp0 · p1K
w
θ (χ)(R)

To prove the thesis, we show that (η0, χ̄0)⊙(η1, χ̄1) = fltn((η0, χ̄0)⊙
(η1, χ̄1)). There are two subcases.

∗ if ! ∈ η0, then η = η0, χ̄′ = χ̄0, and fltn((η0, χ̄0)) = (η0, χ̄0).

∗ if ! 6∈ η0, then since r ∈ R(η0η1) and χ̄1(n) = r (Def. 5c):

fltn((η0, χ̄0) ⊙ (η1, χ̄1)) = fltn((η0η1, χ̄1)) = (η0η1, χ̄1)

– If r 6∈ R(η0), then fltn((η0, χ̄0)) = (η0, χ0) where χ0 = χ̄0|dom(χ̄0)\{n}

(by Def. 5c). This implies n 6∈ dom(χ0). There are two subcases.

∗ If ! ∈ η0, then (η0, χ0) = fltn((η0, χ̄0)) ∈ Jp0K
w
θ (χ)(R) implies

(η0, χ0) ∈ Jp0 · p1K
w
θ (χ)(R). To prove the thesis, just recall

that fltn((η0, χ̄0)) = (η0, χ0).

∗ If ! 6∈ η0 then R ⊇ RR(θ)(p0 · p1) = RR(θ)(p0) ∪ RR(θ)(p1),
and n 6∈ fn(p1) (see the proof of the analogous case for the
inclusion ⊆). The induction hypothesis on p1 then gives:

fltn((η1, χ̄1)) ∈ Jp1K
w
θ (χ0)(R∪ R(η0))

Let (η1, χ1) = fltn((η1, χ̄1)). Then:

(η0, χ0) ⊙ (η1, χ1) ∈ Jp0 · p1K
w
θ (χ)(R)

To prove the thesis, since χ̄1(n) = r by Def. 5c, and r 6∈ R(η0):

fltn((η0, χ̄0) ⊙ (η1, χ̄1)) = (η0, χ̄0) ⊙ fltn((η1, χ̄1))

= (η0, χ̄0) ⊙ (η1, χ1)

= (η0η1, χ1)

= (η0, χ0) ⊙ (η1, χ1)

• If p = p0 + p1, then, by the induction hypothesis:

J(p0 + p1)K
w
θ (χ)(R) = Jp0K

w
θ (χ)(R) ∪ Jp1K

w
θ (χ)(R)

=
(

⋃

r 6∈R

Jp0K
w
θ (χ{r/n})(R∪ {r})

)

∪
(

⋃

r 6∈R

Jp1K
w
θ (χ{r/n})(R∪ {r})

)

=
⋃

r 6∈R

(

Jp0K
w
θ (χ{r/n})(R∪ {r}) ∪ Jp1K

w
θ (χ{r/n})(R∪ {r})

)

=
⋃

r 6∈R

Jp0 + p1K
w
θ (χ{r/n})(R∪ {r})

59

• If p = µh. p′, then let:

f(Z) = λR̄. fst(Jp′Kw
θ{Z/h}(χ

′)(R̄))

where χ′ = χ|dom(χ)\bn⋄(p′). We first show that, for all Z ∈ Dsub:

(8) R(Z) ⊆ RR(θ)(p) ∪ ran(χ′) =⇒ R(f(Z)) ⊆ RR(θ)(p) ∪ ran(χ′)

We have that:

R(f(Z)) =
⋂

R̄

R(fst(Jp′Kw
θ{Z/h}(χ

′)))(R̄)

and by Lemma B.8:

⊆
⋂

R̄

(

RR(θ{Z/h})(p
′) ∪ ran(χ′) ∪ (Res \ R̄)

)

= RR(θ{Z/h})(p
′) ∪ ran(χ′)

= RR(θ){R(Z)/h})(p
′) ∪ ran(χ′)

since R(Z) ⊆ RR(θ)(p) ∪ ran(χ′) by hypothesis, then by Lemma 5d:

⊆ RR(θ){RR(θ)(p)∪ran(χ′)/h})(p
′) ∪ ran(χ′)

and by Lemma 5f:

⊆ RR(θ){{↓}∩(RR(θ)(p)∪ran(χ′))/h})(p
′) ∪ RR(θ)(p) ∪ ran(χ′) ∪ ran(χ′)

⊆ RR(θ){TR(θ)(p)/h})(p
′) ∪ RR(θ)(p) ∪ ran(χ′)

and by Lemma 5d:

⊆ RR(θ){RR(θ)(p)/h})(p
′) ∪ RR(θ)(p) ∪ ran(χ′)

and by Lemma 5g:

= RR(θ)(p) ∪ RR(θ)(p) ∪ ran(χ′)

= RR(θ)(p) ∪ ran(χ′)

which proves (8). We now prove that, for all Z ∈ Dsub such that
λR, χ.setχZ(R) is sane:

R(Z) ⊆ RR(θ)(p) ∪ ran(χ′)(9)

=⇒ setχf(Z)(R) = fltn(
⋃

r 6∈R

setχ′{r/n}f(Z)(R∪ {r}))

60

We show the two inclusions separately.

