
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-08-19

Design and implementation
of the @Java system

Giacomo A. Galilei
Dipartimento di Informatica

Università di Pisa

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Design and implementation of the @Java system

Giacomo A. Galilei
Dipartimento di Informatica

Università di Pisa

Abstract

Annotations are a recent feature introduced in languages such as Java, C#,
and other languages of the .NET family, which allow programmers to attach
arbitrary, structured and typed metadata to their code. These languages run
on top of so-called virtual execution environments, e.g. the JVM for Java,
and the CLR for .NET languages, which allow for the run-time generation of
executable code. In this report we explore how annotations and the dynamic
code generation capability can be used together to provide programmers with
high-level methods for dynamic generation and modification of an application’s
code — at run-time. The report describes the framework @Java system, the Java
libraries it is constituted by, and the @Java language, which is an extension to
Java allowing annotation of arbitrary statements. The strategy we developed
consists in parsing a source file written using @Java language to produce a Java 5
compatible source file. Once compiled, information about annotated statements,
such as their bytecode instructions, can be recovered at run-time. We developed
two libraries, one that works at low level to do generic bytecode engineering
called JDAsm, and one at high level called JCodeBrick. Together, these two
libraries allow type-safe and totally symbolic runtime code modification and
generation without any need to explicitly address bytecode instructions, letting
a programmer to easily manipulate existing classes or to synthesize new ones,
by inserting, deleting or extruding pieces of code.

After an overview of the Annotations in Section 2, we address the @Java
language and its parser in Section 3. Then a full description of the two libraries
for bytecode engineering and code manipulation follows in Section 4 and 5. We
introduce then in Section 6 example cases where @Java System can be useful and
we give a particular case study in Section 7. The last Section offers conclusions
and ideas for future work. Finally the API documentation for the two presented
libraries is given, completing the report.

Chapter 1

Introduction

The concept of metadata, which is data describing other data, is one of the
mainstay in computer science, and has been used in a large variety of contexts,
from defining database schema, to structuring digital annotations of medieval
manuscripts. In this report, we are mostly interested in program metadata, i.e.
data describing programs. The concept of program metadata arises naturally in
those languages where programs are data, e.g. LISP [18]. In these languages, the
normal ways to describe relationships about different pieces of data can be used
equally well to annotate programs with metadata. However, program metadata
are common in more traditional languages as well, although mostly in a limited
way.

The various incarnation of the concept of program metadata can be charac-
terized by five features:

• content: what kind of information is carried by a metadata element

• author: who (person or tool) assigns a value to a metadata element

• lifetime: when a metadata element is attached to a program element,
and when (if ever) it is discarded

• location: where is the metadata stored (e.g., together with the code, or
in a separate location)

• target: to which program elements can a metadata element be attached

Historically, program metadata has been used, in a ad hoc fashion, to convey
specific type of information across various tools, systems or activities in the
development cycle, or across long time spans to different persons working on a
system. For example, traditional forms of comments can be interpreted as free-
form metadata, attached to a specific lexical position in the source code when the
code is written by the programmer, and discarded upon compilation. Table 1.1
lists some forms of metadata which are commonly used in programming and
system development practice.

The real weakness of these historical forms is the fact that each metadata
type is defined in a different way, is set and processed by specific tools, and in
most cases has no associated notion of validity of the content (e.g., there is no

1

Metadata Content Author Lifetime Location Target

comments free text programmer source source file any lexical
position as
permitted
by the
language
grammar

typing types &
signatures

compiler source source file variables,
functions,
objects

compilation
directive
(e.g.#pragma)

instructions
to the
compiler

programmer compile time source module

debugging
symbols

symbol
name,
address,
size,
attributes

compiler object object file module

identification
tags

config tags,
version
numbers

compiler object object file module or
executable

API docs
(e.g.
JavaDoc)

API specifi-
cations

programmer source,
deploy to
developers

source file
(as
comments)

functions,
methods

Interface
definitions

signatures programmer deploy to
developers

IDL file
(CORBA),
WSDL file
(web
services)

functions
(CORBA),
methods
(web
services)

Versioning
info (e.g.,
CVS)

release tags revision
control
system

configuration
release cycle

versioned
source file

any lexical
position

intellectual
rights man-
agement
(license info)

legal terms
of use

programmer,
lawyer

source (legal
validity
extends to
executable)

source file
(as
comments)

module
(typical),
code
fragment

development
cycle control

links to
design,
rationale,
tests,
approvals,
reviews, etc.

program
manager

source to
deploy

source file
(as
comments)
or external
management
database

module, unit

Table 1.1: Characterization of some historical forms of metadata.

2

way to guarantee that a comment specifying some legal terms will be consistent
with a predefined policy).

In recent times, the notion of program metadata has gained full citizenship
both in the design of languages (e.g., C# [9], Java [16]) and in the corresponding
execution environments (.NET CLR [10], JVM [17]). These new forms sport
important differences w.r.t. the historical forms we discussed above:

• they are general purpose, i.e. the schema for their content can be defined
by the programmer, and the mechanism to set and retrieve the content is
not specific to a particular schema;

• they can be applied to generic program elements, with the programmer
being able to declare specific restrictions about which class of elements can
be designated as targets

• they have customizable lifetime and location, encompassing all the
range from source-only metadata (as comments) to run-time metadata (as
typing information with reflection).

Another interesting development linked to the mainstream adoption of vir-
tual execution environments is the comeback of modifiable code. With the
exception of quasi-quotation mechanisms [8] in certain interpreted languages
like LISP [18] or MetaML [19], the possibility of modifying the running code of
an application has been ruled out in language design and by operating systems
(usually with the assistance of hardware devices, e.g. by using an MMU to
forbid writing in memory pages containing executable code) since the seventies,
on the ground of security concerns.

However, the ability to synthesize, configure, customize or adapt the running
code of an application at run-time, possibly without even requiring a shutdown
of the application itself, is invaluable in many circumstances, as we will see in
Section 6.

While it is certainly true that allowing the uncontrolled modification of ex-
ecutable code is unacceptable in terms of security, very prone to introducing
bugs and potentially disastrous side effects, and can easily be abused or bring
an entire application to an abrupt termination, the type safety of .NET IL [10]
and of JVM bytecode [17] has allowed a safer approach to the issue. In fact, the
standard library in .NET explicitly include means to generate IL code on the
fly, and the class loading mechanism in the JVM provides similar (albeit less
programmer-friendly) features to the same effect.

Both these approaches require however that the programmer synthesizes
IL or bytecode fragments “by hand”, listing instruction after instruction the
contents of the fragment. In short, the programmer is required to be proficient
in both a high-level language (e.g., C# or Java) to write the main bulk of the
application in, and in IL or bytecode, in order to write high-level code which
will emit at runtime the sequence of instructions appropriate to accomplish the
task at hand. Given that programmers who can efficiently write assembly code
are increasingly difficult to find (as a consequence of the demise of machine-code
programming), this requirement is too stringent for most scenarios.

One solution which has been proposed (and implemented) has been to pro-
vide programmatic access to the compiler for the high-level language, so that
applications can generate the source code for a high-level class, then ask the

3

Figure 1.1: The @Java system: first an extended Java source is parsed to obtain
a Java 5 conformed source; then two layer of abstraction in code manipulation
are given: one more generic used for basic class file manipulation made by
JDAsm library, and one more specific for code fragment operation made by the
library JCodeBrick

compiler to compile it, obtain a reference to the compiled class, and finally
load it and invoke some of its methods (see, among others, [5]). However, this
method suffers from a number of inconveniences, including a huge performance
hit (both in time and space, as the whole compiler for the high-level language
needs to be loaded and executed even for a small fragment), the difficulty of
programmatically generating the source code, and the possibility of introducing
errors which would cause the compilation of the fragment to fail at run-time.

In this technical report we will introduce a different approach that uses
program metadata to drive in a semi-declarative way the run-time synthesis of
executable code. The software we developed takes the name of @Java system
[14] and it is divided in three parts (see Figure 1): a preprocessor parser for an
extension of the Java language which offers the possibility to annotate fragment
of code with the Java Annotations, a generic code manipulation library called
JDAsm [15], and a library called JCodeBrick [14] which uses JDAsm for the
manipulation of annotated fragments.

We will refer to Java and the JVM throughout the report, but the main
ideas can be applied to .NET languages as well, as in part already done in [4,
12]. Section 2 will briefly introduce Java 5 Annotations, and is followed in
Section 3 by a presentation of the @Java language we defined to extend Java 5
Annotations and the preprocessor parser. Section 4 presents the low-level code
manipulation library JDAsm, while 5 presents the high-level library JCodeBrick
and the operations we have defined for @Java. Section 6 discusses a number of

4

applications for dynamic bytecode manipulation through annotations, while in
Section 7 we give a real study case. Section 8 offers some conclusions and ideas
for future work. Finally the API documentation for the two presented libraries
is given, completing the report.

5

Chapter 2

Java Annotations

2.1 The annotations model in Java 5

The Annotations1 introduced in Java 5 allow programmers to associate meta-
data to specific program elements. These metadata are characterized by an
identifier (akin to a class or interface name) and by a signature (or schema),
akin to the fields of a class, where each field has an identifier and a value. Custom
Annotation types are declared with a syntax similar to that of a class, through
the @interface keyword. Only field of basic types, String, Class, Enum, An-
notation, or arrays of the same are allowed, and default values for them can be
defined in the declaration of the Annotation type (see example in Figure 2.1-a.).
More precisely, Annotation support in Java includes:

• a syntax to declare Annotation types (Figure 2.1-a.);

• a syntax to annotate program elements with instances of Annotation types
(Figure 2.1-b.);

• an API and library to inspect through reflection the annotations associated
to program elements;

• a format specification, stating how annotations are stored in .class files;

• a tool (called apt, annotation processor tool) for generic processing of
annotations in source code at pre-compile time;

• an API and associate library for generic programmatic processing of an-
notations through the apt facilities.

Since Annotation declarations are themselves program elements, Annota-
tions can be annotated as well. Two of these meta-annotations (i.e., program
meta-meta-data, data describing how data about the program should be inter-
preted) are of particular relevance for our purposes. The first is the retention
policy of an annotation type, allowing the programmer to define its life time:
source only (and discarded upon compilation), source and .class (and discarded
upon class loading), or runtime (preserved in the running system). The second

1In the following we will use the term Annotation, with a capital A, to refer to the specific
form of annotations as used in Java.

6

/* a. an Annotation type to record the link between

requirements and code */

public @interface Requirement {

String id();

String complianceStatement();

String certifiedBy() default "John Doe, program manager";

String date();

};

/* b. and its application to a method */

...

@Requirement(id="M1541", certifiedBy="Paul", date="12/5/2008")

public void applyStyle(TSpan span, Style s)

{

...

}

Figure 2.1: An example of Annotation declaration and use.

is the target of an annotation type, allowing the programmer to define to which
program elements it can be attached: other annotations, constructors, fields,
local variables, methods, packages, formal parameters, types.

It can be easily seen how with the ability to define the name, schema, life-
time, location and target of each custom annotation, all the features of our
characterization of annotations from Section 1 have been placed under control
of the programmer.

2.2 Limitations of the Java 5 annotation model

While the annotation model presented in the previous section is sufficiently com-
prehensive for the vast majority of applications, it suffers one major drawback
for the purpose of dynamic code manipulation: a too coarse granularity level.
In fact, while the target granularity for data is a single field, parameter, or
local variables, the target granularity for code is a single method. This choice
is reasonable in consideration of the fact that methods are the smallest code
elements which can be found in class signatures2, but any code manipulation
system that can only manipulate entire methods could be expressed more easily
by using typed “function pointers” (e.g., the delegate model in C#), and would
not be suitable for fine grained optimization or configuration. We will discuss
why fine grained manipulation is useful in Section 6.

Another minor limitation is that, unlike C#, only a single instance of a given
annotation type can be applied to a given target, even when the Annotation
fields would be different. For example, with reference to Figure 2.1, we cannot
place multiple Requirement annotations on a method, to signify that it satisfies
several requirements at once. This limitation (for which we could not find

2But notice that the same principle has not been applied to data, in that local variables
are not visible in class signatures, while all other possible targets are.

7

a documented design rationale, and that apparently could be easily lifted by
extending a few Reflection API methods) can be overcome by using array-typed
fields, at the cost of some complication in the code. In our example, we could
have used a String array for the id, certifiedBy, complianceStatement and
date fields. This, however, is a solution which is somewhat contrived, more
error-prone and less general than one could desire.

It should be noted that both these limitations have been identified in other
contexts as well. For example, there is ongoing work on allowing annotations
on each usage of a type which are being discussed for adoption in Java 7 [11]
(the same document cites allowing multiple instances of an annotation on the
same target as an example of possible developments).

8

Chapter 3

The @Java language

Following the example set in [4], we propose to extend the Java language in
order to allow Annotations to be placed on code fragments inside a method, or
more precisely, on any statement1. The resulting language, called @Java, can be
reduced to Java 5 by a preprocessor, which serves as compiler for the language.

3.1 Syntax extension

@Java differs from Java by a single syntax rule, namely

Statement ::= Annotations Statement

We refer here to the Java 5 grammar as presented in [16]§18.1; a more concrete
definition which exploits lookahead to optimize parsing time in the implementa-
tion is provided in Chapter 3.3, which allows annotations to be placed in front
of any statement.

A typical example of a fragment of @Java code is presented in Figure 3.1,
where a statement annotation @Parallel is used to indicate that all iterations
of a for loop could be executed in parallel.

1The same technique could be applied to (sub-)expressions, but the usefulness of such
micro-granularity does not appear to be worth the additional complexity in practical appli-
cations. Also, since in Java expressions can be turned into statements by appending a “;” as
statement terminator, most typical cases are covered already by our approach.

int i;

double t=0;

for (i=0; i<a.length; i++)

t+=a[i];

@Parallel for (i=0; i<a.length; i++)

a[i] /= t;

Figure 3.1: An example of statement annotation in @Java.

9

3.2 Compilation strategy

The strategy we adopted is based upon a source-to-source conversion carried
out by a preprocessor parser.

