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Abstract


Fast minimization time, compact area and low delay are important issues in logic circuit design. In
order to orchestrate these main goals, in this paper we propose a new four level logic form (Generalized
EXOR-Projected Sum of Products, in short GEP-SOP) with low delay and compact area. Even if the
problem of finding an optimal GEP-SOPs is computationally hard, we propose an efficient approximation
algorithm that gives guaranteed near optimal solutions. A wide set of experimental results confirms that
the GEP-SOP forms are often more compact than the SOP forms, and their synthesis is always a very
fast reoptimization phase after SOP minimization.


1 Introduction


Binary Decision Diagrams (BDDs) are widely used in digital-system design for verification and synthesis [1].
A BDD for a Boolean function can be directly mapped onto a network of multiplexers, called BDD-circuit,
as shown in [2]. Such circuits are quite compact for a large range of functions, however their depth can be
equal to the number of primary inputs, thus producing high delays. An interesting extension to BDDs has
been proposed in [3], called Linearly-Transformed BDDs, in short LTBDDs. LTBDDs are binary decision
diagrams whose nodes are labeled with EXORs of variables, instead of just single variables. Each node in a
LTBDD thus represents a sort of Shannon decomposition based on an EXOR of variables. We can observe
that even LTBDDs could be mapped into circuits, using multiplexers combined with EXOR gates. In this
way, we could have more compact circuits, whose depth, however, can still be equal to the number of input
variables.


EXOR based Shannon decomposition has also been considered in [4] and [5], where an algebraic form for
Boolean function representation, called EXOR-Projected Sum of Products (EP-SOP) has been defined. This
form contains a single two input EXOR gate (2-EXOR) two AND gates and an OR, combined with two SOP
expressions. The advantage of EP-SOP circuits is that their depth is bounded, since the number of logic levels
is equal to four. Moreover, circuits with a bounded number of levels, three or four ([6, 7, 8, 9, 10, 11, 12]),
often result to be much more compact in area than classical two level logic forms ([13, 14]).


Guided by the observation that LTBDDs, containing several EXOR gates, are much compact in size, in
this paper, we generalize EP-SOP networks, introducing more EXOR gates, while keeping the number of
levels equal to four. We call these new expressions Generalized EP-SOPs, in short GEP-SOP forms. From
a mathematical point of view, a GEP-SOP can be seen as a projection of an initial SOP φ onto a set of
disjoint subspaces of the Boolean space {0, 1}n, each represented by a product of 2-EXORs. The overall
network is composed by the SOP forms representing the projections of φ onto each subspace, the ANDs of
EXOR gates describing the projected subspaces, and a final OR gate, as shown in Figure 3.


Even if the problem of finding an optimal GEP-SOP representation of a Boolean function is computation-
ally difficult, we propose a very efficient approximation algorithm that guarantees a constant approximation
ratio, and therefore a near optimal solution (see Section 3). This algorithm has been implemented and tested
with interesting results (see Section 4), showing how several standard Espresso benchmarks benefit from
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our approach. Starting from minimal SOP forms, these compact bounded level networks can be obtained in
really limited computational time. Therefore, evaluating GEP-SOP forms as an alternative to optimal SOPs
appears to be an advisable reoptimization step to be performed after the SOP synthesis.


2 Generalized EP-SOP forms


In this section we first briefly recall the definition of EP-SOP forms from [4], and then introduce the new
concept of Generalized EP-SOP forms.


2.1 EP-SOP Forms


Let f : {0, 1}n → {0, 1} be a Boolean function depending on n variables x1, x2, . . ., xn, and let φ be a SOP
representation of it. Let us consider a couple of variables xi and xj , where, without loss of generality, i < j.
The space {0, 1}n can be partitioned into two disjoint subspaces: the space where xi 6= xj or, equivalently,
xi = xj , defined by the characteristic function (xi ⊕ xj), and its complementary subspace where xi = xj ,
defined by the function (xi ⊕ xj).


The main idea of EP-SOP forms is that of representing the function f as the sum (union) of the two
projections of φ, φij and φij , onto these two spaces:


EP-SOPij(f) = (xi ⊕ xj)φij + (xi ⊕ xj)φij .