For ⊆, let (η, χ) ∈ setχf(Z)(R). Then, (η, χ̄) ∈ f(Z)(R) for some χ̄,
i.e.:

(η, χ̄) ∈ Jp′Kw
θ{Z/h}(χ

′)(R)

By Lemma B.7, there exists r 6∈ R such that:

(η, χ̄) ∈ Jp′Kw
θ{Z/h}(χ

′)(R∪ {r})

which implies:

(η, χ{r/n}) ∈ setχ{r/n}Jp
′Kw

θ{Z/h}(χ
′)(R∪ {r})

To conclude, we shall prove that fltn((η, χ{r/n})) = (η, χ). To do
that, it suffices to show r 6∈ R(η), which we prove as follows. By
Lemma B.8:

R(η) ⊆ RR(θ{Z/h})(p
′) ∪ ran(χ′) ∪ (Res \ (R∪ {r}))

= RR(θ){R(Z)/h})(p
′) ∪ ran(χ′) ∪ (Res \ (R∪ {r}))

since R(Z) ⊆ RR(θ)(p) ∪ ran(χ′) by hypothesis, then by Lemma 5d:

⊆ RR(θ){RR(θ)(p)∪ran(χ′)/h})(p
′) ∪ ran(χ′) ∪ (Res \ (R∪ {r}))

and by Lemma 5f:

⊆ RR(θ){{↓}∩(RR(θ)(p)∪ran(χ′))/h})(p
′) ∪ RR(θ)(p) ∪ ran(χ′) ∪ (Res \ (R∪ {r}))

⊆ RR(θ){TR(θ)(p)/h})(p
′) ∪ RR(θ)(p) ∪ ran(χ′) ∪ (Res \ (R∪ {r}))

and by Lemma 5d:

⊆ RR(θ){RR(θ)(p)/h})(p
′) ∪ RR(θ)(p) ∪ ran(χ′) ∪ (Res \ (R∪ {r}))

and by Lemma 5g:

= RR(θ)(p) ∪ RR(θ)(p) ∪ ran(χ′) ∪ (Res \ (R∪ {r}))

= RR(θ)(p) ∪ ran(χ′) ∪ (Res \ (R∪ {r}))

since by hypothesis RR(θ)(p) ⊆ R ⊇ ran(χ′):

⊆ R ∪ (Res \ (R∪ {r}))

Since r 6∈ R, this concludes the proof of the ⊆ inclusion of (9).

For ⊇, let (η, χ̄) ∈ fltn(setχ{r/n}Jp
′Kw

θ{r/n}(χ)(R∪{r})). Then, (η, χ̄′) ∈

Jp′Kw
θ{r/n}(χ)(R ∪ {r}) for some χ̄′. Similarly to the inclusion ⊆, it

61

follows that r 6∈ R(η). So, fltn((η, χ{r/n})) = (η, χ), which implies
χ̄ = χ and concludes the proof of (9).

Back to the main proof, from (8) and (9) it follows that, for all i ≥ 0:

setχf i(⊥Dsub
)(R) = fltn(

⋃

r 6∈R

setχ{r/n}f
i(⊥Dsub

)(R∪ {r}))

which trivially implies the thesis.

Lemma C.4. For all weakly bound processes p such that wb(p):

fn(p) = Fn(bindify(p))(4a)

RΘ(p) = RΘ(bindify(p))(4b)

(η, χ′) ∈ JpKw
θ (χ)(R) ∧ dom(χ) ⊇ bn⋄(p) =⇒ χ = χ′(4c)

Proof. For (4a), first note that Fn(bindify(p)) = Fn(νbn⋄(p). β(p)) = Fn(β(p))\
bn⋄(p). We then proceed by induction on the structure of p. All the cases
except for p = p0 · p1 are straightforward. If p = p0 · p1, we have that:

fn(p) = fn(p0) ∪ (fn(p1) \ bn¤(p0))

by the induction hypothesis, applied twice:

= (Fn(β(p0)) \ bn⋄(p0)) ∪ ((Fn(β(p1)) \ bn⋄(p1)) \ bn¤(p0))

= (Fn(β(p0)) \ bn⋄(p0)) ∪ (Fn(β(p1)) \ (bn⋄(p1) ∪ bn¤(p0)))

Since wb(p), then fn(p) ∩ bn⋄(p) = ∅, and so fn(p) \ bn⋄(p) = fn(p):

=
(

(Fn(β(p0)) \ bn⋄(p0)) ∪ (Fn(β(p1)) \ (bn⋄(p1) ∪ bn¤(p0)))
)

\ bn⋄(p)

and since bn¤(p0) ⊆ bn⋄(p0) ⊆ bn⋄(p) ⊇ bn⋄(p1):

= (Fn(β(p0)) ∪ Fn(β(p1))) \ bn⋄(p)

= Fn(β(p)) \ bn⋄(p)

= Fn(bindify(p))

For (4b), first note that RΘ(bindify(p)) = RΘ(β(p)). Then, the proof is
trivial by induction on the structure of p.

For (4c), the only rule that updates χ is that for new(n), when n 6∈
dom(χ). However, it is never applicable, since bn⋄(new(n)) = {n} ⊆
dom(χ).

62

Lemma C.5. For all weakly bound processes p such that wb(p), and for all
R, χ, θ such that dom(χ) ⊇ fn(p), dom(θ) ⊇ fv(p), and R ⊇ RR(θ)(p):

JpKw
θ (R)(χ) is defined(5a)

Jbindify(p)Ks
θ(χ)(R) = fst(JpKw

θ (χ)(R)) if dom(χ) ∩ bn⋄(p) = ∅(5b)

Jβ(p)Ks
θ(χ)(R) = fst(JpKw

θ (χ)(R)) if dom(χ) ⊇ bn⋄(p)(5c)

Proof. We proceed by induction on the size of p. For the first item, it is easy
to prove that wb(p) implies fn(p)∩bn⋄(p) = ∅, and furthermore this property
is also preserved under the recursions µh. Therefore, each free name in p
is always bound in the environment χ, and so the semantics JpKw

θ (R)(χ) is
defined.

We now show that (5c) implies (5b).

Jbindify(p)Ks
θ(χ)(R) = Jνbn⋄(p). β(p)Ks

θ(χ)(R)

by definition of the semantics of ν (and with a slight abuse of notation):

=
⋃

R∩R′ = ∅
|R′| = |bn⋄(p)|

Jβ(p)Ks
θ(χ{R

′/bn⋄(p)})(R∪R′)

since dom(χ{R′/bn⋄(p)}) ⊇ bn⋄(p), then by (5c):

=
⋃

R∩R′ = ∅
|R′| = |bn⋄(p)|

fst(JpKw
θ (χ{R′/bn⋄(p)})(R∪R′))

now, let n ∈ bn⋄(p). By hypothesis, we have that n 6∈ dom(χ). Also,
since dom(χ) ⊇ Fn(p), Lemma B.1 implies that n 6∈ fn(p). By Lemma C.3
applied for all n ∈ bn⋄(p):

= fst(JpKw
θ (χ)(R))

which proves that (5c) implies (5b). For (5c), there are the following cases:

• if p = ε, p = !, p = α(ρ) it directly follows by the definition of the
semantics. Note that in the case p = new(n), we have n ∈ dom(χ) by
hypothesis, so no fresh resource is generated by the weak semantics.