Definition 3.2.1. The conversion from an @Java source to a Java 5 source is
performed applying these two rules

1. an annotated statement of the form A(~v) S or A S, where A is an An-
notation and S is a statement, is replaced with a block of the form
{ Kb(k) S Ke(k) } where Kb(k) and Ke(k) are special statements which
serve as markers (these will be discussed in the following), and k is a
unique identifier for the statement annotation instance.

2. an Annotation is generated for the method containing the annotated state-
ment, with two fields: an array of identifiers ids and, in parallel, an array
of Annotations anns. The contents of these arrays are initialized so that,
for each index i, id[i] = k and anns[i] = A(~v) (or A if the form of anno-
tation without arguments was used).

Thus, statement annotations are lifted to the method (a legal target accord-
ing to Java), stored in an array of Annotations (to overcome the problem with
multiple instances of the same Annotation type on a single target), and linked
by its index i to the unique identifier k in the parallel array of identifiers, which
is also part of the method annotation. k in its turn is used to link to the marker
statements Kb(k) and Ke(k). These statements must be such that:

Property 3.2.2. their presence does not alter the semantics of the program

This can can be obtained by using as markers method calls to non-final,
static methods of a special dummy class, with empty bodies. Since their bodies
are empty calling these methods does not alter the semantics.

Property 3.2.3. they can be localized in compiled bytecode, together with their
unique key k

This can be obtained by using k as the only argument of the method calls.
The method call sequence consisting of a iconst n, or bipush, or sipush, or
ldc, or ldc w instruction to push k on the stack, followed by a invokestatic
instruction to a distinguished method is easily identifiable in the code.

Property 3.2.4. they cannot be optimized away or otherwise corrupted by any
Java compiler.

Since the dummy class could be changed after compilation of the invocation,
the compiler cannot optimize away the call by inlining the body.

Through this strategy we can state the following:

Theorem 3.2.5. Is it possible to retrieve which statements were annotated with
which Annotations from the .class data produced by the Java compiler

This is true by setting the appropriate retention policy to the method anno-
tation (recall Section 2.1), and letting its value to become accessible at run-time
through the reflection. And again with the reflection, will be possible to have ac-
cess at the bytecode of the method in search of the special sequence representing
the markers.

10

Theorem 3.2.6. The conversion of a legal @Java results in a legal Java 5
program.

By removing the annotations from the code, which could be easily performed
by visiting the syntax tree of the @Java program and skipping the annotations
nodes corresponding to the grammar rule above, adding them to a method,
and adding two method calls will produce a source that will be accepted by the
grammar of Java 5, though it is not always true that a Java compiler will accept
it as valid input.

Few special conditions could prevent the compilation to have success: state-
ment annotations in fact cannot be applied to return, throw, break and continue
statements, or block statements that unconditionally end with one of these, be-
cause in that case, the Ke(k) end markers would be flagged as unreachable code
by the Java compiler.

Other compilation strategies could result suitable for our purpose; for ex-
ample we could modify a Java open source compiler to make it to add custom
attributes to the methods of our interest. Following this route we could reach an
even finer grained manipulation, and overcome the above presented limitations.

A few observations are in order. First, it should be noted that the bytecode
sequence is easily identifiable, but not unique. A similar snippet, consisting
of a push followed by a method call, could also be generated in the course of
evaluating an expression like k + o.M(), where it would be followed by an add
instruction. However, since we define only a version of the method M with
a single argument k, cases like the above would be flagged as errors by the
compiler, so the risk if erroneously identifying the bytecode fragments for the
Kb(k) and Ke(k) sequences is minimal, and in practice confined to hand-crafted
bytecode.

Second, the method calls Ke(k) and Kb(k) do not alter the functional se-
mantics of the program, but they could alter its performance, and possibly
adversely impact the meeting of non-functional requirements, since method in-
vocation add a small performance penalty. However, while the Java compiler
cannot inline or optimize away the method calls, an adaptive optimizing JIT
compiler can, and usually will, so in practice even non-functional semantics is
preserved.

Third, since method calls in Java can have side effects, and the compiler
cannot be sure which body will be executed for non-final methods (as already
discussed above), it is extremely unlikely that even an aggressively optimizing
compiler will move code across Kb(k) and Ke(k) borders, so we can rely on the
fact that the compiled bytecode contained between Kb(k) and Ke(k) markers is
indeed the complete and only code for the annotated statement S.

Figure 3.2 shows an example of how an @Java code fragment is translated
to Java by the @Java precompiler. As a side note, observe how the compilation
scheme can be applied to the empty statement ; (e.g., @Pos;), hence @Java
annotations can be used to assign symbolic names to specific positions in the
source code.

3.3 The preprocessor parser

The first step of @Java system consists in transforming a source written in @Java
language into another source which conforms to the standard of Java 5. This

11

public void M()

{
...

@A while (...) {
cnt++;

@B(c=1) for (T i: coll) {
...

}
}

}

import jcodebrick.Fragment;

import jcodebrick.MultiA;

...

@MultiA(

ids={1,2},
value={@A,@B(c=1)}

)

public void M()

{
...

Fragment.begin(1);

while (...) {
cnt++;

Fragment.begin(2);

for (T i: coll) {
...

}
Fragment.end(2);

}
Fragment.end(1);

}

Figure 3.2: An example of the source-to-source translation performed by the
@Java compiler. On the left, the source @Java code; on the right, the result of
the translation.

precompilation passage is obtained through the use of a source-to-source parser.

3.3.1 Definitions

Let C be the domain of Java classes, ML the domain of a method set, M
the domain of the methods, SL the domain of a statement list, S the domain
of the statements, AL the domain of an annotation set, A the domain of the
annotations, IL the domain of an id list, con id ∈ N; let

met : C → ML

be the function that given a generic class c ∈ C returns a list of all the methods
mi ∈ M declared in c, defined as

met(c) = 〈m1,m2, . . . ,mn〉

Let

stat : M → SL

be the function that given a generic method m ∈ M returns a list of all the
statements si ∈ S declared in m, defined as

stat(m) = 〈s1, s2, . . . , sn〉

Let

12

isann : S → B

be a boolean function that given a generic statement s ∈ S is defined as

isann(s) =
{
true if s is an annotated statement
false otherwise

For simplicity, we give also an overloaded version of isann that works on a
arbitrary method m ∈ M instead that working on statements.

isann : M → B

isann(m) =
{
true if ∃ s ∈ stat(m) s.t. isann(s)
false otherwise

The purpose of the parser is to convert a file with an extended version of
Java source, say it Se, into another file whose source is Java 5 compliant, say it
Ss. We define the transformation between Se into Ss as the operation π working
on the class c defined in Se:

π : C → C

π(c) = c′

where if

met(c) = 〈m1, . . . ,mn〉

then the resulting c′ is a class such that

met(c′) = 〈m′
1, . . . ,m

′
n〉 s.t. ∀m′ ∈ met(c′) ¬isann(m′)

m′
i =

{
mi if ¬isann(mi)
mod(mi) if isann(mi)

The function

mod : M → M

is the one that converts a @Java language method m in a Java 5 method m′.

mod(m) = m′

To define it we use two variables al ∈ AL and idl ∈ IL to list the annotations
found in the given method and to list their unique id. Given m ∈ M such that

stat(m) = 〈s1, . . . , sn〉

si =
{
s̄i if ¬isann(si)
ai · s̄i, ai ∈ A otherwise

then mod returns m′ such that

m′ = A(~v) ·m′′ with A ∈ A

stat(m′′) = 〈s′1, . . . , s′n〉

13

s′i =
{
s̄i if ¬isann(si)
Kb(q) · si ·Ke(q), otherwise

with q = unique id, and if isann(si) then

idl = idl ∪ q

al = al ∪ ai

Finally

~v = 〈idl, al〉

3.3.2 Implementations

To create the preprocessor parser, the parser generator JavaCC [1] has been
used. Briefly, JavaCC uses a grammar file (with the extension “.jj”) to gen-
erate several files which compiled originate a Java parser. Some of these files
are standard and automatically generated if they are not found in the work-
ing directory; it is possible to modify the behavior of the generated parser by
customizing some of them, and for the reason we will explain later, one of this
modification has been found essential.

The grammar file of Java 5 is distributed by JavaCC; we alter the file both
to extend the grammar to include @Java language, and to customize the class
object representing the final Java parser.

Since JavaCC does not offer the possibility to build a parse-tree2 of the
parsed source, we choose an in-line approach: during the scanning, the parser
we create, records the offsets, in terms of byte from the beginning of the source,
of hot points. Such points are related to the first and the last character of the
declaration of the annotation, the first and the last character of the annotated
statement, and the first character of the declaration of the method.

Three classes have been declared with the parser:

1. Annotation: the representation of an annotation. It’s a data structure
used to store all the relevant offsets found while parsing the source.

2. JavaParser: the parser itself, autogenerated by JavaCC.

3. JavaParserCommon: a singleton with some utility methods and the vector
of all the annotation found.

To resolve the correct byte offset we used the class Token offered by JavaCC.
It represents the next token being parsed from the source stream, and let us to
known the right offset just calling its methods beginLine and beginColumn .
Unfortunately the latter suffers of some limitation: any tab character found in
the stream is treated as an 8-characters wide column; that is why we customize
the Token class adding the method setTabSize(int) which let to control the
spacing of the tab character: as soon as JavaParser is created setTabSize(1)
is called. Finally, through Annotation.convertLineColumnToByteOffset, a
static methods we defined, we are able to resolve the exact starting byte offset of
the given Token . The ending offset is resolved with the corresponding methods
endLine and endColumn .

2This is achieved by other library included in JavaCC called JJTree and JTB

14

The modifications of the grammar

For our purpose there are only two modifications to the grammar of Java 5: in
the rule ClassOrInterfaceBodyDeclaration we mark the beginning of the method
we are going to parse: if any statement annotation will be found in the following
method, then we already know where to make it lift to.

The other modification concerns the rule Statement, which becomes State-
ment ::= Annotations Statement. In this case we remember the first and the
last offset of the token of the annotation, and the first and the last offset of the
annotated statement.

Build time

When the source stream has reached the end, we are in the situation in which the
parser object knows any relevant offset for our purpose, and therefore it is ready
to emit the target source assigning the right ids to the lifted annotations and
placing the right markers at the beginning and at the ending of the annotated
statement. This is done by the method Build in the class JavaParserCommon
:

destSource = ’’;
cursor = 0;
foreach annotated-method m found in the source:
destSource += origSource.substr(cursor, an.method.begin)
cursor = an.method.begin
anList = getAnnotationListFromMethod(m)
foreach an in anList
an.id = new unique id

outputSource += createMultiAnnotation(anList)

do {
nextAnB = nextAnBegin(anList, cursor)
nextAnE = nextAnEnd(anList, cursor)

if(nextAnB.bodyBegin < nextAnE.bodyEnd) {
destSource += origSoruce(cursor, nextAnB.bodyBegin)
destSource += beginMarker(nextAnB.id)
cursor = nextAnB.bodyBegin

} else
if(nextAnB.bodyEnd < nextAnE.bodyBegin) {
destSource += origSoruce(cursor, nextAnE.bodyEnd)
destSource += endMarker(nextAnE.id)
cursor = nextAnE.bodyEnd

}
} while(other annotation exists)

destSource += origSource(cursor, end)

15

Chapter 4

Bytecode Engineering
through JDAsm

The @Java system is based upon two level of abstraction: one at low level
provided by the library JDAsm, and one at high level provided by JCodeBrick.

JDAsm [15, 13] is similar in spirit to other code manipulation libraries like
BCEL [2] or JavaAssist [6, 5], and it has been developed with the goal of offer-
ing ease of use, and at the same time good performances and completeness of
operations. In fact, JDAsm offers the possibility to read already compiled class
file or create new ones from scratch, and lets to modify any part of the class file
structure, and furthermore offers some advanced feature like an inner bytecode
verifier or instruction pattern searcher.

4.1 Structure

The structure of the library reflects the class file one [17]§4; for each entity in
the class file, there exists a Java class that represents it and offers both read
and write access to it. The main class is DClass ; it acts as the container for
classes like DConstantPool , DMethod and DAttribute (Figure 4.1).

Consider an already compiled Java class file s, and a DClass d used to create
a new target class t; using JDAsm can be summarized in these steps:

1. Through the constructors of DClass one can either create an empty d or
load s making d to reflect its structure.

2. The structure can be read and modified as needed using the appropriate
class

3. Finally d is ready to be built to create the byte array representing t.
Optionally t can be saved in a file or just loaded in the JVM and executed

The initialization is achieved by calling the constructor of DClass with no
arguments (empty d) or with the class name (to fill d with an existing class
file). In the latter case, the byte array of s is sequentially read, byte after byte,
by each appropriate class to build the class tree representing s (Figure 4.2).
In this tree, say T , also obtainable from scratch adding components to d, we

16

Figure 4.1: JDAsm class diagram

identify the root with the class DClass, and the intermediate nodes by such
classes that represents methods, fields, constant pool and class-level attributes.
Further on, a second level of attributes, either attached to a field or to a method,
can be considered as childs of those classes in T . And so on, for instance, for
instructions or attributes of the code attribute of one method.

The inspection and modification of a DClass is performed by using the
respective class:

• DConstantPool allows reading and modify the constant pool of the class,
even if this behavior can be totally managed automatically (Section 4.2)

• DField allows reading and modifing the fields of the class (Section 4.3)

• DMethod allows reading and modifing the methods of the class. In partic-
ular one can inspect, create or modify the code attribute of the method,
and its bytecode (Section 4.3, 4.5)

• DAttribute is the super class of all the attribute known by the JVM.
Through its interface one can inspect, create or modify an attribute. (Sec-
tion 4.4)

4.2 Constant pool

The constant pool is an array of constants which takes place in the class file
structure soon after the header bytes (Figure 4.2); it contains all the constants

17

ClassFile {

u4 magic;

u2 minor_version;

u2 major_version;

u2 constant_pool_count;

cp_info constant_pool[constant_pool_count-1];

u2 access_flags;

u2 this_class;

u2 super_class;

u2 interfaces_count;

u2 interfaces[interfaces_count];

u2 fields_count;

field_info fields[fields_count] {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count] {

...