After the projection, one can further minimize φij and φij , in order to minimize the overall form. Projecting
a product onto the space xi = xj (resp., xi 6= xj) simply means to substitute in it the occurrence of xi,
if any, with xj (resp., xj). Observe that all products that do not depend on xi are not modified by the
projection. Moreover, the substitution of xi with xj in a product depending on both xi and xj produces an
empty product.


For example, let a SOP representation for Boolean function f be φ = x1x2x3+x1x2x3+x1x2x3+x2x3x4+
x5. Consider the couple of variables x1 and x2. The projection of f onto the space x1 6= x2 is covered by the
SOP form x2x2x3 + x2x2x3 + x2x2x3 + x2x3x4 + x5, which can be simplified to x2x3 + x2x3 + x2x3x4 + x5.
Analogously, the projection of φ onto the space x1 = x2 is covered by x2x3 + x2x3x4 + x5. We can further
minimize the first form because minterms, which were not adjacent in the original SOP form, now merge into
new larger prime cubes. The EP-SOP representation of f is then f ≡ (x1 ⊕ x2) (x3 +x5)+ (x1⊕x2)(x2x3 +
x2x3x4 + x5).


Observe that the projections allow to eliminate one of the two variables xi and xj , and let us suppose
to always remove the one with lower index, xi. Thus, φij and φij only depend on x1, . . . , xi−1, xi+1, . . . , xn,
and their minimization should be easier. Moreover, thanks to the presence of EXOR gates, the projections
can reduce the Hamming distances among the cubes appearing in each subspace, so that further merges can
be possibly performed, even when the initial projected SOP φ for f is minimal. For these reasons, one could
expect EP-SOP forms to be more compact than SOP forms, as the experimental results shown in [4] have
partly confirmed.


It was also observed in [4] that it is not always convenient to project all products of φ. Indeed, while some
products are entirely included into one of the two subspaces xi 6= xj and xi = xj (precisely, all products
containing both the variables xi and xj , possibly complemented, in their algebraic expression), and will end
up in just one projected SOP, other products, called crossing products, intersect both spaces producing two
smaller products, which should be included one in φij and one in φij . Therefore, one can choose to keep the
crossing products in an unprojected SOP, named remainder. In this case, the resulting expression is called
EP-SOP with remainder, in short EPr-SOP:


EPr-SOPij(f) = (xi ⊕ xj)φij + (xi ⊕ xj)φij + ρ ,


where φij and φij are the projections of the products of φ containing both xi and xj (possibly complemented)
onto the spaces (xi ⊕ xj) and (xi ⊕ xj), respectively, and ρ is the sum of all crossing products of φ.


For example, consider again the Boolean function f whose SOP representation is φ = x1x2x3 +x1x2x3 +
x1x2x3 + x2x3x4 + x5. The projection with remainder of f onto the spaces x1 6= x2 and x1 = x2 are
covered by the SOP forms x2x3 + x2x3, and x2x3, respectively. The remainder is composed by the products
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that do not contain both x1 and x2, i.e., ρ = x2x3x4 + x5. The EPr-SOP representation of f is then
f ≡ (x1 ⊕ x2) (x3) + (x1 ⊕ x2)(x2x3) + (x2x3x4 + x5).


Finally, observe that instead of fixing a given couple of variables defining the projection subspaces, one
could be interested in finding the minimal EP-SOP representation (with or without remainder) of a Boolean
function, i.e., the expression containing the minimum number of products among all possible minimal EP-
SOPs with respect to any couple of variables. Deriving these forms is computationally very hard, nevertheless
a very efficient approximation algorithm has been proposed in [4].


2.2 GEP-SOP Forms


We now introduce a generalization of EP-SOP forms. The idea behind this generalization is simply that of
further projecting the projected SOPs φij and φij , and possibly the remainder, onto the subspaces defined
by other couples of variables. The procedure can be further iterated, progressively reducing the variables in
the projected SOPs, while increasing the variables defining the projection subspaces. We can define these
new logic forms recursively as follows.


Definition 1 Given a Boolean function f : {0, 1}n → {0, 1} and a SOP φ for f , a Generalized EXOR
Projected Sum of Products form (shortly, GEP-SOP) for f is either:


• a SOP form;


• an expression containing two GEP-SOP forms for the projections φij and φij of φ onto the subspaces
defined by (xi ⊕ xj) and (xi ⊕ xj), where xi and xj are a given couple of variables:


GEP-SOP(f) = (xi ⊕ xj) GEP-SOP(φij)
+ (xi ⊕ xj) GEP-SOP(φij) .