• if p = h, then:

Jβ(h)Ks
θ(χ)(R) = JhKs

θ(χ)(R) = θ(h)(R) = fst(setχθ(h)(R)) = fst(JhKw
θ (χ)(R))

• if p = p0 · p1, then there are two subcases.

63

– If ↓6∈ RR(θ)(p0), then:

Jβ(p)Ks
θ(χ)(R) = (Jβ(p0)K

s
θ ½ Jβ(p1)K

s
θ)(χ)(R)

= Jβ(p0)K
s
θ(χ)(R)

since bn⋄(p0) ⊆ bn⋄(p) ⊆ dom(χ), wb(p0), dom(χ) ⊇ Fn(p) ⊇
Fn(p0), and R ⊇ RR(θ)(p) = RR(θ)(p0), then by the induction
hypothesis:

= fst(Jp0K
w
θ (χ)(R))

by Lemma B.8, since ↓6∈ RR(θ)(p0) =⇒ ! ∈ η0 for all (η0, χ0) ∈
Jp0K

w
θ (χ)(R):

= fst(Jp0 · p1K
w
θ (χ)(R))

– Otherwise, if ↓∈ RR(θ)(p0), then:

Jβ(p)Ks
θ(χ)(R) = (Jβ(p0)K

s
θ ½ Jβ(p1)K

s
θ)(χ)(R)

= { η0 ⊙ η1 | η0 ∈ Jβ(p0)K
s
θ(χ)(R), η1 ∈ Jβ(p1)K

s
θ(χ)(R∪ R(η0)) }

since bn⋄(p0) ⊆ bn⋄(p) ⊆ dom(χ), wb(p0), dom(χ) ⊇ Fn(p) ⊇
Fn(p0), and R ⊇ RR(θ)(p) ⊇ RR(θ)(p0), then by the induction
hypothesis on p0:

= { η0 ⊙ η1 | η0 ∈ fst(Jp0K
w
θ (χ)(R)), η1 ∈ Jβ(p1)K

s
θ(χ)(R∪ R(η0)) }

since bn⋄(p1) ⊆ bn⋄(p) ⊆ dom(χ), wb(p1), dom(χ) ⊇ Fn(p) ⊇
Fn(p1), and R ∪ R(η0) ⊇ R ⊇ RR(θ)(p) ⊇ RR(θ)(p1), then by the
induction hypothesis on p1:

= { η0 ⊙ η1 | η0 ∈ fst(Jp0K
w
θ (χ)(R)), η1 ∈ fst(Jp1K

w
θ (χ)(R∪ R(η0))) }

= { η0 ⊙ η1 | (η0, χ0) ∈ Jp0K
w
θ (χ)(R), (η1, χ1) ∈ Jp1K

w
θ (χ)(R∪ R(η0)) }

since dom(χ) ⊇ bn⋄(p), then by Lemma 4c χ0 = χ, and:

= { η0 ⊙ η1 | (η0, χ0) ∈ Jp0K
w
θ (χ)(R), (η1, χ1) ∈ Jp1K

w
θ (χ0)(R∪ R(η0)) }

= fst(Jp0K
w
θ ½ Jp1K

w
θ (χ)(R))

= fst(Jp0 · p1K
w
θ (χ)(R))

• if p = p0 + p1, we have, for all i ∈ {0, 1}, wb(pi), dom(χ) ⊇ fn(pi),
dom(θ) ⊇ fv(pi), and R ⊇ RR(θ)(pi), and dom(χ) ⊇ bn⋄(pi). There-
fore, we conclude by the induction hypothesis and β(p0+p1) = β(p0)+
β(p1).

64

• if p = µh. p′, we have β(p) = µh. bindify(p′). Let:

χ′ = χ|dom(χ)\bn⋄(p′) f(Z) = λR̄. Jbindify(p′)Ks
θ{Z/h}(χ

′)(R̄)

We first prove that, for all Z:
(10)
R(Z) ⊆ R ∧ T(Z) ⊆ TR(θ)(p) =⇒ R(f(Z)) ⊆ R ∧ T(f(Z)) ⊆ TR(θ)(p)

To prove (10), we have that:

R(f(Z) = R(λR̄. Jbindify(p′)Ks
θ{Z/h}(χ

′)(R̄))

by Lemma 4a, Fn(bindify(p′)χ′) = fn(p′χ′) = ∅. Then, by Lemma A.26:

= R(Jbindify(p′)χ′Ksub
θ{Z/h})

by Lemma A.19:

= RR(θ{Z/h})(bindify(p′)χ′)

by Lemma 5e:

⊆ RR(θ{Z/h})(bindify(p′)) ∪ ran(χ′)

by Lemma 4b:

= RR(θ{Z/h})(p
′) ∪ ran(χ′)

= RR(θ){R(Z)/h}(p
′) ∪ ran(χ′)

by Lemma 5f:

⊆ RR(θ){T(Z)/h}(p
′) ∪ R(Z) ∪ ran(χ′)

since T(Z) ⊆ TR(θ)(p) by hypothesis, then by Lemma 5a:

⊆ RR(θ){TR(θ)(p)/h}(p
′) ∪ R(Z) ∪ ran(χ′)

by Lemma 5d:

⊆ RR(θ){RR(θ)(p)/h}(p
′) ∪ R(Z) ∪ ran(χ′)

by Lemma 5g:

⊆ RR(θ)(p) ∪ R(Z) ∪ ran(χ′)

65

Since, by hypothesis, all the three components are included in R, we
conclude that R(f(Z)) ⊆ R (recall that the semantics JpKw