}

}

u2 methods_count;

method_info methods[methods_count] {

u2 access_flags;

u2 name_index;

u2 descriptor_index;

u2 attributes_count;

attribute_info attributes[attributes_count] {

...

Code_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 max_stack;

u2 max_locals;

u4 code_length;

u1 code[code_length];

u2 exception_table_length;

{

u2 start_pc;

u2 end_pc;

u2 handler_pc;

u2 catch_type;

} exception_table[exception_table_length];

u2 attributes_count;

attribute_info attributes[attributes_count] {

...

}

}

}

}

u2 attributes_count;

attribute_info attributes[attributes_count] {

...

}

}

Figure 4.2: Java class file structure

18

used in the class, either numerical or literal. JDAsm defines eleven classes for
managing every type of constant known by JVM:

• CONSTANT_Class_Info

• CONSTANT_Double_Info

• CONSTANT_FieldRef_Info

• CONSTANT_Float_Info

• CONSTANT_Integer_Info

• CONSTANT_InterfaceMethodRef_Info

• CONSTANT_Long_Info

• CONSTANT_MethodRef_Info

• CONSTANT_NameAndType_Info

• CONSTANT_String_Info

• CONSTANT_Utf8_Info

The class which collects them all and acts like their container is DContantPool.
To the contrary of other bytecode engineering library [5, 2], JDAsm allows any
entity of class file to survive in an independent context due to a delayed con-
stant pool linkage mechanism: in fact the constant pool is automatically filled by
JDAsm at build time by traversing the structure tree and asking to each entity
met for its constant pool usage. Let p be a DConstantPool object, and let n
an arbitrary node in the tree structure T (also a leaf). Consider these function:

childs(tree, node) = 〈n1, . . . , nn〉 | ni is child of node in the given tree

child(tree, node, k) = nk | nk is the k-th child of node in the given tree

constants(node) = 〈c1, . . . , cn〉 | ci is the i-th constant that node wants to link in p

ctype(c) =

Class Info
Double Info
FieldRef Info
Float Info
Integer Info
InterfaceMethodRef Info
Long Info
MethodRef Info
NameAndType Info
String Info
Utf8 Info

The delayed constant pool linkage mechanism is implemented through the Java
interface IConstantPoolUser which defines the following methods to be imple-
mented for each node n which uses constants that need to be stored in p.

• constantPoolUserChildSize() = |childs(T, n)|

• constantPoolUserChild(int k) = child(T, n, k)

19

• constantPoolValueSize() = |constants(n)|

• getConstantValue(int k) = constants(n)k

• getConstantValueType(int k) = ctype(constants(n)k)

• setConstantValueIndex(int k, short cpool index) = n remembers that
the constant k has index cpool index in p, and it will use this value when
needed in the final byte array representing the class file.

At build time p performs these steps:

function fillConstantPool(n) {

for i from 1 to n.constantPoolValueSize()
val = n.getConstantValue(i)
typ = n.getConstantValueType(i)
if(p already contains <val,typ>)

n.setConstantValueIndex(i, the index of <val,typ>)
else

idx = add new constant <val,typ> and the the relative index
n.setConstantValueIndex(i, idx)

for i from 1 to n.constantPoolUserChildSize()
fillConstantPool(n.constantPoolUserChild(i))

}

fillConstantPool(root of T)

The class DConstantPool offers also a way to insert manually constants
in the pool. In doing this, a boolean flag, will inform p to not discard such
constants even if they have not been met in T

4.3 Fields and Methods

The classes DFields and DMethod are the ones designed to represent fields and
methods of a Java class. They are very similar to each other in the contents
and in the way they are going to write data into the final array of bytes. They
offers the same methods for read and modify their own access flags, name and
descriptor1. Both fields and methods are entities that are IAttributable, and
for this they implement such interface which allows to read, add and remove
attributes (Section 4.4) to and from the entity.

4.4 Attributes

JDAsm implements every attribute known to the JVM in a independent class
with the same common parent class DAttribute. These classes are:

• CodeAttribute
1The descriptor is the only thing that significantly changes, as specified in [17]§4

20

• ConstantValueAttribute

• CustomAttribute

• DeprecatedAttribute

• ExceptionsAttribute

• InnerClassesAttribute

• LineNumberTableAttribute

• LocalVariableTableAttribute

• LocalVariableTypeTableAttribute

• SignatureAttribute

• SourceDebugExtensionAttribute

• SourceFileAttribute

• StackMapTableAttribute

• SyntheticAttribute

Each one of this class reflects the meaning of the same name attribute spec-
ified in [17], and offers the proper methods to inspect and modify its content.
A special consideration is done for the CustomAttribute which allows the
user to insert custom data to any IAttributable entity; furthermore, even if all
DAttribute are IConstantPoolUser, the CustomAttribute due to its unknown
structure and general purpose contents, can not benefit by the delayed constant
pool linkage mechanism; such linkage, if needed, can however be done manually.

In the Java class file the only entities allowed to have attributes are Classes,
Methods, Fields and Attributes; let a ∈ A be a generic attribute and let AL =
〈a1, . . . , an〉 be the attribute list of such entities. Even if an attribute can be
very different from another one, they all are similar in the fact that they must
have a identifying name; let ν : A → String be the function the returns the
name of an attribute. JDAsm make the classes DClass, DMethod, DFields
and DAttribute to implement the IAttributable interface which declares the
following methods:

• attributeCount() = |AL|

• addAttribute(DAttribute attr) : AL = AL ∪ attr

• removeAttribute(DAttribute attr) : AL = AL \ attr

• removeAttribute(int idx) : AL = AL \ aidx

• removeAttribute(String name) : AL = AL \ ak | ν(ak) =be name

• getAttribute(int idx)\,= aidx ∈ AL

• getAttribute(String name) = ak ∈ AL | ν(ak) = name

• getAttribtues() = AL

• hasAttribute(String name) =
{
true ∃ ak ∈ AL | ν(ak) = name
false otherwise

21

4.5 Code Attribute

The CodeAttribute acts like the container of all the instructions of a method;
it offers methods to read, append, insert and remove bytecode to and from it;
it furthermore realizes the bytecode verifier to check the bytecode consistency,
and automatically computes the max stack and the max locals values.

The instructions in Java can be grouped in five groups not disjoint according
to their functionalities:

• Instructions that access the Local Variable Array; Every method of a Java
class stores the local variables into the local variable array. We use L ⊂ N
to indicate it, treating a variable just as the index of its position in L;
since the variables are stored in L in increasing order starting from index
0, it will be L = [0, . . . , n). The instructions included in this group are:

iload, lload, fload, dload, aload, iload_0, iload_1, iload_2,
iload_3, lload_0, lload_1, lload_2, lload_3, fload_0, fload_1,
fload_2, fload_3, dload_0, dload_1, dload_2, dload_3, aload_0,
aload_1, aload_2, aload_3, istore, lstore, fstore, dstore,
astore, istore_0, istore_1, istore_2, istore_3, lstore_0,
lstore_1, lstore_2, lstore_3, fstore_0, fstore_1, fstore_2,
fstore_3, dstore_0, dstore_1, dstore_2, dstore_3, astore_0,
astore_1, astore_2, astore_3, iinc, ret

• Instructions that use an integer value as operand of their operation; such
operand is reported within the bytecode. The instructions included in this
group are:

bipush sipush iinc newarray multianewarray

• Instructions that use the stack for pushing or popping a value. We use S
to refer to it. The instructions included in this group are:

aconst_null, iconst_m1, iconst_0, iconst_1, iconst_2, iconst_3,
iconst_4, iconst_5, lconst_0, lconst_1, fconst_0, fconst_1,
fconst_2, dconst_0, dconst_1, bipush, sipush, ldc, ldc_w, ldc2_w,
iload, lload, fload, dload, aload, iload_0, iload_1, iload_2,
iload_3, lload_0, lload_1, lload_2, lload_3, fload_0, fload_1,
fload_2, fload_3, dload_0, dload_1, dload_2, dload_3, aload_0,
aload_1, aload_2, aload_3, istore, lstore, fstore, dstore,
astore, istore_0, istore_1, istore_2, istore_3, lstore_0,
lstore_1, lstore_2, lstore_3, fstore_0, fstore_1, fstore_2,
fstore_3, dstore_0, dstore_1, dstore_2, dstore_3, astore_0,
astore_1, astore_2, astore_3, iinc, ret, iaload, laload, faload,
daload, aaload, baload, caload, saload, iastore, lastore,
fastore, dastore, aastore, bastore, castore, sastore, pop, pop2,
dup, dup_x1, dup_x2, dup2, dup2_x1, dup2_x2, swap, iadd, ladd,
fadd, dadd, isub, lsub, fsub, dsub, imul, lmul, fmul, dmul, idiv,
ldiv, fdiv, ddiv, irem, lrem, frem, drem, ineg, lneg, fneg, dneg,
ishl, lshl, ishr, lshr, iushr, lushr, iand, land, ior, lor, ixor,
lxor, i2l, i2f, i2d, l2i, l2f, l2d, f2i, f2l, f2d, d2i, d2l, d2f,

22

i2b, i2c, i2s, lcmp, fcmpl, fcmpg, dcmpl, dcmpg, tableswitch,
lookupswitch, arraylength, checkcast, instanceof, monitorenter,
monitorexit, ifeq, ifne, iflt, ifge, ifgt, ifle, if_icmpeq,
if_icmpne, if_icmplt, if_icmpge, if_icmpgt, if_icmple, if_acmpeq,
if_acmpne, jsr, jsr_w, ireturn, lreturn, freturn, dreturn,
areturn, athrow, getstatic, putstatic, getfield, putfield,
invokevirtual, invokespecial, invokestatic, invokeinterface,
new, newarray, anewarray, multianewarray, ifnull, ifnonnull

• Instructions that use a constant pool index as operand of its operation.
The instructions included in this group are:

anewarray, checkcast, getfield, getstatic, instanceof, ldc,
ldc_w, ldc2_w, invokeinterface, invokespecial, invokevirtual,
invokestatic, putfield, putstatic, multianewarray, new

• Instructions that make the control flow of execution to branch (jump in-
structions). The instructions included in this group are:

ifeq, ifne, iflt, ifge, ifgt, ifle, if_icmpeq, if_icmpne,
if_icmplt, if_icmpge, if_icmpgt, if_icmple, if_acmpeq, if_acmpne,
goto, jsr, ret, goto_w, jsr_w, ifnull, ifnonnull

We introduce now the domain of the Java instruction I which includes all
the five groups seen above, the domain T of the types recognized by the JVM
plus an empty type, and the domain of list of types TL.

T =

void
int
long
float
double
reference (object)
address

we define the follows:

ti : I → T

as the function that returns the type of the operand that the specified instruction
uses;

tl : L × N → T

as the function that returns the type of the variable hold in the specified position
of L; and

ts : S → T

as the function that returns the type of the variable which is at the top of S.
Moreover we define the following functions:

rv : I → P(L)

23

wv : I → P(L)

that given an instruction, return the register read (rv) and written (wv);

puv : I → TL

pov : I → TL

that given an instruction, return the types of the variables pushed (puv) and
popped (pov) to and from the stack;

σ : I → N

that given an instruction, returns its length in the bytecode
Besides having the instruction list of a method, the CodeAttribute holds

the exception list of such instructions; we define an exception in the domain
E as the tuple exc = 〈ExcType, j, k, h〉 with its type, the indexes j and k as
delimiters of the scope of the try block and the index h of the first instruction
of the catch block. This information is held in the field exception table.

Let i ∈ I be the instance of a generic instruction, we use IL = 〈i1, . . . , in〉 ∈
IL to indicate a generic instruction list; in the same way, let e ∈ mathbbE be the
instance of a generic exception, we use EL = 〈e1, . . . , en〉 to indicate a generic
exception list.

We modeled the CodeAttribute of a generic method m as the tuple 〈 IL,
EL, max stack, max locals 〉, where max stack ∈ N is the maximum dimension
that S can reach during the execution of m, and the max locals ∈ N is the
dimension of L that m will use. To modify the instruction list IL and the
exception list EL the following methods are available:

• getCodeSize() = |IL|

• getByteCodeSize() =
∑n

k=1 σ(ik)

• getInstruction(int idx) = iidx

• getInstructionAtOffset(int offset) = ik |
∑k

j=1 σ(ij) = offset

• getFirstIstruction() = i1

• getLastInstruction() = in

• addCode(Instruction instr, int idx) :

IL = 〈i1, . . . , iidx, . . . , in〉 → IL = 〈i1, . . . , instr, iidx, . . . , in〉

• addCode(Instruction instr) : IL = IL ∪ instr

• replaceInstruction(int idx, Instruction instr) :

IL = 〈i1, . . . , iidx−1, iidx, . . . , in〉 → IL = 〈i1, . . . , iidx−1, instr, . . . , in, 〉

• removeCode(int from, int to) :

IL = 〈i1, . . . , ifrom−1, ifrom, . . . , ito, . . . , in〉 → IL = 〈i1, . . . , ifrom−1, ito, . . . , in, 〉

• getExceptionSize() = |EL|

• getException(int idx) = eidx ∈ EL

24

• getExceptions() = EL

• addException(ExceptionElement ex) : EL = EL ∪ ex

• removeException(int idx) : EL = EL \ eidx

Furthermore JDAsm uses a specific class for each kind of instruction i; each
of these classes is child of a common abstract class called Instruction that
implements the methods for retrieving all kind of information about i, like the
number of operands, their size, the index of the register in L used, what type
should be contained in the register before the execution and what type will
be there after the execution, what is the stack request of types and the stack
response after the execution, whatever is the target of the jump (when i is a
jump of course) and other information about the use of the constant pool.