For instance, given a function f : {0, 1}n → {0, 1}, a SOP φ for f , and three couples of variables (xi, xj),
(xh, xk), (x`, xm), with i < j, h < k, ` < m, and h, k, `,m 6= i, we can consider the following GEP-SOP
representation for f :


GEP-SOP(f) = (xi ⊕ xj)[(xh ⊕ xk)φij,hk + (xh ⊕ xk)φij,hk]
+(xi ⊕ xj)[(x` ⊕ xm)φij,`m + (x` ⊕ xm)φij,`m] ,


where φij,hk, φij,hk, φij,`m, and φij,`m are the projections of the initial SOP φ for f onto the four disjoint
subspaces described by the linear systems of equations:{


xi = xj


xh = xk


{
xi = xj


xh = xk


{
xi = xj


x` = xm


{
xi = xj


x` = xm


and whose characteristic functions are (xi ⊕ xj)(xh ⊕ xk), (xi ⊕ xj)(xh ⊕ xk), (xi ⊕ xj)(x` ⊕ xm), and
(xi ⊕ xj)(x` ⊕ xm), respectively. The derivation of a GEP-SOP form for a function f can be represented
in a very intuitive way using a binary tree, whose internal nodes are labeled with 2-EXORs representing the
projection subspaces, and whose leaves represent the final projected SOPs, as shown in Figure 1. The root
of the tree represents the first projection step applied to the starting SOP φ, the nodes on the first level
represent the second projection step, that is the projections applied to φij and φij , and so on.


The height of the tree representing a GEP-SOP thus is equal to the number of projection steps. Of
course, one could perform more projections, replacing each leaf with another GEP-SOP.


The above definition can be extended in order to consider also the projections with remainder:


Definition 2 Given a Boolean function f : {0, 1}n → {0, 1} and a SOP φ for f , a GEP-SOP form with
remainder (shortly, GEPr-SOP) for f is either:


• a SOP form for f ;
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Figure 1: A binary tree representing a GEP-SOP form.
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Figure 2: A ternary tree representing a GEP-SOP form with remainder.


• an expression containing two GEPr-SOP forms for the projections with remainder φij and φij of φ
onto the subspaces defined by (xi ⊕ xj) and (xi ⊕ xj), and a GEPr-SOP form for the remainder ρ,
where xi and xj are a given couple of variables:


GEPr-SOP(f) = (xi ⊕ xj) GEPr-SOP(φij)
+ (xi ⊕ xj) GEPr-SOP(φij)
+ GEPr-SOP(ρ) .


For instance, given a function f , a SOP φ for f , and four couples of variables (xi, xj), (xh, xk), (x`, xm),
(xp, xq), with i < j, h < k, ` < m, p < q, and h, k, `,m 6= i, we can consider the following GEPr-SOP
representation for f :


GEPr-SOP(f) = (xi ⊕ xj)[(xh ⊕ xk)φij,hk + (xh ⊕ xk)φij,hk


+ρij ] + (xi ⊕ xj)[(x` ⊕ xm)φij,`m + (x` ⊕ xm)φij,`m + ρij ]


+(xp ⊕ xq)ρpq + (xp ⊕ xq)ρpq + ρ′ ,


where φij,hk, φij,hk, φij,`m, φij,`m are the projections with remainder of the initial SOP φ onto the four
disjoint subspaces (xi ⊕ xj)(xh ⊕ xk), (xi ⊕ xj)(xh ⊕ xk), (xi ⊕ xj)(x` ⊕ xm), and (xi ⊕ xj)(x` ⊕ xm).
Moreover, ρij and ρij represent the sums of all crossing products of φij and φij , respectively. Finally, ρ′ is
the remainder left by the projections of the initial remainder ρ onto the spaces (xp ⊕ xq) and (xp ⊕ xq).


As before, we can represent a GEP-SOP form with remainder in a very intuitive way using a tree. This
time the tree will be a ternary tree, indeed we add a child to each internal node in order to represent the
remainder, as shown in Figure 2. It is interesting to observe that, no matter how many times the projection
procedure has been performed, the final overall logic networks representing GEP-SOP forms without and
with remainder will contain four levels of logic, as shown in Figure 3. Finally, observe that we could also
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Figure 3: GEP-SOP networks without remainder (left) and with remainder (right).


consider “mixed” GEP-SOP forms, where at each projection step we can choose between a projection without
or with remainder.