θ (χ)(R) is
undefined if R 6⊇ ran(χ)). Also, by the hypothesis T(Z) ⊆ TR(θ(p),
we have:

T(f(Z)) = R(f(Z)) ∩ {↓}

⊆ (RR(θ)(p) ∪ R(Z) ∪ ran(χ′)) ∩ {↓}

= TR(θ)(p) ∪ T(Z)

= TR(θ)(p)

which concludes the proof of (10). Back to the main statement, we
have:

Jβ(p)Ks
θ(χ)(R) = Jµh. bindify(p′)Ks

θ(χ)(R)

=
⋃

i≥0

(λZ, R̄. Jbindify(p′)Ks
θ{Z/h}(χ)(R̄))i(⊥Dsub

)(R)

since bindify(p′) = νbn⋄(p′). β(p′), then χ|bn⋄(p′) has no influence on
the semantics Jbindify(p′)Ks

θ{Z/h}(χ)(R̄), and so:

=
⋃

i≥0

(λZ, R̄. Jbindify(p′)Ks
θ{Z/h}(χ

′)(R̄))i(⊥Dsub
)(R)

by (10), in the equation above R̄ ⊇ RR(θ{Z/h})(p
′) for all i. Also,

dom(χ′) ⊇ fn(p′). Indeed, dom(χ′) = dom(χ) \ bn⋄(p′) ⊇ Fn(p) \
bn⋄(p′) ⊇ (fn(p) ∪ bn⋄(p)) \ bn⋄(p′) = fn(p′) \ bn⋄(p′) = fn(p′), where
we have used Lemma B.1 and the hypothesis wb(p′). We can then
apply the induction hypothesis (5b):

=
⋃

i≥0

(λZ, R̄. fst(Jp′Kw
θ{Z/h}(χ

′)(R̄)))i(⊥Dsub
)(R)

= fst(setχ

⋃

i≥0

(λZ, R̄. fst(Jp′Kw
θ{Z/h}(χ

′)(R̄)))i(⊥Dsub
)(R))

= fst(Jµh. p′Kw
θ (χ)(R))

Theorem 4.3. For all closed, weakly bound processes p such that wb(p),
JpKw

∅ (∅)(∅) is defined, and:

Jbindify(p)Ks
∅(∅)(∅) = fst(JpKw

∅ (∅)(∅))

Proof. Direct from Lemma 5b, the hypotheses of which are trivially satisfied.

66

D Proofs: equational theories and trace inclusion

In this Appendix we prove the main results from Sect. 5, i.e. that the pre-
order for strongly bound processes preserves trace inclusion (Theorem 5.3),
and that the same happens for weakly bound processes (Theorem 5.6). Fi-
nally, in Theorem 5.7 we show that the equational theory of weakly bound
processes preserve well-boundedness, and that processes smaller (w.r.t. -N)
than well-bound processes are well-bound.

Definition D.1. The names N(p) of a weakly bound process p are defined
as follows:

N(p) = fn(p) ∪ bn⋄(p)

Definition D.2. Let Y, Z ∈ Dw. We write Y -N Z when for all R, χ such
that R∩N = χ ∩N = ∅:

{ (η, χ′|dom(χ′)\N) | (η, χ′) ∈ Y (χ)(R∪ (N ∩ Res)) } ⊆ Z(χ)(R)

Let Y, Z ∈ Dsub, we write Y ¹N Z whenever λR, χ. setχY (R) -N λR, χ. setχZ(R).
We write Y ¹ Z when Y ¹∅ Z.

Lemma D.3. For all strongly bound processes P , and for all θ, θ′:

θ ¹ θ′ =⇒ JP Ksub
θ ¹ JP Ksub

θ′

Proof. Straightforward by induction on the structure of P .

Theorem 5.3. For all closed, strongly bound processes P and P ′:

• if P = P ′, then JP Ks
∅ = JP ′Ks

∅.

• if P ¹ P ′ then JP Ks
∅(χ)(R) ⊆ JP ′Ks

∅(χ)(R), for all R and χ.

Proof. The first item follows from Lemma A.11 and Lemma A.23. For the
second item, since P ¹ P ′ implies Pχ ¹ P ′χ, then by Lemma A.26 is suffices
to prove that JP Ksub

∅ (R) ⊆ JP ′Ksub
∅ (R), for all R. We proceed by induction

on the size of the derivation of P ¹ P ′:

• P = P ′. The thesis follows from the first item.

• P ′ = P + P ′′. Then, for all R:

JP Ksub
θ (R) ⊆ JP Ksub

θ (R) ∪ JP ′′Ksub
θ (R) = JP ′Ksub

θ (R)

• P ¹ P ′′ and P ′′ ¹ P ′. Straightforward by transitivity of ⊆.

• P = C(P̄) ¹ C(P̄ ′) and P̄ ¹ P̄ ′. There are the following cases:

67

– C = P ′′ · •. Let η ∈ JP ′′ · P̄ Ksub
θ (R). Then, η = η0 ⊙ η1, with

η0 ∈ JP ′′Ksub
θ (R) and η1 ∈ JP̄ Ksub

θ (R ∪ R(η0)). There are two
subcases.

If ! ∈ η0, then η = η0 ∈ JP ′′ · P̄ ′Ksub
θ (R).

If ! 6∈ η0, then η = η0η1. Since P̄ ¹ P̄ ′, then by the induction
hypothesis: η1 ∈ JP̄ ′Ksub

θ (R ∪ R(η0)), which implies the thesis
η0η1 ∈ JP ′Ksub

θ (R).

– C = • · P ′′. Let η ∈ JP̄ · P ′′Ksub
θ (R). Then, η = η0 ⊙ η1, with

η0 ∈ JP̄ Ksub
θ (R) and η1 ∈ JP ′′Ksub

θ (R ∪ R(η0)). By the induc-
tion hypothesis, η0 ∈ JP̄ ′Ksub

θ (χ)(R). There are the following two
subcases.

If ! ∈ η0, then η0 ⊙ η1 = η0, which implies the thesis.