Few considerations are in order. Our implementation makes CodeAttribute
have an HashMap for a fast indexing of the instruction through their offset.
Anyway, this index must be built before being accessed, since it can be modified
by any modification operation. Such re-indexing is necessary for the methods
that uses σ. We make an instruction to remember its real offset in the bytecode,
and make the CodeAttribute to have a global boolean flag that holds true if
and only if all the offset held by the instructions are valid. We state that
every operation that adds or removes or replaces instruction will set such flag
to false. There are two main reasons for why we want to build the index
of all the instruction by their offset, and one of this is for fast access through
the hashmap. But this would not be sufficient. The main reason is that some
instruction can modify its size according to the offset of other instruction. This
is the case of jump instruction, where, if the jump offset is bigger than the
one representable by 2 bytes, then some changes must occur. In particular,
goto becomes goto w, jsr becomes jsr w, and all the other conditional jump
instruction if<cond>+K become the sequence if<cond>+2, goto+2, goto w+K.
A similar problem occurs for the opcode ldc which load a constant from the
pool into the stack. Such instruction is two bytes long, the first is the bytecode
(0x12), and the second is the index into the constant pool (unsigned byte).
Another version, the three bytes long ldc w, let to index the constant through
2 bytes (unsigned short). Since the constant pool is automatically filled only
during the building, it can happened that a ldc instruction must become a
ldc w if it was pointing at a constant whose index is greater than 256. JDAsm
automatically makes all this changes on the fly in its re-indexing function if
needed.

Once the CodeAttribute has been completed, and before the build time,
JDAsm, by default2, execute a bytecode verifier to validate the bytecode.

Definition 4.5.1. A bytecode is said to be valid if the following properties are
met:

1. Branches must be within the bounds of the code array for the method.

2. The targets of all control-flow instructions are each the start of an instruc-
tion: branches into the middle of an instruction are not allowed.

2This feature can be turned off to improve performances

25

3. No instruction can access or modify a local variable at an index greater
than or equal to the number of local variables that its method indicates it
allocates.

4. All references to the constant pool must be to an entry of the appropriate
type

5. The code does not end in the middle of an instruction.

6. Execution cannot fall off the end of the code

7. For each exception handler, the starting and ending point of code protected
by the handler must be at the beginning of an instruction or, in the case of
the ending point, immediately past the end of the code. The starting point
must be before the ending point. The exception handler code must start at
a valid instruction.

Furthermore, at any given point in the program, no matter what code path
is taken to reach that point, the following is true:

8. The operand stack is always the same size and contains the same types of
values

9. No local variable is accessed unless it is known to contain a value of an
appropriate type

10. Methods are invoked with the appropriate arguments

11. Fields are assigned only using values of appropriate types

12. All opcodes have appropriate type arguments on the operand stack and in
the local variable array

Since JDAsm uses object instances for the instructions, where it is needed
to reference a specific instruction, JDAsm uses the Java references, thus making
property 7 already verified. Properties 2 and 5 are verified due to the atomic
mechanism that JDAsm uses to create the bytecode array, in which any instruc-
tion knows how to represent itself in it. The re-indexing function as specified,
makes the property 4 already verified too.

The implementation of a bytecode verifier into JDAsm has been neces-
sary to automatically compute the max stack and the max locals fields of the
CodeAttribute. For this purpose, the execution of the control flow is virtually
done, in such a way the verifier can inform the user about the validity of the
bytecode.

Let LSk = 〈t1, . . . , tn〉 be the state of L and SSk = 〈t1, . . . , tn〉 be the state
of S with ti ∈ T when the instruction k is executed. The following functions
are defined for LS:

get(m) = tm with LSk = 〈t1, . . . , tm, . . . , tn〉

set(m, t) : LSk = 〈t1, . . . , tn〉 → LSk = 〈t1, . . . , tm−1, t, tm+1, . . . , tn〉

which return the i-th type contained in L at instant k, and that makes the given
position to have the specified type; and the following are defined over SS:

26

pop = SSkn , with SSk = 〈t1, . . . , tn〉 → SSk = 〈t1, . . . , tn−1〉
push(t) : SSk = 〈t1, . . . , tn〉 → SSk = 〈t1, . . . , tn, t〉

To perform the verification, for each instruction ij , we hold this information:
〈LSj , SSj〉. The verification process is only doable after that the CodeAttribute
has been attached to a method m. It begins at the first instruction; let p =
〈t1, . . . , tn〉 with ti ∈ T be the list of types of the argument that m takes, then:

LS1 =
{

{reference} ∪ p if m is not static
p otherwise

SS1 = ∅
After reaching the generic instruction k, first the verifier controls that any

read access to L and to S is consistent with LSk and SSk respectively, verifying
properties 3, 9 and 12.

Definition 4.5.2. Read access of instruction k to LSk is consistent if:

LSk.get(rv(ik)) = ti(ik)

Definition 4.5.3. Read access of instruction k to SSk is consistent if:

∀ t ∈ pov(ik), SSk.pop() = t

The next step consists in computing the new values for LS and SS:

LSk+1 =
{
LSk if wv(ik) = ∅
L̄S | L̄S = LSk.set(wv(ik), ti(ik)) otherwise

SSk+1 =

 SSk if puv(ik) = ∅ ∧ pov(ik) = ∅
S̄S | ∀t ∈ pov(ik),

SSk.pop(),∀t ∈ puv(ik), SSk.push(t) otherwise

Since code can contain jumps, the verifier may have already visited the
instruction k + 1 and can already have created LSk+1 and SSk+1. If such
values already exists, the verifier will check that they are identical to the ones
just computed, verifying the property 8. If instruction k + 1 is not yet visited
instead, then LSk+1 and SSk+1 will be associated to it, and properties 1, 6, 10
and 11 are checked:

• If ik+1 is a jump instruction, it must have set a destination (1)

• Either ik+1 is not the last instruction of the method or it is a return
instruction (6)

• If ik+1 is a method call instruction or a field access instruction, than SSk+1

must contains at its top the right types (10,11)

Once the whole code has been verified and accepted, all the data structures
to automatically compute the value for max stack and max locals are already
been created. In particular:

max locals = max cardinality of LSk ∀ k
max stack = max cardinality of SSk ∀ k

27

4.6 Advanced Features

JDAsm makes available same features aimed at simplifying the manipulation of
code for the @Java system. One of these allows to define a search pattern for
the bytecode of a method. Through the classes:

• InstructionSearcher

• InstructionSearcherOption

one can specify a sequence of instructions put in or or in and. Through the
options is then possible to specify for every single instruction the opcode, the
used registers of L, the used types in S, a specific value of the operand or a range
of values, a specific constant pointed into the constant pool, and all the other
parameters. Once configured, the function InstructionSearcher.search()
returns a set of all the values of ranges of instructions that match the given
pattern.

Another utility cares for the super constructor wrapping. JDAsm can change
the super constructor invocation to call the constructor of a given class name.
This is available only for such CodeAttribute which refers to a class constructor,
and the wrap consists checking the old super class name of current class and in
making the proper instruction invokespecial to call the constructor of a new
given super class instead of invoking the constructor of of the old class. In this
operation, the argument constructor are pushed onto the stack according to the
method descriptor of the new super constructor. JCodeBrick will intensively
use this feature as well as the next one (Section 5.4).

The self subclassing is another interesting feature used by @Java system. Let
c ∈ C and s ∈ C be two arbitrary Java classes with c which extends s. Through
self subclassing we create another class, say c′, which is perfectly identical to c
with the exception that c′ extends c. In doing this operation, a super constructor
wrapping is necessary (Section 5.4).

4.7 Build time

The build time is delayed and performed once for all when all the modification
are done. Let c be the class that is going to be built, then the procedure
begins with the crossover of the nodes of the tree T of c, according to the
model defined by the interface IConstantPoolUser (Section 4.2), to build the
constant pool exclusively based upon the constants defined by the nodes of T .
As reaction of this first passage, every node gets back from the constant pool
the numerical index that can be used to point to the proper declared constant.
The construction of the dynamic sized byte array b occurs after. b is created to
reflect the content of c as recognized by the JVM, i.e. the content is formatted
to be a legal Java class file. Similarly at what happened for the model of tree
defined by the interface IConstantPoolUser, the interface IBuildable declares
the following methods to be implemented by all the nodes which represents a
part of the class file:

1. public int getBuildLength() - This method must returns the amount
of byte required in b that the IBuildable node needs to write its content.

28

The value must be inclusive of all the children in T , and this can be
computed by making a depth recursion.

2. public int build(byte[] tofill, int atindex) - In pair with the
method above, this one takes as argument the byte array b to fill, and the
index at which the node is requested to begin the filling. As before, the
method must make recursion for all its children in T . The return value r
is the total amount of bytes inserted by it and its children, in such a way
that the next call of this method will use as second argument the value
atindex+r.

3. public int build(OutputStream output) - An alternatively method
ask the node to fill b managed by an OutputStream, which automati-
cally increase its size according to its needs. As all the other methods,
this method must fill b recursively too.

At the moment, the build process is performed using only the third method,
since the procedure base on methods 1-2 requires two passages, one to statically
compute the size of the array, and one to fill it.

The filling of b starts with the class header; then the constant pool object
DConstantPool writes down all its constants; then the class access flags and
name, and the super class name follow; then an iteration over all the declared
interface is done; it follows the insertion of all the fields with their attributes, all
the methods with their attributes, and finally all the attributes of c are written
down. The resulting byte array can be either written into a file to create a
Java class file, or can be loaded into the JVM with a specific method of JDAsm
toClass().

4.8 Benchmarks

Given that one of the major advantages of our proposal over previous research
is the ability to perform code manipulation at runtime, we are particularly
concerned about the performances.

We have compared the execution times of typical @Java operations using dif-
ferent libraries for bytecode engineering. In particularly, JDAsm performances
have been compared to that of BCEL [2] and JavaAssist [6, 7], using the latter
both at source level and at bytecode level. In particular, we have measured the
performances of the three libraries in the synthesis of a new Java class (as in
our build operation), containing a single “Hello world” method.

The experimental results, obtained by averaging 20 runs of the equivalent
generating code for the three libraries are shown in Figure 4.3. As can be
seen, JDAsm is substantially faster than both BCEL and JavaAssist in source
mode, and offers performances comparable (and slightly better) with those of
JavaAssist used in bytecode mode, but with the advantage of being able to
compose the method symbolically, rather than having to handle each individual
bytecode instruction.

29

Library Time
BCEL 172ms
JavaAssist (source level) 188ms
JavaAssist (bytecode level) 78ms
JDAsm 62ms

Figure 4.3: Execution times for the class synthesis benchmark.

30

Chapter 5

Manipulating annotated
code: JCodeBrick

As we have seen in section 3, the statement annotations introduced by @Java
can be used in three capacities:

• to express metadata about program fragment, serving all the needs we
introduced in Section 1 (but with a finer granularity, so that metadata
can be more precisely attached to code w.r.t. the standard model of Java
5);

• to assign symbolic names to specific positions in the source code, with
a single-statement granularity; such symbolic references will be available
also at runtime, in executable code.

• to assign symbolic names to code fragments, both in source and corre-
sponding bytecode, and again available at runtime.

We will not discuss in this report applications of the first role that statement
annotations can serve, focusing instead of using the other two roles for dynamic
bytecode manipulation.

In fact, given the availability at runtime of a system of symbolic names for
places and fragments, established in the source code (or even programmatically,
in more contrived cases), and coupling that with the dynamic class loading
system provided by the JVM, it becomes possible to insert, delete or move
around parts of the program, and immediately execute the resulting code.

In the following sections, we will describe the operations offered by the li-
brary, together with the formal definition and our implementation of them.

5.1 Notation and definitions

Recalling the notation introduced in Section 4, and especially in the sub section
4.5, we extend it now to treat the methods and their bytecode. Let MC be the
set of all the methods of a Java class C, and let i ∈ I be the instance of a generic
instruction, we use IL = 〈i1, . . . , in〉 ∈ IL to indicate a generic instruction list
(either the body of a method or just a part of it). Then we define the following:

µ : MC → IL

31

as the function that given a method m ∈ MC returns all its bytecode as a list
of instructions; with a slight abuse of notation we will write IL ⊆ m to indicate
that IL is a sublist of µ(m). We use the function ι to retrieve the index of an
instruction i in an instruction list:

ι : IL× I → N

to simplify the notation, we will overload ι as follows:

ι : MC × I → N

ι(m, i) = ι(µ(m), i)

The set of local variables referred to by an instruction or an instruction list
(again, overloading the notation for simplicity) is defined as

loc(i) = rv(i) ∪ wv(i)

loc(IL) =
⋃

i∈IL

loc(i)

Let α be a statement annotation inserted in the source code to mark a
statement (typically a block statement) inside a method m ∈ MC . Then we
define a Fragment f as the section of bytecode of m identified by the triple r =
〈id, α,m〉, where the id is the unique identifier generated by the pre-compilation
parser.

Definition 5.1.1. A fragment is the smallest part of code that the user can
manipulate by moving it and deleting it.

It is defined as:

f = 〈ib, ie, r〉 where ib ∈ r.m, ie ∈ r.m, b < e

Lemma 5.1.2. A fragment is delimited by two markers called starting marker,
immediately preceding ib, and ending marker, immediately following ie.

We call the starting marker Kf
b and the ending marker Kf

e . Each marker is
a two-instruction sequence, Kf

b1
and Kf

b2
, Kf

e1
and Kf

e2
, which are the result of

compiling the marker method calls inserted by the @Java compiler in place of a
statement annotation. They include:

• An instruction Kf
b1

= Kf
e1

to push onto the stack the value of f.r.id

• A static call to an empty method, one for any Kf
b2

and another one for
any Kf

e2

Between the markers, f includes l >= 0 inner instructions, and we use this
function to get them:

ν(f) = IL

Thus, given a method m ∈ MC of n instructions, and a fragment f of length
l in m, we will have

µ(m) = 〈i1, . . . ,Kf
b1
,Kf

b2
, ij , . . . , ij+l,K

f
e1
,Kf

e2
, . . . , in〉

32

Definition 5.1.3. A fragment is valid if it does not contain any jump instruc-
tion targeting an instruction outside of the fragment, with the exception that
a jump immediately after the end of the fragment (i.e., to the first instruction
following the last instruction in f) is considered valid.