3 Approximation algorithm


The problem of finding a minimal GEP-SOP representation for a given Boolean function f is computationally
very hard. Indeed, it contains EP-SOP minimization as a subproblem (when just one projection step is
performed), and in [4] it was proved that deriving an EP-SOP form minimal with respect to a given couple
of variables is an NPNP -hard problem, even if the initial input SOP for f is already minimal. Recall that
NPNP is the class of all decision problems solved by a non-deterministic polynomial-time machine equipped
with a non-deterministic polynomial time oracle. In the polynomial hierarchy [15], this class is a superset of
NP .


Due to the complexity of the problem, we must give up exact GEP-SOP minimization for fast not exact
polynomial algorithms, mirroring what has been done for EP-SOP minimization. There are two possible
strategies for not exact minimization: heuristics and approximation algorithms. Both strategies do not
guarantee the minimality of their solutions, but while we cannot perform any prediction on the result
of a heuristic, an approximation algorithm gives guaranteed near-optimum solutions. In a minimization
framework, an algorithm with approximation ratio p guarantees that the cost C of its solution is such that
C/C∗ ≤ p, where C∗ is the cost of an optimal solution [15]. We now describe a polynomial approximation
algorithm for the problem of finding a minimal GEP-SOP representation of a function f starting from
a minimal SOP φ for f (Section 3.1); in Section 3.2 we prove how this algorithm guarantees a constant
approximation ratio.


3.1 Algorithm


Figure 4 shows recursive Algorithm 1 for computing a GEP-SOP, with and without remainder, with a given
number of projection steps (s) starting from a SOP form. The first call of this algorithm is performed on
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Algorithm 1 (Construction of a GEP-SOP)


First input: The number of projection steps s; a minimal SOP form φ for f (note that a SOP form is a
particular GEPSOP); the boolean variable rem that is true only for generating GEP-SOP with remainder.
Final output: A GEP-SOP equivalent to φ (with remainder iff rem is true).


GEPSOP GepSop(step s, GEPSOP φ, boolean rem)
if (s == 0)


return Espresso non exact(φ);
else /* (s > 0) */


(xi, xj) = FindMostFrequentPair(φ);
if (rem) /* GEP-SOP with remainder */


(φij , φij , ρ) = ProjWithRem(xi, xj ,φ);
φG


ij = GepSop(s− 1, φij , rem);
φG


ij
= GepSop(s− 1, φij , rem);


ρG = GepSop(s− 1, ρ, rem);
return (xi ⊕ xj)φG


ij + (xi ⊕ xj)φG
ij


+ ρG ;
else /* GEP-SOP without remainder */


(φij , φij) = ProjWithoutRem(xi, xj ,φ);
φG


ij = GepSop(s− 1, φij , rem);
φG


ij
= GepSop(s− 1, φij , rem);


return (xi ⊕ xj)φG
ij + (xi ⊕ xj)φG


ij
;


Figure 4: Approximation algorithm for generating GEP-SOPs with and without remainder.


a minimal SOP form φ of the function f . The function FindMostFrequentPair computes the most frequent
pair of variables appearing in the given SOP. The two functions ProjWithRem and ProjWithoutRem compute
the projections (and the remainder, in the first case) of φ with respect to the pair of variables xi and xj ,
as described in Section 2.1. The time complexity of this algorithm is polynomial in the size of the input
SOP form, and it is exponential in the number of projection steps (s) required. In particular, the cost of the
recursive calls is polynomial in the number of products in φ, and the algorithm performs O(2s) and O(3s)
recursive calls for GEP-SOPs without and with remainder, respectively. Moreover, the cost of the case s =
0 is polynomial since Espresso non exact is used, and Algorithm 1 invokes this procedure O(2s) times
for GEP-SOPs without remainder, and O(3s) times for GEP-SOPs with remainder. Finally observe that the
number of projection steps s is then a critic parameter and should assume a low value.


For the sake of simplicity, hereafter we consider only GEP-SOP forms, with and without remainder,
derived with only two projection steps (s = 2), as those represented by the trees in Figure 1 and Figure 2.
Experimental results described in Section 4 show that even with only two projections we obtain good solutions
in terms of area and computational time.