If ! 6∈ η0, then η0 ⊙ η1 = η0η1, from which the thesis η0 ⊙ η1 ∈
JP ′Ksub

θ (R).

– C = νn. •. The thesis follows directly from the induction hypoth-
esis.

– C = µh. •. By definition, JP Ksub
θ =

⊔

i≥0 f i(⊥) and JP ′Ksub
θ =

⊔

i≥0 gi(⊥), where f(Y) = JP̄ Ksub
θ{Y/h} and g(Y) = JP̄ ′Ksub

θ{Y/h}. It

suffices proving that, for all i ≥ 0, f i(⊥) ⊆ gi(⊥). The base case
i = 0 is trivial. For the inductive case, we have:

f i+1(⊥) = f(f i(⊥))

= JP̄ Ksub
θ{f i(⊥)/h}

⊆ JP̄ Ksub
θ{gi(⊥)/h} by f i(⊥) ¹ gi(⊥) and Lemma D.3

⊆ JP̄ ′Ksub
θ{gi(⊥)/h} by the induction hypothesis on P̄ ¹ P̄ ′

= g(gi(⊥))

= gi+1(⊥)

– the other contexts, • + P ′′ and P ′′ + •, are trivial.

The following two lemmata are straightforward.

Lemma D.4. For all weakly bound processes p and q such that p ≈ q:

fn(p) = fn(q)(4a)

bn¤(p) = bn¤(q)(4b)

bn⋄(p) = bn⋄(q)(4c)

68

Lemma D.5. For all weakly bound processes p and q such that p -N q:

fn(p) ⊆ fn(q)(5a)

bn⋄(p) ⊆ bn⋄(q) ∪N(5b)

bn¤(p) ⊇ bn¤(q)(5c)

Definition D.6. The captures cptN (p, h) of h in a weakly bound process p
are defined inductively as follows:

cptN (ε, h) = cptN (! , h) = cptN (α(ρ), h) = ∅ cptN (h′, h) =

{

N if h = h′

∅ otherwise

cptN (p0 · p1, h) = cptN (p0 + p1, h) = cptN (p0, h) ∪ cptN (p1, h)

cptN (µh′.p′, h) =

{

cptN∪bn⋄(p′)(p
′, h) if h 6= h′

∅ otherwise

We say p{p′/h} capture-avoiding if bn⋄(p′) = ∅ = cptbn⋄(p)(p, h) ∩ fn(p′).

Lemma D.7 (Substitution). If p{p′/h} is capture-avoiding, then:

Jp{p′/h}Kw
θ (χ)(R) = JpKw

θ{λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ)(R)

Proof. By induction on the structure of p. If the substitution is vacuous,
then the thesis follows trivially. Otherwise, we note that fn(p′) ⊆ dom(χ)
must hold for the semantics of the both sides to be defined.

There are the following cases:

• if p = h, the hypothesis bn⋄(p′) = ∅ suffices.

• if p = p0 · p1, then (η, χ′) ∈ Jp{p′/h}Kw
θ (χ)(R) if and only if there exist

(η0, χ0) and (η1, χ1) such that (η, χ′) = (η0, χ0) ⊙ (η1, χ1) and:

(η0, χ0) ∈ Jp0{p
′/h}Kw

θ (χ)(R)

(η1, χ1) ∈ Jp1{p
′/h}Kw

θ (χ0)(R∪ R(η0))

Since both p0{p
′/h} and p1{p

′/h} are capture-avoiding, then by the
induction hypothesis on p0 and on p1, the above is equivalent to:

(η0, χ0) ∈ Jp0K
w

θ{λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ)(R)

(η1, χ1) ∈ Jp1K
w

θ{λR̄. fst(Jp′Kw
θ (χ0)(R̄))/h}

(χ0)(R∪ R(η0))

Since fn(p′) ⊆ dom(χ) and bn⋄(p′) = ∅, a simple structural induction
shows that fst(Jp′Kw

θ (χ0)(R̄)) = fst(Jp′Kw
θ (χ)(R̄)) – recall that χ0 and

χ agree on dom(χ). Therefore, the second item above can be restated
as:

(η1, χ1) ∈ Jp1K
w

θ{λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ0)(R∪ R(η0))

69

Summing up, all the above is equivalent to:

(η0, χ0) ⊙ (η1, χ1) ∈ JpKw

θ{λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ)(R)

• if p = p0 + p1, straightforward by the induction hypothesis.

• if p = µh′. p̄ with h′ 6= h, then:

Jp{p′/h}Kw
θ (χ)(R) = Jµh′. p̄{p′/h}Kw

θ (χ)(R) = setχ

⋃

i≥0

f i(⊥Dsub
)(R)

where f(Z) = λR̄. fst(Jp̄{p′/h′}Kw
θ{Z/h′}(χ

′)(R̄)), where χ′ = χ|dom(χ)\bn⋄(p̄).

Since p{p′/h} is capture-avoiding, then:

cptbn⋄(p̄)(p̄, h) ∩ fn(p′) = cptbn⋄(p)∪bn⋄(p̄)(p̄, h) ∩ fn(p′)

= cptbn⋄(p)(p, h) ∩ fn(p′) = ∅

Therefore the substitution p̄{p′/h} is capture-avoiding, and so by the
induction hypothesis:

f(Z) = λR̄. fst(Jp̄Kw

θ{Z/h′, λR̄. fst(Jp′Kw
θ (χ′)(R̄))/h}

(χ′)(R̄))

Since bn⋄(p̄)∩fn(p′) = ∅, and bn⋄(p′) = ∅, then χ and χ′ = χ|dom(χ)\bn⋄(p̄)

agree on the names in p′. This implies that:

f(Z) = λR̄. fst(Jp̄Kw

θ{Z/h′, λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ′)(R̄))

which concludes the proof.