This condition excludes as valid fragments any part of code which contains a
break or continue instruction which would continue the execution to locations
not included in the fragment, and, depending on the compilation scheme used by
the Java compiler, certain statements with return or throw clauses embedded
in an outer try-catch-finally statement (in all these cases, the compiled code
would include a jump to the code for the finally clause). In the following, we
concern ourselves only with valid fragments.

Lemma 5.1.4. Multiple fragments in a method never overlay each other and are
always correctly nested, i.e. they are either disjoint, or one is entirely contained
in the other.

This is guaranteed by the grammar of @Java; for instance, given two fragments
f ′ and f ′′ (appearing in this order) in the same method m, their markers K ′

s,
K ′

e, K
′′
s ,K ′′

e , and the index in the IL ⊆ m of such markers, a = ι(m,K ′
s),

b = ι(m,K ′
e), c = ι(m,K ′′

s), d = ι(m,K ′′
e), then either a < b < c < d or

a < c < d < b.

Lemma 5.1.5. Given b as the bytecode of a valid fragment f , it always exists
at least one branch in the control flow of b that allow the execution to fall off
the end of b.

This is in part guaranteed by the bytecode verifier at compilation time. Since
we add the Ke at the end of f , the verifier will complain if it found Ke to be
unreachable code. As already discussed in Section 3.2, this behavior implies the
impossibility to have fragments with a return instruction without having jump
instruction before it that branches the execution flow.

Lemma 5.1.6. A fragment can have zero or more return instruction, but
at most only of one type.

This is fully guaranteed by the bytecode verifier and by the Java compiler.

5.2 Basic implementation

The JCodeBrick library declares CbClass as the main class for representing the
Java class that is going to be modified. The constructor takes as argument a
reference to a Java class, in such a way it can be able to load its structure as a
DClass class. As soon as this structure is loaded, a cycle over all the declared
methods is performed in search of special annotated method: the annotation
looked at is the @MultiAnnotation created by the parser as defined in Section
3.3.

The class Fragment is the one that represents a fragment as defined before;
for each @MultiAnnotation found, a set of Fragment is stored, and every one
will hold information about the unique index that link such fragment with the
portion of code through the markers. For a fast indexing, CbClass uses different
hashmaps to access a fragment directly by its name1 and/or by its method.

1with a fragment name we intend the annotation name

33

Once the class is loaded, and the fragments references are too, the user is
ready to declare its operation over them; a lazy evaluation strategy will apply
the queued operations of insertion and deletion in order to generate the modified
class.

For such operations, one class BrickOperaton is created for any insertion
or deletion declared and appended to a vector owned by the parent CbClass.
The constructor of BrickOperation differentiates for the type of operation, and
generally includes all the references needed to perform it, such as the involved
fragments, the insert position and all the possible free variables with not free
variables mapping (Section 5.3.2), and the class from which the deletion must
be applied (Section 5.3.3).

5.3 Operations

We define four operations over fragments:

• opsrc, to search and retrieve fragments;

• opins, to insert a fragment at the start or end of another fragment;

• opdel, to delete a fragment a fragment from the code in which it appears;

• opxtr, to extrude a fragment, and execute it outside its context.

In the following, we provide a full formal definition for the operations above.

5.3.1 Search

Through the search operations the user is able to retrieve and get a reference
to the fragments declared in a Class C. The operation is offered in several
overloaded forms, allowing searches according to different criteria. Remember-
ing that r = 〈id, α,m〉, then we have a lot of overloaded operations, in which
almost all forms take a class or a single method as argument, and then more
arguments to specify which annotated fragments in the class should be retrieved.

The first one is the simplest: we retrieve the fragment with the given unique
id. Anyway, it should be noted that for the programmer there is not a priori
knowledge about the relation between a declared fragment with its future id
(which is assigned automatically by the parser in the precompilation time).

opsrc : C× N → F

defined as:

op(c, id) = f̄ | f̄ .r.id = id, f̄ .r.m ∈ met(c)

The implementation refers to a method named getFragmentById(int id) of
the class CbClass, which simply cycles over all the fragments to test which
particular fragment has the specified id, a returning it over a match.

Other methods let the user to specify one single fragment mode in detail,
i.e. by giving the annotation name and/or its method. Since this pair of values
refers to a set of result, the index in this set is also requested, or intended to be
zero (the first occurrence) if omitted:

34

opsrc : A×M× N → F
op(α,m, k) = fk ∈ 〈f1, . . . , fn〉 | fi.r.α = α, fi.r.m = m

opsrc : A× N → F
op(α, k) = fk ∈ 〈f1, . . . , fn〉 | fi.r.α = α

opsrc : A×M× N → F
op(α,m) = f1 ∈ 〈f1, . . . , fn〉 | fi.r.α = α, fi.r.m = m

As corresponding CbClass defines

getFragment(Stringname, Methodmethod, intn)

which cycle over all the fragments in search of the n-th item that matches, and
the following:

• getFragment(String name,int n) {return this.getFragment(name,null, n);}
• getFragment(String name) {return this.getFragment(name,0);}

More generalized methods of retrieving let the user to get all the set of fragment
matching the given argument. In this case we have:

opsrc : A×M → 〈f1, . . . , fn〉
op(α,m) = 〈f1, . . . , fn〉 | fi.r.α = α, fi.r.m = m

opsrc : A → 〈f1, . . . , fn〉
op(α,m) = 〈f1, . . . , fn〉 | fi.r.α = α

opsrc : M → 〈f1, . . . , fn〉
op(α,m) = 〈f1, . . . , fn〉 | fi.r.m = m

The CbClass offers the following:
• Vector<Fragment> getFragmentsVector(String name, Method method) that uses the

hashmap to easily return all the specified fragments.

• Fragment[] getFragments(String name, Method method) as above, except that it
returns the fragment as an array.

• Vector<Fragment> getFragmentsVector(String name)

{return this.fragments by name.get(name); }
• Fragment[] getFragments(Annotation annotation, Method method) that transforms

the vector returned by the above function into an array and returns it.

• Fragment[] getFragments(Annotation annotation)

{return this.getFragments(annotation,null);}
• Fragment[] getFragments(String name)

{return this.getFragments(name,null);}

Finally, also functions that return all the fragment defined for a class are given:

opsrc : C → 〈f1, . . . , fn〉
op(c) = 〈f1, . . . , fn〉 | fi.r.m ∈ met(c)

implemented in CbClass in:
• Vector<Fragment> getFragmentsVector() {return this.fragments;}
• Fragment[] getFragments() that converts the resulting vector of the method above

into an array and returns it.

35

5.3.2 Insertion

Through the insertion operation the user can inject the bytecode of a source
fragment fs into a specific position in a method m of a class C. The destination
position is related to a destination fragment fd, and it can be one of before start,
after start, before end, after end, which indicate, respectively, that fs is to be
inserted before the starting marker of fd, after the starting marker of fd, before
the ending marker of fd, and after the ending marker of fd. The possibility
of inserting code inside and outside the destination markers has consequences
in concatenated operations that involve the destination fragment fd more than
once. For instance, given four fragments A, B, T , Z, by inserting A into T
in position before start, then inserting B into T in position after start, and
finally inserting T into Z, the code of B will be carried into Z through T , but
not the code of A, which has been inserted outside the markers of T .

Given a fragment f , let IL = ν(f) be its instruction list. IL can use and
modify local variables, so we need to consider the source method ms = fs.r.m,
the destination method md = fd.r.m and their respective local variables. Any
variable has its own scope; the following function:

scope(IL, v) = (j, k) | v ∈ V j, k ∈ N

is defined to return the pair j and k as the boundary index of the instruc-
tions in IL where the scope of v is valid (this information is provided by
the Java compiler among the metadata carried with Java classes, in the table
LocalVariableTableAttribute).

Given an instructions list IL, a free variable v′ ∈ loc(IL) is a variable whose
scope is defined outside IL:

v′ ∈ loc(ν(fs)) | (j, k) = scope(µ(ms), v′), j < ι(m, kf
s1

) ∧ k > ι(m, kf
s2

)

When we want to deal with insertion of a source fragment fs that uses the
free variable v′, we need the user to specify a valid mapping among all the free
variables in fs with the variables in md whose scope covers the insertion point.
We use a function to get the subset of loc(IL) of all the free variables in IL:

floc(IL) = {v ∈ loc(IL) | v is free}

Let Vm = {vs1 → vd1 , . . . , vsn → vdn} be a user defined mapping that
associates to any free variable vsi of fs a valid variable vdi of fd (valid variables
are those that are in-scope at the insertion point and have the appropriate type;
the mapping is specified by name in the implementation for ease of use, but
here we will only refer to the variable indexes), then we define the operation of
insertion as the function that given a source fragment fs, a destination fragment
fd, a position p and a mapping Vm, inserts the new fragment in the same method
md of fd, and returns m′

d to indicate that the instruction list IL of md has been
modified.

opins : F× F× P × Vm → MC

Other aspects have to be considered in addition to free variable mapping in
implementing this operation. In particular, there are cases where the insertion
cannot be performed in a type-safe way. If the source bytecode contains a

36

return instruction, we have to check that the return type is compatible with
the return type of the destination method. To model this, we introduce the
following functions:

ret : I → Type

ret : MC → Type

defined as:

ret(i) =
{
t if i is the RETURN instruction for type t
∅ otherwise

ret(m) =
⋃

i∈µ(m)

ret(i)

with |ret(m)| ≤ 1, that is, since we are working on an already loaded class,
guaranteed by the bytecode verifier.

If ∃i ∈ ν(fs) such that ret(i) 6= ∅∧ret(i) 6= ret(md) (i.e., a return instruction
whose type differs from that of the method it is being injected into), then
the fragment is not compatible with the method and the insert operation fails
returning an error. As we have already seen, free variables are renumbered
through the user-supplied mapping Vm; all other variables need to have their
index shifted so that they do not conflict with the local variables of fd. Since
all variables in md use their own index into the local variable array L and the
variables V ∈ loc(ν(fs)) with V /∈ floc(ν(fs)) might use the same indexes, to
avoid the risk of overlaying the two sets, we compute the higher index h used
by md and add h to any index used in V .

Furthermore we consider the possibility that IL = ν(fd) is included inside
a try-catch block. Since we cannot determine by looking at IL alone if its
instructions can raise an exception, we conservatively assume that they can,
and surround the inserted code with a brand new try-catch block that will catch
any exception, and handle it by throwing a new RuntimeException (having the
original exception in its cause field) in the catch block.

It should be noted that our choice is not the only possible one. Another
possibility would be to update the signature of md to accommodate for the
additional exceptions which could be raised by the inserted fragment. This
choice however would violate the API contract between the method and its
callers, and make seamless replacement of code difficult, while our approach,
based on the unchecked RuntimeException, does not suffer from this difficulty.

We define an exception as the tuple exc = 〈ExcType, j, k, h〉 with its type,
the indexes j and k as delimiters of the scope of the try block and the index h
of the first instruction of the catch block. This information is held in the Java
class file into the exception table field of the Code attribute for the method.
We will indicate with et(m) the exception table of a method m, according to
its Code attribute, containing metadata about the type and indexes of all
try/catch blocks, and with te(m) the set of ExcTypes thrown by a method m,
according to its signature.

The set of exception types which might be thrown by a fragment f =
〈ib, ie, 〈id, α,m〉〉 is defined as follows:

tc(f) = te(m) ∪ {ET | 〈ET, j, k, h〉 ∈ et(m) ∧ j ≤ b ∧ e ≤ k}

37

goto end

catch: new jcodebrick/FragmentRTE

dup_x1

swap

invokespecial jcodebrick/FragmentRTE."<init>":(Ljava/lang/Throwable;)V

athrow

end:

Figure 5.1: The IL code for the catch blocks appended at the end of fragments
for the insertion operation.

The code that will be inserted at the end of fs in case we have to add the
catch block will be that shown in Figure 5.1; we will denote that instruction list
with ILRT .

With the above definitions, we say that an insertion operation opins(fs, fd, p, Vm)
is valid if the following conditions are met:

1. floc(fs) = domain(Vm);

2. ∀v ∈ range(Vm), scope(ν(fd), v) = (j, k) =⇒ j ≤ ip(fd, p) ≤ k;

3. ∀(v → w) ∈ Vm, type(v) = type(w);

4. ∀i ∈ ν(fs), ret(i) = ∅ ∨ ret(i) = ret(fd.m).

where domain(m) and range(m) are, respectively, the set of keys and of values
in a mapping m; ip(f, p) returns the index of the insertion point for a fragment f
with a position p (it will be the index of the begin or end marker of f , depending
on p), and type(v) is the VM type of a variable v.

An invalid insertion operation results in an InvalidBuildException being
thrown at build time, and the operation is aborted. If the operation is valid,
the insertion proceeds as follows.

First, the local variables in the IL associated with the source fragments are
renumbered, to avoid clashes with the variable already used in the destination
fragment. Then, free variables are mapped according to Vm, and finally a try-
catch block is added, if needed, to capture and turn into RuntimeException all
exception thrown by the source fragment which are not handled in the destina-
tion method. Formally, this process is described in the following.