3.2 Approximation ratio


We now prove that the proposed synthesis strategy is indeed an approximation algorithm for the GEP-
SOP minimization problem, restricted to forms derived with just two projection steps (s = 2). In this
analysis, we will measure the cost of an algebraic form through the overall number of products contained
in it. For instance, the cost of the GEP-SOPs represented in Figure 1 and Figure 2 are |GEP-SOP(f)| =
|φij,hk|+ |φij,hk|+ |φij,`m|+ |φij,`m|, and |GEPr-SOP(f)| = |φij,hk|+ |φij,hk|+ |ρij |+ |φij,`m|+ |φij,`m|+ |ρij |+
|ρnp|+ |ρnp|+ |ρ′|, respectively, where we have denoted by |ψ| the number of products in a given SOP ψ. In
order to prove that the costs |GEP-SOP(f)| and |GEPr-SOP(f)| of our solutions are upper bounded by a
constant times the costs of the optimal solutions |GEP-SOP(f)MIN | and |GEPr-SOP(f)MIN |, respectively,
we first find a lower bound for the optimal forms, and then an upper bound for the approximated solutions.
We first consider GEP-SOPs without remainder.
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Lemma 1 Given a minimal SOP form φ for a Boolean function f , and a minimal GEP-SOP form, without
remainder, for f , we have


|GEP-SOP(f)MIN | ≥ 1
4
|φ| .


Proof. Suppose that an optimal GEP-SOP for f can be derived by projecting φ onto the four subspaces
described by three particular couples of variables, and then minimizing the four projected SOPs. The cost
of GEP-SOP(f)MIN is given by the overall number of products in these four SOPs. Now, observe that we
can represent the characteristic functions of the four subspaces as sums of exactly four products; indeed they
are given by the product of two EXORs of two literals. Thus, we can build a SOP for f multiplying each
product in the four projected SOPs by the products in the SOP representing the corresponding projection
subspaces. The SOP σ derived in this way has size |σ| = 4|GEP-SOP(f)MIN | and, since φ is minimal, we
have |φ| ≤ |σ|, from which the thesis follows.


We now prove that if we project the starting minimal SOP φ with respect to the couples of variables
selected by Algorithm 1, we get a solution whose approximation ratio is bounded by a constant. For a couple
of variables xi and xj and a SOP φ, let us denote with νij the number of products in φ containing both xi


and xj , possibly complemented.


Theorem 1 Let GEP-SOP(f) be the GEP-SOP representation of a Boolean function f computed by Al-
gorithm 1, projecting a minimal SOP φ for f onto the four subspaces described by the couples of variables
(xi, xj), (xk, xh) and (x`, xm), and let GEP-SOP(f)MIN be a minimal GEP-SOP representation of f . Then


|GEP-SOP(f)|
|GEP-SOP(f)MIN |


≤ 16− 4(2νij + ν′hk + ν′`m)
|φ|


,


where νij is the frequency of the couple (xi, xj) in the initial SOP φ, and ν′hk and ν′`m are the frequencies of
the couples (xh, xk) and (x`, xm) in the projections φij and φij of φ onto (xi⊕xj) and (xi⊕xj), respectively.


Proof. First of all observe that the two SOPs φij and φij produced by the first projection of φ onto the
spaces (xi ⊕ xj) and (xi ⊕ xj) satisfy


|φij |+ |φij | = νij + 2(|φ| − νij) = 2|φ| − νij ,


since the νij products containing both xi and xj appear only once in one of the two projections, while the
(|φ| − νij) crossing products are projected onto both spaces, and appear in φij and φij . Consider now the
projection of φij onto (xh⊕xk) and (xh⊕xk), resulting into the two new SOPs φij,hk and φij,hk. Using the
same argumentation, we can conclude that |φij,hk|+|φij,hk| = ν′hk+2(|φij |−ν′hk|) = 2|φij |−ν′hk. Analogously,
for the projection of φij onto (x`⊕xm) and (x`⊕xm), we have |φij,`m|+ |φij,lm| = 2|φij |−ν′`m. Thus, we get
|GEP-SOP(f)| = |φij,hk|+ |φij,hk|+ |φij,`m|+ |φij,lm| = 2(|φij |+ |φij |)− ν′hk− ν′`m = 4|φ|− 2νij − ν′hk− ν′`m,
and the thesis follows applying Lemma 1.


A better result holds for the GEP-SOP forms with remainder.