Definition D.8. Let χ be a function from Nam to Res, and let n, m ∈ Nam.
We define χ[m/n] as the function:

χ[m/n](n′) =

{

χ(n) if n′ = m

χ(n′) if n′ 6= m and n′ 6= n

70

Lemma D.9. For all weakly bound processes p such that wb(p), R, χ and
sane θ:

if n 6∈ bn⋄(p) and r ∈ R:(9a)

(η, χ′) ∈ Jp{r/n}Kw
θ (χ)(R) =⇒ (η, χ′{r/n}) ∈ JpKw

θ (χ{r/n})(R)

if n 6∈ bn⋄(p) ∪ dom(χ) and m 6∈ N(p):(9b)

(η, χ′) ∈ Jp{m/n}Kw
θ (χ)(R) =⇒ (η, χ′[n/m]) ∈ JpKw

θ (χ[n/m])(R)

if n 6∈ fn(p) ∪ dom(χ) and r 6∈ N(p) ∪R ∪ ran(χ), then:(9c)

(η, χ′) ∈ Jp{r/n}Kw
θ (χ)(R∪ {r})) =⇒ (η, χ′′) ∈ JpKw

θ (χ)(R)

where χ′′ = χ′ if r 6∈ R(η), otherwise χ′′ = χ′{r/n}.

if n 6∈ fn(p) ∪ dom(χ) and m 6∈ N(p) ∪ dom(χ), then:(9d)

(η, χ′) ∈ Jp{m/n}Kw
θ (χ)(R) =⇒ (η, χ′[n/m]) ∈ JpKw

θ (χ)(R)

Proof. The first two items are straightforward by structural induction. For (9c),
we proceed by induction on the structure of p. There are the following cases:

• if p = new(n′), there are two further subcases.

If n′ 6= n, then the substitution is vacuous, and η = new(r′), χ′ =
χ{r′/n′} for some r′ 6∈ R. Then, (η, χ′) ∈ Jnew(n′)Kw

θ (χ)(R).

If n′ = n, then η = new(r) and χ′ = χ. Then, r ∈ R(η), and
(η, χ{r/n}) ∈ Jnew(n)Kw

θ (χ)(R).

• if p = p0 · p1, then (η, χ′) = (η0, χ0) ⊙ (η1, χ1), where:

(η0, χ0) ∈ Jp0{r/n}Kw
θ (χ)(R∪ {r})

(η1, χ1) ∈ Jp1{r/n}Kw
θ (χ0)(R∪ {r} ∪ R(η0))

By the induction hypothesis on p0, it follows that:

(η0, χ
′′
0) ∈ Jp0K

w
θ (χ)(R) χ′′

0 =

{

χ0 if r 6∈ R(η0)

χ0{r/n} otherwise

If ! ∈ η0, this implies the thesis. Otherwise, there are two subcases.

– r 6∈ R(η0). In this case, we first prove that n 6∈ fn(p1). Since
by hypothesis n 6∈ fn(p) = fn(p0) ∪ (fn(p1) \ bn¤(p0)), it suf-
fices to prove that n 6∈ bn¤(p0). By contradiction, assume n ∈
bn¤(p0). Then, by Lemma 9d, χ′′

0(n) = χ0(n) ∈ R(η0). By
Lemma 9b, n ∈ dom(χ0) ⊆ dom(χ) ∪ bn⋄(p0{r/n}). This is a
contradiction, because n 6∈ dom(χ) by hypothesis, and clearly n 6∈
bn⋄(p0{r/n}). This proves n 6∈ fn(p1). Lemma 9b implies that

71

dom(χ0) ⊆ dom(χ)∪bn⋄(p0{r/n}), and so as above it follows that
n 6∈ dom(χ0). By Lemma 9a, ran(χ0) ⊆ ran(χ)∪(Res\(R∪{r})),
so r 6∈ ran(χ0). We have then verified that all the hypothesis of
the Lemma hold for p1, so by the induction hypothesis:

(η1, χ
′′
1) ∈ Jp1K

w
θ (χ0)(R∪R(η0)) χ′′

1 =

{

χ1 if r 6∈ R(η1)

χ1{r/n} otherwise

Since in this case r ∈ R(η1) ⇐⇒ r ∈ R(η0η1) we have that:

(η0η1, χ
′′
1) ∈ Jp0 · p1K

w
θ (χ)(R) χ′′

1 =

{

χ1 if r 6∈ R(η)

χ1{r/n} otherwise

– r ∈ R(η0). Since χ′′
0 = χ{r/n}, Lemma 9b implies that n ∈

bn⋄(p0), and since wb(p), then n 6∈ bn⋄(p1). We are therefore
under the hypotheses of item (a) of the current Lemma, which
implies:

(η1, χ1{r/n}) ∈ Jp1K
w
θ (χ0{r/n})(R∪ {r} ∪ R(η0))

Summing up, since r ∈ R(η) ⊇ R(η0):

(η0η1, χ1{r/n}) ∈ Jp0 · p1K
w
θ (χ)(R)

• if p = p0 +p1, straightforward application of the induction hypothesis.

• if p = µh. p′, then p{r/n} = p, since n 6∈ fn(p) and the substitution
is vacuous if n ∈ bn⋄(p′). Also note that r 6∈ R(η) ⊆ R(p) ∪ ran(χ) ∪
(Res \ (R ∪ {r})). By sanity (5b), (η, χ′) ∈ JpKw

θ (χ)(R ∪ {r}) implies
(η, χ′) ∈ JpKw

θ (χ)(R).

For (9d), we proceed by induction on the size of p. There are the following
cases:

• if p = new(n′), there are two further subcases.

– If n′ 6= n, then η = new(r′) and χ′ = χ{r′/n′} for some r′ 6∈
R. Then, (new(r′), χ′[n/m]) ∈ Jnew(n′)Kw

θ (χ)(R) since n, m 6∈
dom(χ) implies χ′[n/m] = χ{r′/n′}[n/m] = χ′.

– If n′ = n, then η = new(r′) and χ′ = χ{r′/m} for some r′ 6∈ R.
Then, (new(r′), χ′[n/m]) ∈ Jnew(n)Kw

θ (χ)(R) since m 6∈ dom(χ)
implies χ′[n/m] = χ{r′/m}[n/m] = χ{r′/n}.