Let h = maxv∈loc(µ(fd.m))(v) be the index of the highest-numbered local vari-
able in the destination method. Then a new instruction list IL′ = 〈i′1, . . . , i′n〉 ·θ
is obtained by copying and modifying the instruction list of the source fragment
IL = 〈i1, . . . , in〉 in such a way that

i′j =

ij

[
v + h

/
v

]
if v ∈ loc(ij) and v is not free

ij

[
w
/
v

]
if v ∈ loc(ij) and (v → w) ∈ Vm

ij otherwise

and

θ =
{
ILRT if tc(fs) \ tc(fd) 6= ∅
〈〉 otherwise

The resulting methodm′
d will be such that its instruction list will be updated

to insert IL′ at the location specified by p and fd; its exception table is updated

38

to include the possible addition of try-catch blocks for the inserted fragment;
and its LocalVariableTableAttribute is updated to include the new local
variables carried into the method by the inserted fragment. In all other respects
(e.g., signature, throws clause, debug attributes, etc.) m′

d is identical to md.
The definition for the case when p = before start follows, where if

µ(md) = α · 〈Kfd

b1
,Kfd

b2
〉 · β · 〈Kfd

e1
,Kfd

e2
〉 · γ

then the result of the insertion is m′
d such that

µ(m′
d) = α · 〈K ′fs

b1 ,K
fs

b2
〉 · IL′ · 〈K ′fs

e1
,Kfs

e2
〉 · 〈Kfd

b1
,Kfd

b2
〉 · β · 〈Kfd

e1
,Kfd

e2
〉 · γ

and
et(m′

d) = et(md) ∪ E

where K ′fs

b1
,K ′fs

e1
are similar to Kfs

b1
,Kfs

e1
, respectively, except in that they have

a fresh unique id (a larger id may require a different opcode), and

E = { (ET, j, k, k) | ET ∈ tc(fs) \ tc(fd),
j is the initial index of IL′ in µ(m′

d),
k is the index of the catch label from θ in µ(m′

d) }

Similarly, we define the left cases. When p = after start we have that the result
of the insertion is m′

d such that

µ(m′
d) = α · 〈Kfd

b1
,Kfd

b2
〉 · 〈K ′fs

b1 ,K
fs

b2
〉 · IL′ · 〈K ′fs

e1
,Kfs

e2
〉 · β · 〈Kfd

e1
,Kfd

e2
〉 · γ

with p = before end:

µ(m′
d) = α · 〈Kfd

b1
,Kfd

b2
〉 · β · 〈K ′fs

b1 ,K
fs

b2
〉 · IL′ · 〈K ′fs

e1
,Kfs

e2
〉 · 〈Kfd

e1
,Kfd

e2
〉 · γ

with p = after end:

µ(m′
d) = α · 〈Kfd

b1
,Kfd

b2
〉 · β · 〈Kfd

e1
,Kfd

e2
〉 · 〈K ′fs

b1 ,K
fs

b2
〉 · IL′ · 〈K ′fs

e1
,Kfs

e2
〉 · γ

Again, in all the three cases above we have:

et(m′
d) = et(md) ∪ E

As a final technicality, the max stack, max locals, code length, code,
exception table length, exception table, attribute info of the Code at-
tribute for m′

d are updated as needed, and a copy of the Annotation for fs

with the new fresh id used in K ′fs

b1
and K ′fs

e1
is added to the annotations for m′

d

(Section 5.4).

Early implementation

The insertion is allowed through the class Fragment with the method:

int insertFragment(InsertionPosition where, Fragment what, String[] variableMapping)

The method is call on an instance of the destination fragment and takes as
argument the insertion point, the source fragment, and the variables mapping
defined as:

v[i] → v[i+ 1] with i even, v[i] a free variable, and v[i+ 1] a not free variable

39

The implementation strategy schedules the insertion operation to be exe-
cuted at build time once for all at the end (Section 5.4). Therefore at declaration
time the system just enqueue a new BrickOperation into the parent CbClass
operation vector: this parent is intended to be the class that the declares the
destination fragment. Even if the operation is not soon executed, the new fresh
unique id is soon assigned computed as the higher known id used by the library
plus 1; such id is returned at the end of the method.

5.3.3 Deletion

To delete a fragment f from a method m means to re-emit the bytecode of
m without the instructions delimited by Kf

b and Kf
e . We define three types

of deletion: delete without markers, delete with markers, delete only markers
where respectively the bytecode included by f is deleted but the markers are
not, the bytecode is deleted and the markers are too, and only the markers are
deleted while the bytecode included in f is left untouched.

The operation of deletion is defined as the function that, given a method m,
a fragment f in m, and a type t of deletion, returns m′ which is identical to m
except that part or all of µ(m) is not present in it anymore:

opdel : MC × F× T → MC′

Since the @Java compiler inserts fragment markers only at the begin and at
the end of a statement, we are guaranteed that a deletion cannot overlap a try-
catch block nor the scope for a variable, and that the corresponding fragment
cannot contain an instruction which is a target from an external jump instruc-
tion. Furthermore, since the Java compiler always adds an explicit return
instruction at the end of a void method, we are assured that the return type
from a method’s code cannot be changed by a deletion. Hence, a deletion does
not need any structural change to a method.

We define the three types of operation according to t considering a source
method like the following:

µ(m) = α · 〈Kf
b1
,Kf

b2
〉 · β · 〈Kf

e1
,Kf

e2
〉 · γ

When t = delete without markers, then the result of the deletion of f is m′
d such

that
µ(m′) = α · 〈Kf

b1
,Kf

b2
,Kf

e1
,Kf

e2
〉 · γ

for t = delete with markers:
µ(m′) = α · γ

and for t = delete only markers:

µ(m′) = α · β · γ

We also need to remove from the exception table all the try-catch blocks
which were entirely contained in the removed fragment f , and possibly compact
the local variable table by removing all variables whose scope was entirely within
f . Again, addresses in µ(m′) are renumbered, and the various Code attribute
fields are recomputed as needed (Section 5.4).

40

Early implementation

As seen for the insertion operation, the implementation strategy makes the
deletion to be scheduled to be executed at build time. At the moment of user
declaration a new instance of BrickOperation is appended to the operation
vector of the parent CbClass.

The suitable methods must be called on an instance of the class Fragment
that represents the fragment one want to delete. Two different methods are
implemented:

void delete(boolean withMarker)

that let the user to define a deletion operation with t = delete with markers or
t = delete without markers, and

void deleteMarkers()

for the operation with t = delete only markers. In the BrickOperation the
source class and the fragment are stored for a later reference (Section 5.4).

5.3.4 Extrusion

The extrusion operation makes it possible to execute the code of a fragment as a
self-sufficient method, outside of its original context. The result of the operation
is a new class, containing a single static method exec (and the default empty
constructor), whose body is the IL = ν(f).

opxtr : F → C

opxtr(f) = c̄ with met(c̄) = 〈z̄, m̄〉

z̄ = the default empty constructor

m̄ | µ(m̄) = Kf
b (k) · ν(f) ·Kf

e (k) · ρ

with a fresh k, and ρ as one or two return instruction as explained below.
Some operations are done in order to synthesize the signature of the method

exec. The return type of the method is determined accordingly to the Treturn
instruction found in IL. Through lemma 5.1.6 it is:

|ret(f.r.m)| ≤ 1

Then the return type of exec will be t such that:

t =
{

void if ret(f.r.m) = ∅
ret(f.r.m) otherwise

The bytecode verifier also guarantees the absence of unreachable code in the
source fragment (lemma 5.1.5), i.e. we are guaranteed that the execution flows
off the end of the fragment bytecode. To accomplish the definition 4.5.1, prop-
erty 6, and to emit a valid bytecode, a new return instruction is appended at the
end of the IL, and this is what we called ρ. Furthermore, when t 6= void, ρ can-
not be one single return instruction since the default value for t (see [17]§2.5.1)
must be pushed onto the stack before; in this cases, ρ will be the sequence
〈ρ1, ρ2〉 with:

41

• ρ1 as the pushing instruction:

– iconst 0 when t = int2

– fconst 0 when t = float

– lconst 0 when t = long

– dconst 0 when t = double

– aconst null when t = reference

• ρ2 as the returning instruction:

– ireturn when t = int

– freturn when t = float

– lreturn when t = long

– dreturn when t = double

– areturn when t = reference

To determinate the signature of exec other checks concerns the individuation
of all the free local variables in f and their lifting to the arguments of the
method. Such method will have k = |floc(ν(f))| arguments of appropriate 3

type. Consider the function
arg : M → TL

arg(m) = 〈t1, . . . , tn〉

that given a method returns its argument types, then we have that:

∀ v ∈ floc(ν(f)), type(arg(m̄)) = type(v)

Nevertheless the method can have one additional argument, in first position, in
the case that m̄ is not declared to be static: since m̄,when not declared static,
is supposed to work with fields and methods of an instance of the class of which
c̄ is part of, the first argument will be used as “this” reference by the bytecode.

According to [17] in not static methods, the first register of L is always
occupied by a reference to the an instance of the current object, what is called
this in the Java language. When we create exec we do not make it to be static,
but simply request as its first argument a reference to an instance of what the
user intend to use as “current” object. In such a way, a register shifting is not
required for those instructions that use the local variable array in position zero.

A register renumbering is required for those instructions instead that use
the free variable. Since those variable are lifted to the method argument, their
register index must be translated in the interval between 0 (or 1 if the method
is not static) and k−1 (k), when all the other local variable must occupy higher
indexes ≥ k (> k). More formally:

args(m̄) = φ · χ · ψ
2This also is intended to be the default instruction for Java types: boolean, byte, char

and short
3Notice that types inferred this way may differ from those in the source code; for example,

short local variables will be promoted to int when lifted as arguments, according to the
standard type conversion rules of the JVM [17]§3.11.1.

42

φ =
{

∅ if f.r.m is static
reference if f.r.m is not static

χ = 〈t1, . . . , tn〉 | ti = vi with v ∈ floc(ν(f))

ψ = 〈ti, . . . , tn〉 | ti = vi with v ∈ loc(ν(f)) \ floc(ν(f))

Moreover we observe that when f.r.m is not static, there can occur some
access to fields or methods that has been not declared public. In this case the
bytecode verifier will throw an access violation exception informing the user
about the impossibility of the requested operation.

As final step, the exception table for m̄ is computed by looking at the ex-
ception table found for f.m, in such a way that:

te(exec) = tc(f)

which indicates that any exception which is declared to be thrown by the source
method, or caught by a try-catch surrounding f , is added to the throws clause
of exec.

Implementation

The implementation passes through the class BrickedMethod which propose a
constructor based on the source fragment f :

BrickedMethod(Fragment f)

All the above operation are performed in order: a cycle through all the instruc-
tion is executed to individuate the possible return type; the default void return
type is set if no return instruction are found. Since the instructions in JDAsm
are instances of different object (with the same parent class), this task can be
achieved by simply performing the following check.

foreach instruction instr in f.code
if(instr instanceof ARETURN) type = reference
if(instr instanceof IRETURN) type = int
if(instr instanceof FRETURN) type = float
if(instr instanceof DRETURN) type = double
if(instr instanceof LRETURN) type = long

Then the method getFreeVariables() of f is called in order to obtain the
list of all the free variables. Its implementation is based on the presence of the
LocalVariableTableAttribute of the CodeAttribute.

mcode = f.getDMethod().getCode()
fcode = f.getCode()
lvt = fcode.getLocalVariableTableAttribute();
foreach element e in lvt
if(e.start_pc > fcode.firstInstructionOffset())
then the store instruction that initialize this variable
is inside the fragment (or the variable is completely
outside: e.end_pc > fcode.lastInstructionOffset()): this
is not a free variable

else if(e.end_pc < fcode.firstInstructionOffset())

43

then the scope of this variable ends before the code of
the fragment: this is not a free variable

else
r = register used
foreach instruction instr in fcode
if instr uses r
e is a free variable

With this information the prototype of the new method is built to create m
as an object of the class DMethod of the JDAsm library. Then the creation of
the code attribute of m follows:

m.code = get fragment code
frees = get fragment free variables
k = count(frees)
foreach instruction instr in m.code
if instr uses register
r = instr.getRegister()
if r is the j-th entry of frees
make instr to use register j

else
if r is the j-th entry of not free variables
make instr to use register k+j

if t = return type is void
m.code.add(return)

else
m.code.add(default value pushing instruction)
m.code.add(t-return)

The exception table is finally filled with all the appropriate exceptions both
with the exception table of the code of f and with the exception thrown by
f.r.m.

The last step of the extrusion operation includes the possibility to executed
the brand new method just created: a d DClass is created and an empty con-
structor is added to it through the appropriate method:

void addEmptyConstructor()

which substantially create a DMethod with the signature

public void <init> ()

and to its bytecode appends the following three instructions:

1. aload 0

2. invokespecial(superclassName + ‘‘ <init> ()V’’)

3. return

44

Finally it statically set the max locals and the max stack size to be 1. Note that
the invokespecial instruction initialize an empty super constructor since the
super constructor of the DClass created for the extrusion is Object. Further
the created DMethod m is added to d.

The build operation of d is called at this point (see the next chapter for how
it works in detail), and the resulting bytecode is ready to be loaded into the
JVM through the apposite methods of BrickedMethod:

Object Invoke(Object... args)

which use the Java reflection to invoke the resulting Java method with the
specified arguments. Note that the result of the invocation is an instance of
type Object, meaning an instance of the returned value if the return type is not
void, or null if it is void.

5.4 Build Operation

As we introduced in Section 5.2, we let the user to declare a set of operations
over discovered fragments of a class, and then we use a lazy evaluation strategy:
the requested operation of insertion and deletion are queued and not evaluated
until a build operation is invoked; at that point, the queued operations are
applied in order, and a new class is generated in-memory hosting the resulting
code.

Let O be the domain of the operations declared for a class c ∈ C and OL the
domain of a list of such operations. We define op ∈ O the tuple 〈t, fs, fd, p, v, 〉
with

t =

insertion
deletion with marker
deletion without marker
deletion maker

fs ∈ F as the source fragment, and only in case that t = insertion, fd ∈ F as
the destination fragment, p as the position of the insertion and v as the variable
mapping.

To increase performance, since no intermediate code or classes have to be
generated in the course of the manipulation, this lazy strategy offers an op-
portunity for optimizing the operation queue (e.g., all operations modifying a
fragment which is later deleted can be skipped altogether) before the actual
build4.

Given opl ∈ OL = 〈op1, . . . , opn〉 defined by the user to be applied to c, such
optimizations try to determinate the operations which have no effect, in order
to put them out of opl. A typical situation could be this: if at operation i we
insert fragment A inside B, at operation j with i < j we delete fragment B,
and no insert operations involving B as source fragment are declared between i
and j, then we can assume that the operation i will have no effect in the final
result, and we can put such operation off of the opl.

More formally we can state that:
4The current implementation does not apply any optimization; these issues are scheduled

for future work.

45

Theorem 5.4.1. An operation opi is idempotent if it modifies, either by insert-
ing or removing a fragment, the source fragment f̄ of a subsequently deletion
operation opj and no inner insertion5 operation opk with i < k < j use f̄ as
source fragment.