Theorem 2 Let GEPr-SOP(f) be the GEP-SOP with remainder representation of a Boolean function f
computed by Algorithm 1 from a minimal SOP φ for f , and let GEPr-SOP(f)MIN be a minimal GEP-SOP
with remainder representation of f . Then


|GEPr-SOP(f)|
|GEPr-SOP(f)MIN |


≤ 4 .


Proof. First of all, observe that |GEPr-SOP(f)MIN | ≥ |φ|/4. Indeed, we can derive a SOP from the
expression GEPr-SOP(f)MIN , as shown in the proof of Lemma 1, whose number of products is upper
bounded by 4|GEPr-SOP(f)MIN |. Now observe that at each projection step all crossing products are kept
unprojected, therefore no product in φ is projected onto more than one subspace. This implies that the
overall number of products in the GEPr-SOP computed by Algorithm 1 is upper bounded by |φ|. Therefore,
|GEPr-SOP(f)| ≤ |φ| and the thesis easily follows.
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SOP GEP-SOP (s=1) GEPr-SOP (s=1) GEPSOP (s=2) GEPr-SOP (s=2)
Benchmark area delay CPU area delay CPU area delay CPU area delay CPU area delay CPU


adr4 221 19.2 0.03 172 15.2 0.01 104 11.1 0.03 326 28 0.06 326 28 0.03
alcom 217 10.8 0.87 441 36.5 0.01 228 17.8 0.01 545 39.3 0.12 246 15.2 0.29
alu1 53 6.8 0.04 128 15.4 0.01 60 8.8 0.01 122 15 0.03 60 8.8 0.01
b2 3876 79.8 0.23 4113 81.3 0.06 4169 82.6 0.07 3847 76.3 0.21 3888 83.6 0.22
b4 645 30.5 2.89 802 33.3 0.01 717 34.4 0.01 798 33 0.13 708 31.6 0.17
b12 167 18.4 0.48 374 22.9 0.03 285 22.5 0.01 378 24.9 0.06 219 22.5 0.03
in2 1112 41.4 0.06 999 36.7 0.03 1001 37.3 0.01 1122 43.9 0.12 968 38.5 0.08
in5 905 38.5 0.12 976 39.2 0.01 923 40.9 0.01 1053 35.9 0.07 935 38.6 0.07
in7 366 23.8 0.57 432 25.9 0.01 360 25.8 0.01 415 25.9 0.05 395 27.6 0.06
log8mod 323 27.2 0.04 260 22.8 0.01 260 26.9 0.01 242 20.5 0.01 242 20.5 0.03
luc 806 41.0 0.04 779 52.8 0.01 758 52.4 0.01 863 49.3 0.02 837 52.2 0.05
m3 839 38.4 0.04 1286 48.4 0.03 1172 51.7 0.03 1019 38.2 0.08 1142 48.7 0.11
m181 166 18.4 0.56 327 22.4 0.03 240 22.5 0.03 338 24.3 0.03 220 22.5 0.02
mlp4 734 36.6 0.35 982 43.0 0.03 838 40.5 0.03 1179 50.6 0.08 1179 50.6 0.12
mp2d 362 26.0 0.29 427 25.3 0.03 332 23.7 0.01 383 22.1 0.06 389 23.8 0.10
newcwp 40 9.1 0.01 37 13.1 0.01 34 13.1 0.01 35 12.4 0.03 32 12.4 0.01
newxcpla1 366 21.4 0.04 731 35.1 0.03 619 31.5 0.01 731 36.4 0.07 488 30.3 0.08
p82 239 18.4 0.03 238 25.8 0.01 240 25.0 0.01 248 28.4 0.05 248 28.4 0.06
rckl 341 49.7 0.04 495 72.3 0.03 495 72.3 0.03 641 55.2 0.04 494 51.5 0.09
rd73 217 25.5 0.03 389 27.6 0.01 338 26.9 0.01 292 26.3 0.02 268 25.6 0.02
sqr6 278 25.5 0.06 397 27.0 0.01 330 24.9 0.01 418 28.8 0.04 418 28.8 0.04
tms 587 35.4 0.03 675 35.2 0.01 675 35.2 0.01 657 38.8 0.05 657 38.8 0.05
vg2 341 18.6 0.20 624 25.7 0.01 468 22.5 0.01 720 28.4 0.03 633 26.7 0.04
vtx1 324 21.3 0.17 441 25.5 0.01 365 23.4 0.01 437 23.5 0.03 364 27.2 0.02
x6dn 1053 36.8 0.15 854 34.9 0.01 817 34.8 0.01 808 34 0.06 851 36.6 0.02
x9dn 384 23.0 0.17 496 25.4 0.01 424 24.7 0.01 496 23.3 0.06 420 24.5 0.04
z4 168 18.3 0.01 157 18.6 0.01 98 14.2 0.01 334 27.6 0.01 334 27.6 0.03