• if p = p0 · p1, then (η, χ′) = (η0, χ0) ⊙ (η1, χ1), where:

(η0, χ0) ∈ Jp0{m/n}Kw
θ (χ)(R)

(η1, χ1) ∈ Jp1{m/n}Kw
θ (χ0)(R∪ R(η0))

72

By the induction hypothesis on p0, it follows that:

(η0, χ0[n/m]) ∈ Jp0K
w
θ (χ)(R)

If ! ∈ η0, this implies the thesis. Otherwise, there are two subcases.

– n ∈ bn⋄(p1). Since wb(p), then wb(p1) and so n 6∈ fn(p1) and
n 6∈ bn⋄(p0) ∪ fn(p0). This also implies n 6∈ dom(χ0), because
by Lemma 9b, dom(χ0) ⊆ dom(χ) ∪ bn⋄(p0{m/n}) 6∋ n. Also,
m 6∈ dom(χ0), because by Lemma 9b, dom(χ0[n/m]) ⊆ dom(χ)∪
bn⋄(p0) 6∋ n (see Def. D.8). All the hypoteses of the Lemma are
safisfied, and so by the induction hypothesis on p1 it follows that:

(η1, χ1[n/m]) ∈ Jp1K
w
θ (χ0)(R∪ R(η0))

Summing up:

(η0η1, χ1[n/m]) ∈ Jp0 · p1K
w
θ (χ)(R)

– n 6∈ bn⋄(p1). In this case the hypothesis of item (b) of the current
Lemma are satisfied, so:

(η1, χ1[n/m]) ∈ Jp1K
w
θ (χ0[n/m])(R∪ R(η0))

Summing up:

(η0η1, χ1[n/m]) ∈ Jp0 · p1K
w
θ (χ)(R)

• if p = p0 +p1, straightforward application of the induction hypothesis.

• if p = µh. p′, then p{m/n} = p, since n 6∈ fn(p) and the substitution
is vacuous if n ∈ bn⋄(p′). Since n, m 6∈ dom(χ), then χ′[n/m] = χ′,
which implies the thesis.

Lemma D.10. If X -N Y , Y -N ′ Z and N ∩N ′ = ∅, then X -N∪N ′ Z.

Proof. Let N ′′ = N ∪N ′, and let R, χ be such that R∩N ′′ = χ ∩N ′′ = ∅.
Let (η, χ′) ∈ X(χ)(R∪ (N ′′∩Res)). Since (R∪ (N ′∩Res))∩N = χ∩N = ∅
and X -N Y , then there exists (η′, χ′|dom(χ′)\N) ∈ Y (χ)(R ∪ (N ′ ∩ Res))
and η - η′. Since R ∩ N ′ = χ ∩ N ′ = ∅, and Y -N ′ Z, then there exists
(η′′, χ′|dom(χ′)\N ′′) ∈ Z(χ)(R) and η′ - η′′. This proves the thesis, because
the relation - on traces is transitive.

Lemma D.11. For all weakly bound processes p, p′ and for all N and θ:

p ≈ p′ =⇒ JpKw
θ -∅ Jp′Kw

θ(11a)

p -N p′ =⇒ JpKw
θ -N Jp′Kw

θ(11b)

73

Proof. The first item is straightforward by induction on the size of the proof
of p ≈ p′. For the second item, we proceed by induction on the size of the
proof of p -N p′. There are the following exhaustive cases:

• if p = C(p̄) -N C(p̄′) and p̄ -N p̄′, with N ∩ N(C) = ∅, there are the
following exhaustive cases:

– if C = p′′ · •, then N ∩ N(p′′) = ∅. Let (η, χ′) ∈ Jp′′ · p̄Kw
θ (χ)(R ∪

(N ∩ Res)). Then, (η, χ′) = (η0, χ0) ⊙ (η1, χ1), with:

(η0, χ0) ∈ Jp′′Kw
θ (χ)(R∪ (N ∩ Res))

(η1, χ1) ∈ Jp̄Kw
θ (χ0)(R∪ (N ∩ Res) ∪ R(η0))

There are two subcases.

If ! ∈ η0, then (η, χ′) = (η0, χ0). Since N ∩ N(p′′) = ∅, then by
Lemma 9c applied |N | times, it follows that:

(η0, χ0|dom(χ0)\N) ∈ Jp′′Kw
θ (χ|dom(χ)\N)(R∪ (N ∩ Res))

and since N ∩ dom(χ) = ∅:

(η0, χ0|dom(χ0)\N) ∈ Jp′′Kw
θ (χ)(R∪ (N ∩ Res))

by Def. 5b:

(η0, χ0|dom(χ0)\N) ∈ Jp′′Kw
θ (χ)(R)

and finally, since ! ∈ η0:

(η0, χ0|dom(χ0)\N) ∈ Jp′′ · p̄′Kw
θ (χ)(R)

If ! 6∈ η0, then (η, χ′) = (η0η1, χ1). We have that:

1. N∩(R∪R(η0)) = ∅, since N is disjoint from R by hypothesis,
and by Lemma B.8, R(η0) ⊆ RR(θ)(p

′′)∪ ran(χ)∪ (Res \ (R∪
N)), and both ran(χ) and RR(θ)(p

′′) ⊆ N(p′′) are disjoint
from N by hypothesis.

2. N ∩ χ0 = ∅. By Lemma 9b, dom(χ0) ⊆ dom(χ) ∪ bn⋄(p′′)
and both dom(χ) and bn⋄(p′′) ⊆ N(p′′) are disjoint from N .
Also, by Lemma 9a, ran(χ0) ⊆ ran(χ)∪R(η0), and ran(χ) is
disjoint from N by hypothesis, while we have proved in the
previous item that R(η0) ∩N = ∅.