In fact all the operation involving f̄ = opj .fs either with f̄ ′ = opi.fs with
νf̄ ′ ⊂ νf̄ if opi is a deletion, or with f̄ = opi.fd if opi is an inner insertion,
will result in no effect when the f̄ is deleted from the manipulated class. It will
result in a side effect instead if an insertion operation opk use f̄ = opk.fs = opi.fs

since the new code inserted in opk.fd will be the one relative to f̄ before the
application of opi minus the code deleted by opi.

Corollary 5.4.2. If the build process skips all the idempotent operation the
resulting class does not change

and this is what the optimizations point to.

Implementation

The build operation begins with the invocation of the method build() of the
class CbClass. Given d a DClass() representing the manipulated Java class
before the application of the opl, the first step is to use JDAsm features of self
subclassing and super constructor wrapping (Section 4.6) to produce a DClass()
d′ which is child of d. This is implemented as follows:

newSuperName = d.getName()
oldSuperName = d.getSuperclassName()
newName = newSuperName + "_" + counter++
setClassName(newName)
setSuperclassName(newSuperName)

foreach method m in code of d
if m.isConstructor()
change the method descriptor of m accordingly to newName
m.wrapSuperConstructor(oldSuperName, newSuperName

Subsequently all the operations op ∈ opl are applied in order to produce a final
d′ representing the manipulated class with the manipulated bytecode.

Theorem 5.4.3. The altered bytecode produced by JCodeBrick after the ma-
nipulation is a valid bytecode

Since it is created with JDAsm, and the inner bytecode verifier will test for a
valid bytecode before emitting it (Section 4.5), the produced class and methods
are valid.

JDAsm plays a fundamental role in the application of all the operations
described in Section 5.3.2,5.3.4, and finally it can perform the class loading to
let the user to use the modified class, which, due to the self subclassing feature,
can be used, in a Java program, as the parent class itself when accessing methods
and fields.

5With inner insertion we intend p = {after start, before end}

46

5.5 Examples

Let us consider an application which has to perform frequently some check
on given conditions. These checks can be very thorough and complex, and
computationally expensive, but in most cases a more basic and more efficient
approximation might be sufficient, depending on environmental conditions. As
will be described in Section 6, we envision a situation where the checks have to
be performed in real-time, so we do not want to pay the penalty for an indirect
method call each time, and decide to use runtime code manipulation instead.

The method performing the checks could be as follows:

@Java Source @Java compiled code

class C1 {
...

public void m()

{
...

@ComplexChecks {
/* complex check code */

}
...

}
...

}

import jcodebrick.Fragment;

import jcodebrick.MultiA;

class C1 {
...

@MultiA(

ids={1},
value={@ComplexChecks})

public void m()

{
...

{
Fragment.begin(1);

/* complex checks code */

Fragment.end(1);

}
...

}
...

}

The compiled @Java code will be in turn compiled by the Java compiler into the
following bytecode:

47

@MultiA{ids={1}, value={@ComplexChecks}}
method m():

Code:

// Initial method code

...

// Starting marker Kb

iconst 1

invokestatic jcodebrick/Fragment.begin

...

// complex checks code

...

// Ending marker Ke

iconst 1

invokestatic jcodebrick/Fragment.end

...

// More method code

...

// End of method

return

The code to replace at runtime the complex checks fragment with the basic
checks one, and invoke the modified method, could be as follows:

CbClass c = new CbClass(C1.class);

Fragment complex = c.getFragment("ComplexChecks");

Fragment basic = c.getFragment("BasicChecks");

...

complex.insertFragment(Fragment.BEFORE START, basic);

complex.delete();

C1 cc=(C1)c.build().newInstance();

cc.m();

The bytecode of the modified method m is obtained through these two steps:

48

After the insertion After the deletion

Code:
// Initial method code
...
iconst 4
invokestatic jcodebrick/Fragment.begin
...
// Basic Fragment code
...
iconst 4
invokestatic jcodebrick/Fragment.end
iconst 1
invokestatic jcodebrick/Fragment.begin
...
// Complex Fragment code
...
iconst 1
invokestatic jcodebrick/Fragment.end
...
// More method code
...
// End of method
return

Code:
// Initial method code
...
iconst 4
invokestatic jcodebrick/Fragment.begin
...
// Basic Fragment code
...
iconst 4
invokestatic jcodebrick/Fragment.end
...
// More method code
...
// End of method
return

49

Chapter 6

Applications

The ability to modify the running code of an application in a structured, sym-
bolic and type-safe way, while leaving the programmer able to express code frag-
ments in source form, opens the way to a vast number of novel applications. In
the following we will only list a few examples, serving as conceptual scenarios but
with no aim of completeness. Before going into the details, it is worth remarking
that similar techniques have been used already in the past, albeit typically in
an ad hoc fashion, and often at the source level (e.g., classical aspect-oriented
programming), or at program installation time (e.g., configuration-selecting in-
stallers, as in a OS installer that only installs drivers needed for the actual
hardware). In contrast, our proposed technique is totally general, annotation
can be used both at the source level and at the bytecode level, and operations
can be performed at any stage of the life cycle of the application, even while the
application is running and without requiring a restart.

6.1 Logging

At installation time, a program could contain statements whose purpose is to
compute and log to some external file certain values describing the state of the
application during its execution, as a way of monitoring its performances and
correctness. After monitoring the system’s logs for a while, it can be determined
that the system is behaving correctly, and that there is no longer a need for a
detailed log.

Current logging frameworks (e.g., Log4J [3]) can enable or disable the output
to the log file dynamically, but cannot avoid computing the values, which might
be costly or have other undesired side effects. In contrast, with @Java the logging
statements (or blocks) can be marked with an annotation such as @Log(level),
and when it is determined that logging is no longer required, all the logging
blocks below a given severity level can be removed from the running code,
thus avoiding any associated computation and possibly improving performances
significantly.

As a related example, the @Log fragments could be removed leaving the
markers in place, and stored in a data structure, together with a reference to
their original location. This way, it becomes also possible to reinstate them if
at a later time logging is desired again.

50

6.2 Environment-based reconfiguration

It is often the case that a system has to react differently to certain events based
on changing environment conditions. For example, a heavy-load dispatcher for
a web server farm could operate normally under standard operating conditions,
while monitoring the response times of the system. If these become too high,
it could install in its running code a fragment to monitor incoming requests
especially to identify denial-of-service attacks (this might entail maintaining and
updating complex data structures, to perform pattern matching on the requests
data and to identify sets of IP addresses from which a potential distributed-DoS
attack is coming). If no DoS attack is recognized, the dispatcher would go back
to the standard dispatch code. On the other hand, if such an attack is identified,
the dispatcher could further substitute its request-dispatching code with a more
precise, but less efficient, version which would guard against requests coming
from potential DoS sources. The assumption here is that the more precise
dispatching code, rejecting DoS requests upfront, will save processing costs later
on in the requests handling chain. If, after some time, it is determined that the
DoS attack has ended, the original, optimistic but faster code can be replaced
again inside the dispatcher.

In a more flexible implementation, both attack-detecting code and hardened
dispatching code could be loaded dynamically based on the type of attack, thus
making the system able to detect and respond optimally to different threats.

Similar behavior could be obtained by calling virtual, abstract or interface
methods to perform the monitoring, detection and dispatching functions, and
switching to different implementations of the same when appropriate. How-
ever, this standard technique would leave several method invocations in place
even when they are not needed, which might be undesirable for a very high-
performance system. On the contrary, with @Java the mutable code is substi-
tuted in-place, with no need for indirection, thus guaranteeing better perfor-
mances both in the optimistic case and in the hardened one.

6.3 Dynamic optimization

A numeric application could include some heavy computation, which could be
performed either in floating point (e.g., using doubles) or in fixed point (e.g.,
using ints and then scaling the results by a fixed amount). At install time, the
application could measure the performances of both, and then insert into its
own computation code the version which offers better performances.

Again, similar results could be obtained by guarding the computation with
an if statement, or by calling a method, but if the variable fragment has to
be executed a relevant number of times (which is not uncommon, e.g. with
large matrix operations), the cumulative cost of evaluating the flags or calling
the methods, multiplied by millions or billions of invocations, could become
significant. In contrast, with @Java the insertion of the proper fragment in-line
would be performed only once, regardless of the number of times the fragment
is run.

It is also worth remarking that the choice between different versions of a code
fragment could be done dynamically, possibly switching between multiple ver-
sions based on external conditions. For example, using a floating point version

51

can be too costly if another numerical application is running concurrently (e.g.,
due to the need of storing and retrieving all the FPU registers at every context
switch), but may be more convenient otherwise, so the application could peri-
odically re-check the performances of the various versions of the code available,
and choose a different one to execute based on current performances (again,
saving on indirection costs as the chosen fragment would be inserted in-line).

6.4 Adaptable declarative security

The native security model in Java is operational, meaning that code performing
a protected function has to call specific methods to check whether the caller has
the right permission to invoke the given function. This might be inconvenient
and error-prone, and moreover the entire security model of an application is
wired-in once the application is written and compiled1.

With @Java, a programmer can mark relevant sections of code with an-
notations such as @GrantPermission(perm), @AcquirePermission(perm) and
@RequirePermission(perm), thus moving to a declarative model instead. One
of the advantages is that in @Java permission-related annotations can be placed
on statements and blocks, thus providing finer control over which sections of
the code are critical (and satisfying Denning’s principles). Another advantage
is that the operational code needed to actually grant, acquire and check permis-
sions can be injected at the appropriate places automatically, and – moreover –
it can be changed, at runtime, to suit different security models as appropriate
from time to time.

6.5 Parallelization

In parallel applications, it is customary to use dialects of common programming
languages extended with keywords used to declare properties relevant for the
parallel execution of the code. This approach typically requires custom compil-
ers, which produce parallelism-handling code based on the custom keywords.

As we have seen in Figure 3.1, we could use a @Parallel annotation placed
on a for statement to declare that the iterations of the for are independent
and could potentially be executed in parallel. Then, an application could inject
in those places code to actually realize the parallelism, choosing whatever im-
plementation is more appropriate for the JVM/OS/hardware combination the
program is running on (e.g., no parallelism at all, or creating a certain number
of threads or processes based on how many CPUs are available on the machine,
etc.).

Even more interesting, with the emergence of virtualization systems, it is
becoming increasingly common that an application can be run on a virtualized
server, and in that case the server could be dynamically reconfigured to allocate
or simulate a variable number of CPUs - in which case, the application can react
by changing its parallelization strategy and injecting different thread-handling
fragments at @Parallel locations.

1The Java security model provides for that by externalizing policy decisions in a text
file which can be edited by the user, but with limited flexibility, essentially implementing a
source-based permission policy.

52

Chapter 7

Case Study

To better understand the usefulness of @Java we proceed now through concrete
example told in details. Our example application must perform continuously
mathematical operations with arrays of 1024 integers that it receives in input.
For any of them, it must execute 500.000 times a convulsion operation, which
consists in making the value at position i to get closer to the one at position
i+ 1 by adding or increasing the value i by its one hundredth.

The application is designed to pass most of its time in doing mathematical
operations, and since its installation targets are hosts with very different archi-
tectures, the application comes with two routines to make requested operations:

a) one make computation over integers

b) the other one uses floating point

The routine a works with data in its original format making over it the
needed computations; the routine b instead is optimized for such CPUs that,
having for instance a dedicated FPU unit, can execute operation in floating
point faster than the one over integers. The latter routine, since the input data
are integers, executes first a conversion from “int” to “float” of the elements of
the array, then performs the convulsion, and then converts back the result into
integers again.

The application, at install-time, uses @Java to generate part of the code that
will be executed at run-time, choosing which one of the two routines results to
be the faster in the target host, and injecting the code of elected one directly
into the object class.

As first thing, the application provides a dummy class with an ad hoc method
that will never be called directly, but which will be used instead as container to

53

define the body of the two routines:

public class ComputationsFormulae

{

public void computationConvulsion()

{

int len = 0;

int[] values = null;

int convulsionNumber = 1;

@IntegerComputation

for(int k = 0; k < convulsionNumber; k++) {

for(int i = 0; i < len - 1; i++) {

if(values[i] < values[i+1]) {

values[i] += (values[i]/100);

} else {

values[i] -= (values[i]/100);

}

}

}

@FloatComputation

{

float[] fvalues = new int[len];

for(int i = 0; i < len; i++)

fvalues[i] = values[i];

for(int k = 0; k < convulsionNumber; k++) {

for(int i = 0; i < len - 1; i++) {

if(fvalues[i] < values[i+1]) {

fvalues[i] += (fvalues[i]/100);

} else {

fvalues[i] -= (fvalues[i]/100);

}

}

}

for(int i = 0; i < len; i++)

values[i] = (int)fvalues[i];

}

}

}

The class so defined is then parsed to generate the relative Java 5 source and

54

then is compiled, obtaining the following bytecode:

// * Declaration and initialization of the variables

0 iconst_0

1 istore_1 // * free variable "int len", index #1

2 aconst_null

3 checkcast #102 <[I>

6 astore_2 // * free variable "int[] values", index #2

7 iconst_0

8 istore_3 // * free variable "int convulsionNumber", index #3

// * Begin of the block annotated with @IntegerComputation

9 iconst_4

10 invokestatic #25 <jcodebrick/Fragment.Begin>

13 iconst_0 // * Creation of "k", not free

14 istore 4 // * Initialization of "k", index #4

16 goto 83 (+67) // * cycle beginning

.. // * Code of the computation.. the index #1, #2 and #3

.. // * of the free variables are used

80 iinc 4 by 1 // * increment of "k", index #4

83 iload 4

85 iload_3

86 if_icmplt 19 (-67) // * test of "k" and "convulsionNumber"

89 iconst_4

90 invokestatic #37 <jcodebrick/Fragment.End>

// * End of the block annotated with @IntegerComputation

// * Begin of the block annotated with @FloatComputation

93 iconst_5

94 invokestatic #25 <jcodebrick/Fragment.Begin>

97 iload_1 // * the new array of converted values

98 newarray 6 (float) // * will have index #1

..