Table 1: Comparison between the results of SOP and GEP-SOP forms after the technology mapping (area,
delay and synthesis time in seconds).


4 Experimental Results and Conclusion


This section discusses the computational results obtained by building minimal GEP-SOP forms for a given
Boolean function f . The aim of our experiments is twofold: we are interested in obtaining GEP-SOPs with
compact area, to be compared with optimal SOP forms, while evaluating the practical performances of the
proposed approximation algorithm. The results refer to the well known Espresso benchmark suite [16].
The first projection step is performed by projecting f with respect to the most frequent pair of variables
in the optimal SOP form, either with or without a remainder. As most benchmarks have multiple outputs,
we refer the definition of frequency to the whole set of outputs (global frequency), thus employing the same
couple of variables for all outputs. This choice is based on the experimental results previously obtained on
EP-SOPs in [4] and its rationale is to limit the number of EXOR gates in the final network, as the physical
implementation of such gates can be expensive.


As our first aim is to obtain compact area networks, and thanks to the large degree of freedom allowed
by the definition of GEP-SOP forms, in the experiments we followed a strategy slightly different from
Algorithm 1. While at the first level the starting SOP form is always projected, in the second step the most
frequent pair of variables in the whole set of resulting SOP components is selected, and each component
is projected with respect to this couple only if the result yields a more compact expression. The rationale
is once again to introduce few EXOR gates and only when they produce more compact expressions. After
the projection, all SOP components are synthesized together with multi-output synthesis by Espresso non
exact, in order to keep the worst-case complexity of the algorithm polynomial while exploiting product
sharing.


We have evaluated the practical performance of five forms: optimal SOPs, GEP-SOPs, with and without
remainder, obtained with one projection step (s=1), i.e., EP-SOP forms, and GEP-SOPs, with and without
remainder, obtained with two projection steps (s=2).


We have used a technology mapping (mcnc.genlib) provided by the SIS tool [17] to evaluate the area and
the delay corresponding to their physical implementation. Due to the limited space available, we report in
Table 1 only a significant subset of the experiments. The first column reports the name of the instance con-
sidered. The following ones report, by groups of three, the area and the delay of the physical implementation
of each form as estimated by SIS and the computational time in seconds required to synthesize it by our
algorithms. The first group (labeled SOP) concerns the optimal SOP form computed by Espresso exact.
The next two ones, labeled GEP-SOP (s=1) and GEPr-SOP (s=1), correspond to GEP-SOP forms obtained
with just one projection step. The last two groups of columns, labeled GEP-SOP (s=2) and GEPr-SOP
(s=2), regard the GEP-SOP forms obtained with two projection steps. The best result on each instance
with respect to the area is in bold face. The computational time is measured in seconds and it is the time
required to generate the form, that is to select the projection variables, to perform the projections and to
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minimize by Espresso non exact the projected components.The experiments have been performed on a
Pentium 2.4 GHz PC with 512 MB of RAM.


On slightly more than half of the instances, the SOP form has the lowest area. Almost half of the time,
however, the GEP-SOP forms have a lower area, with approximately the same number of best results. The
gain with respect to the optimal SOP form can be quite relevant: for example, the GEP-SOP (s=1) with
remainder exhibits a 53% area gain on instance adr4 ; the GEP-SOPs (s=2) with and without remainder
gain, respectively, 25% on instance x6dn and 23% on instance newcwp.


Since the time overhead required to obtain such improvements is very limited, the evaluation of the GEP-
SOP forms as a possible alternative to the optimal SOP forms appears to be an advisable reoptimization
after SOP minimization, in order to obtain alternative expressions for the given Boolean function f .


A promising direction for future research is the investigation of more refined strategies to build GEP-
SOPs, i.e., to select the components to project and the projection variables, and to decide whether to leave
or not a remainder.
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