By the induction hypothesis:

(η1, χ1|dom(χ1)\N) ∈ Jp̄′Kw
θ (χ0)(R∪ R(η0))

from which we obtain the thesis:

(η0η1, χ1|dom(χ1)\N) ∈ Jp′Kw
θ (χ)(R∪ (N ∩ Res))

74

– if C = • · p′′, then N ∩ N(p′′) = ∅. Let (η, χ′) ∈ Jp̄ · p′′Kw
θ (χ)(R ∪

(N ∩ Res)). Then, (η, χ′) = (η0, χ0) ⊙ (η1, χ1), with:

(η0, χ0) ∈ Jp̄Kw
θ (χ)(R∪ (N ∩ Res))

(η1, χ1) ∈ Jp′′Kw
θ (χ0)(R∪ (N ∩ Res) ∪ R(η0))

By the induction hypothesis, there exists (η0, χ0|dom(χ0)\N) ∈
Jp̄′Kw

θ (χ)(R) By Def. 5b it follows that:

(η1, χ1) ∈ Jp′′Kw
θ (χ0)(R∪ (N ∩ Res) ∪ R(η0))

and so by Lemma 9c, applied |N | times:

(η1, χ1|dom(χ1)\N) ∈ Jp′′Kw
θ (χ0|dom(χ0)\N)(R∪ (N ∩ Res) ∪ R(η0))

Summing up:

(η0, χ0|dom(χ0)\N) ⊙ (η1, χ1|dom(χ1)\N) ∈ Jp′Kw
θ (χ)(R)

There are two subcases.

∗ If ! ∈ η0, then:

(η0, χ0|dom(χ0)\N) ⊙ (η1, χ1|dom(χ1)\N) = (η0, χ0|dom(χ0)\N)

∗ Otherwise, if ! 6∈ η0, then:

(η0, χ0|dom(χ0)\N) ⊙ (η1, χ1|dom(χ1)\N) = (η0η1, χ1|dom(χ1)\N)

– the context µh. • does not exist, by Def. 5.5.

– the other contexts, • + p′′ and p′′ + •, are trivial.

• if p′ = p+p′′, then N = ∅. Let (η, χ′) ∈ JpKw
θ (χ)(R∪ (∅∩Res)). Then,

(η, χ′|dom(χ)\∅) ∈ Jp′Kw
θ (χ)(R).

• if p -N ′ p′′ and p′′ -N ′′ p′, with N = N ′ ∪ N ′′ and N ′ ∩ N ′′ = ∅, the
thesis follows by Lemma D.10.

• if p ≈ p′, the thesis follows from Lemma 11a.

• if p = p̄ϑ{p′/h} and p′ = µh. p̄, then N = ran(ϑ), dom(ϑ) = bn⋄(p)
and ran(ϑ) ∩ N(p̄) = ∅.

(η, χ′) ∈ Jp̄ϑ{p′/h}Kw
θ (χ)(R∪ (ran(ϑ) ∩ Res))

Since p̄ϑ{p′/h} is capture-avoiding, then by the Substitution Lemma (D.7):

(η, χ′) ∈ Jp̄ϑKw

θ{λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ)(R∪ (ran(ϑ) ∩ Res))

75

By repeated applications of Lemma D.9(c,d), whose conditions remain
satisfied after each application, there exists χ′′ such that:

(η, χ′′) ∈ Jp̄Kw

θ{λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ)(R)

Therefore:

η ∈ fst(Jp̄Kw

θ{λR̄. fst(Jp′Kw
θ (χ)(R̄))/h}

(χ)(R))

= fst(Jp̄Kw

θ{λR̄. fst(Jp′Kw
θ (χ|dom(χ)\bn⋄(p̄))(R̄))/h}

(χ)(R))

= f(λR̄. fst(Jp′Kw
θ (χ|dom(χ)\bn⋄(p̄))(R̄)))(R)

where f(Z) = λR̄. fst(Jp̄Kw
θ{Z/h}(χ|dom(χ)\bn⋄(p̄))(R̄)).

= f
(

λR̄. fst(setχ|dom(χ)\bn⋄(p̄)

⋃

i≥0

f i(⊥Dsub
)(R̄))

)

(R)

= f
(

λR̄.
⋃

i≥0

f i(⊥Dsub
)(R̄)

)

(R)

and since f is a fixed point:

= fst(Jp′Kw
θ (χ)(R))

Therefore, (η, χ) ∈ Jp′Kw
θ (χ)(R). Since (η, χ′) ∈ Jp̄ϑ{p′/h}Kw

θ and
bn⋄(p̄ϑ{p′/h}) = bn⋄(p̄ϑ), then by (5c) and by Lemma 9b:

dom(χ) ⊆ dom(χ′) ⊆ dom(χ) ∪ bn⋄(p̄ϑ) = dom(χ) ∪ ran(ϑ)

Therefore, dom(χ′) \ ran(ϑ) = dom(χ) \ ran(θ), and since dom(χ) ∩
ran(ϑ) = ∅, then dom(χ′) \ ran(ϑ) = dom(χ). To conclude the proof,
it suffices to note that χ′|dom(χ′)\N = χ′|dom(χ′)\ran(ϑ) = χ′|dom(χ) = χ,
where the last equation follows from 5c.

Theorem 5.6. For all closed, weakly bound processes p and q:

• if p ≈ q, then JpKw
∅ = JqKw

∅ .

• if p -N q, then fst(JpKw
∅ (χ)(R)) ⊆ fst(JqKw

∅ (χ)(R)), for all R and χ
such that dom(χ) ∩N = ∅ and both the semantics are defined.

Proof. The first item follows from Lemma 11a. The second item follows
from Lemma 11b and by Def. D.2.

76

Theorem 5.7. For all weakly bound processes p and q:

• if p ≈ q, then wb(p) if and only if wb(q).

• if p ≈ q and wb(p), then bindify(p) = bindify(q).

• if p -N q and wb(q), then wb(p).

Proof. The first items is straightforward by Lemma D.4 and by induction
on the derivation of p ≈ q. The second item is by induction on the structure
of p, and it exploits Lemma 4c to yield bn⋄(p) = bn⋄(q). The last item
is straightforward by Lemma D.5 and by induction on the derivation of
p -N q.

77