127 iconst_0 // * the variable "k" used as index of the cycle

128 istore 5 // * here occupies the index #5

130 goto 204 (+74) // * cycle beginning

..

201 iinc 5 by 1

204 iload 5

206 iload_3

207 if_icmplt 133 (-74) // * test of "k" and "convulsionNumber"

210 iconst_5

211 invokestatic #37 <jcodebrick/Fragment.End>

// * End of the block annotated with @FloatComputation

214 return

Also the main class that will do the real computation is writtin with the @Java
language extension and must be parsed to support an intra-code annotation as

55

insertion point:

class MainComputation {

..

public void compute() {

..

int len = ..;

int[] values = ..;

int convulsions = ..;

..

@Computation; // * here will be injected the code of the choosen routine

..

}

..

}

At the moment of installation the application tests the two routines of the class
ComputationsFormulae with the extrusion operation:

..

int arrayLength = 1024;

int convulsionNumber = 500000;

int[][] vals = getTestArrays();

..

Fragment f_int = routineClass.getFragment("IntegerComputation");

BrickedMethod m_int = new BrickedMethod(f_int);

double startTime_int = new GregorianCalendar().getTimeInMillis();

for(int r = 0; r < ntimes; r++)

m_int.Invoke(arrayLength, vals[r], convulsionNumber);

double integerTime = (new GregorianCalendar().getTimeInMillis()) - startTime_int;

..

Fragment f_flt = routineClass.getFragment("FloatComputation");

BrickedMethod m_flt = new BrickedMethod(f_flt);

double startTime_flt = new GregorianCalendar().getTimeInMillis();

for(int r = 0; r < ntimes; r++)

m_flt.Invoke(arrayLength, vals[r], convulsionNumber);

double floatTime = (new GregorianCalendar().getTimeInMillis()) - startTime_flt;

After having analyzed the following output:

CbClass created in 188.0 ms

Tested 5 arrays of 1024 elements

Time spent by integer computations: 39813.0 ms

Time spent by floating point computations: 33703.0 ms

the application figures out that the current CPU is optimized to perform cal-
culations in floating point since, despite the two cycles to convert values from
“int” to “float” and viceversa, the routine b resulted faster; hence, the following
step is to create a modified copy of the class MainComputation injecting the
fast code of b directly in the method of the real computation:

CbClass cb = new CbClass(MainComputation.class);

Fragment dst = cb.getFragment("Computation");

int newId = dst.insertFragment(InsertionPosition.AFTER_START, f_flt, new String[]{

"len", "len", "values", "values", "convulsionNumber", "convulsions"});

cb.removeInsertedFragment(newId, true);

src.deleteMarker();

cb.build().writeToFile(installationDir);

If we take a look at the generated bytecode we can follow the automatic map-

56

pings done by the @Java system of the registers index:

..

102 iload_1 // * the index of "len" is left the same

103 newarray 6 (float) // * as in the annotated block: #1

..

132 iconst_0 // * the index of "k" is changed instead

133 istore 9 // * from #5 to #9

135 goto 209 (+74) // * cycle beginning

..

206 iinc 9 by 1

209 iload 9

211 iload_3 // * also the variable "convulsion" occupies

212 if_icmplt 138 (-74) // * again register number #3

.. other operations: the markers have been deleted ..

The class above defined will be a copied class, and by convention, it will be
named MainComputation 0. Once the creation is ended, all the files are correctly
installed and the program is ready to be runned with the following starting
routine:

Class<?> executor = Class.forName("MainComputation_0");

MainComputation r = (MainComputation)executor .newInstance();

r.compute();

This example, even if quite simple, shows an interesting approach at the ex-
ploitation of the features of the system, aimed to slightly optimize calculations:
the inline expansion of the proper routine in fact saves a lot of instructions in
terms of tests and method calls, that in quantity in the order of some milion,
can make the sensible performance improvement to be appreciated.

57

Chapter 8

Conclusions and future
work

In this technical report we described @Java, a variant of Java which permits to
manipulate an application code at runtime in a structured, symbolic and type-
safe way, by using annotations placed on single statements or blocks to define
code fragments and locations in the code.

While sharing similarities in its scope with traditional aspect-oriented pro-
gramming techniques, our contribution places a greater emphasis on the possi-
bility of manipulating the code at run-time, whereas aspect weaving is typically
performed at compile-time only. This important distinction opens the way to
a number of applications for which standard AOP techniques are not flexible
enough.

The techniques we presented, building on top of execution technology pro-
vided by virtual execution environments and on novel language features such as
custom annotations, change in a fundamental way the notion of lifecycle of a
program. Whereas customarily writing, compiling, linking, shipping, deploying,
installing, loading and running a program were considered completely distinct
phases, the ability to identify and process annotations both in source and in
object (.class) form, and at runtime in executable code, in a sense blends this
phases. Now, program code can be written at run-time; compilation can execute
user-provided code based on annotations found in source files, an installer can
manipulate the object code that has been deployed based on a specific machine
architecture, etc.

The @Java language and its code-manipulation capabilities are a contribution
towards reaching this vision, in which code manipulation and program re-writing
is a substantial part of execution. The language itself could be extended to
address annotation of (sub-)expressions, to cover cases where one might want
to manipulate, say, a new expression, or a method invocation. We intend to
address this issue as part of future work.

More work is also needed in two other directions: (i) on the application side,
by providing run-time support and case studies for common needs (e.g., logging,
security, parallelism), and (ii) on the technological side, by providing more flex-
ible and more efficient implementations of the code-manipulation primitives we
have defined.

58

The @Java source-to-source compiler and the associated JDAsm code ma-
nipulation library have been released as open source, and are currently avail-
able, respectively, at http://at-java.sourceforge.net and http://jdasm.
sourceforge.net.

59

Bibliography

[1] Java Compiler Compiler [tm] (JavaCC [tm]) - The Java Parser Generator.
http://https://javacc.dev.java.net/.

[2] Apache Software Foundation. Bcel: Bytecode engineering library. http:
//jakarta.apache.org/bcel.

[3] Apache Software Foundation. Apache log4j, 2007. http://logging.
apache.org/log4j.

[4] W. Cazzola, A. Cisternino, and D. Colombo. [a]C#: C# with a customiz-
able code annotation mechanism. In Proceedings of the 10th Annual ACM
Symposium on Applied Computing (SAC’05), pages 1274–1278, Santa Fe,
New Mexico, USA, Mar. 2005. ACM Press.

[5] S. Chiba. JavaAssist. http://www.csg.is.titech.ac.jp/∼chiba/
javaassist.

[6] S. Chiba. Load-time structural reflection in Java. In Proc. of ECOOP
2000, volume 1850 of LNCS, pages 313–336. Springer-Verlag, 2000.

[7] S. Chiba and M. Nishizawa. An easy-to-use toolkit for efficient java byte-
code translators. In Proc. of 2nd Int’l Conf. on Generative Programming
and Component Engineering (GPCE ’03), volume 2830 of LNCS, pages
364–376. Springer-Verlag, 2003.

[8] A. Cisternino and V. Gervasi. Meta-programming without quasi-quotation.
In Proceedings of the 2nd MetaOCaml Workshop, Tallin, Estonia, Sept.
2005.

[9] ECMA. Standard ECMA-334 – C# Language Specification. European
Computer Manufacturer Association, Geneva, 4th edition, 2006.

[10] ECMA. Standard ECMA-335 – Common Language Infrastructure (CLI).
European Computer Manufacturer Association, Geneva, 4th edition, 2006.

[11] M. D. Ernst. JSR 308: Annotations on Java types, 2007. (updated on
March 2008).

[12] A. K. G. Attardi, A. Cisternino. CodeBricks: code fragments as building
blocks. SIGPLAN Notices, 38(10):306–314, Oct. 2003.

[13] G. Galilei. Applicazioni delle annotazioni alla manipolazione a runtime di
codice su macchine virtuali. Master’s thesis, University of Pisa, 2007. (in
Italian).

60

[14] Giacomo A. Galilei. @java system, 2008. http://at-java.sourceforge.
net.

[15] Giacomo A. Galilei. Jdasm, a code manipulation library, 2008. http:
//jdasm.sourceforge.net.

[16] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specifi-
cation. Addison-Wesley, 3rd edition, 2005.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

[18] G. L. Steele. Common LISP – The language. Digital Press, 2nd edition,
1990.

[19] W. Taha and T. Sheard. MetaML and multi-stage programming with ex-
plicit annotations. Theoretical Computer Science, 248(1–2):211–242, 2000.

61

Appendix A

JDAsm API
Documentation

A.1 Package org.ldp.jdasm

Classes
DClass . 63

This is the main class of JDasm project: it is a disassembled representation of a
java class.

You can create a DClass from scratch or open an existing java class as a DClass
to disassemble, read, modify it and finally create a new class ready to be instanced
and used.

DClass is the representation of java class file, so you can perform almost any oper-
ation you want to do in a class file: e.g.

DConstantPool . 73
The constant pool of the java class file.

In the JDasm project the constant pool is mainly automatically managed; it means
that whenever a field, a method, a code is added (or removed) the constant pool will
be automatically updated at the build time (not before!).

DField .76
This class represents a java class field.

DMethod . 82
This class represents a java class method.

DAttribute .90
This class is the super class of all the attributes.

62

org.ldp.jdasm– DClass 63

A.1.1 Classes

A.1.2 Class DClass

This is the main class of JDasm project: it is a disassembled representation of a java
class.

You can create a DClass from scratch or open an existing java class as a DClass to
disassemble, read, modify it and finally create a new class ready to be instanced and
used.

DClass is the representation of java class file, so you can perform almost any
operation you want to do in a class file: e.g. the class fields management is allowed
through the class DField , while the methods management (bytecode inclusive) is
performed due to the DMethod class.

When you get done with editing, you are able to build a real java class: the bytecode
is autogenerated as the class Constant Pool is automatically build.

Declaration

public class DClass

extends org.ldp.jdasm.attribute.Attributable

Constructors

• DClass
public DClass()

– Usage
∗ Constructs an empty DClass.

• DClass
public DClass(java.lang.Class clazz)

– Usage
∗ Constructs a DClass reading a java class.

• DClass
public DClass(java.io.InputStream is)

– Usage
∗ Constructs a DClass reading the bytecode from an input

stream.

• DClass
public DClass(java.lang.String name)

– Usage
∗ Constructs an empty DClass with given name and public

accessFlags; superclass is also set to Object

org.ldp.jdasm– DClass 64

Methods

• addEmptyConstructor
public void addEmptyConstructor()

– Usage
∗ Adds an empty constructor which calls the super constructor

and returns.

The added method will be public, named <init> and its
descriptor will be ()V. Such new inserted method will call an
identical method of the same class of this DClass’s super
constructor.

• addField
public DField addField(org.ldp.jdasm.DField field)

– Usage
∗ Adds a DField; if a field with the same name already exists, it

is replaced.
– Returns - the inserted DField

• addField
public DField addField(java.lang.String code)

– Usage
∗ Adds a java field to this class; the field is obtained by parsing

the code passed as argument. If a field with the same name
already exists, it is replaced.

– Returns - the inserted DField
– See Also

∗ org.ldp.jdasm.DField.DField(String)

• addInterface
public void addInterface(java.lang.String name)

– Usage
∗ Adds an interface with given name

• addMethod
public DMethod addMethod(org.ldp.jdasm.DMethod method)

– Usage
∗ Adds a DMethod; if a method with the same signature already

exists, it is replaced.
– Returns - the inserted DMethod

• addMethod
public DMethod addMethod(java.lang.String code)

– Usage
∗ Adds a java method to this class; the method is obtained by

parsing the code passed as argument. If a method with the
same signature already exists, it is replaced.

– Returns - the inserted DMethod
– See Also

org.ldp.jdasm– DClass 65

∗ org.ldp.jdasm.DMethod.DMethod(String)

• build
public byte build()

– Usage
∗ Constructs the java bytecode representing this DClass and

returns it
– See Also

∗ org.ldp.jdasm.DClass.toBytecode()

∗ org.ldp.jdasm.DClass.getComputedBytecode()

• classFileInfo
public String classFileInfo()

– Usage
∗ Returns a printable String with this DField information. It

uses a default indentation level of 2 white spaces

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable String with this DClass information.

– Parameters
∗ indent level - The indentation level (in white-spaces) for each

generated line

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• fieldCount
public int fieldCount()

– Usage
∗ Returns the number of fields for this class

• getAccessFlagDescription
public static String getAccessFlagDescription(short flag)

– Usage
∗ Returns a printable String of the access permission qualifiers

passed as argument.
– Parameters

∗ flag - The access permission qualifier typical of each DClass
class.

org.ldp.jdasm– DClass 66

• getAccessFlags
public short getAccessFlags()

– Usage
∗ Get the access permission qualifier for this class.

• getClassName
public String getClassName()

– Usage
∗ Get the class name.

• getComputedBytecode
public byte getComputedBytecode()

– Usage
∗ Returns the bytecode that is already built. If no build has been

done yet, then it returns null

• getConstantPool
public DConstantPool getConstantPool()

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx
)

– Usage
∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

• getField
public DField getField(java.lang.String name)

– Usage
∗ Get the field with the given name.

– Returns - a DField with matched name, or null if no such DField
exists

• getFields
public DField getFields()

– Usage
∗ Returns all the fields

org.ldp.jdasm– DClass 67

• getFullyQualifiedClassName
public String getFullyQualifiedClassName()

– Usage
∗ Get the fully qualified class name.

• getFullyQualifiedSuperClassName
public String getFullyQualifiedSuperClassName()

– Usage
∗ Get the fully qualified super class name.

• getInterface
public String getInterface(int idx)

– Usage
∗ Get the interface name at specified index

• getInterfaces
public String getInterfaces()

– Usage
∗ Get all the interface names

• getMagic
public int getMagic()

– Usage
∗ Get the magic number for this class file (default is

0xCAFEBABE).

• getMajorVersion
public short getMajorVersion()

– Usage
∗ Get the major number for this class file (default is 49).

• getMethod
public DMethod getMethod(java.lang.reflect.Method method
)

– Usage
∗ Get the method associated to the given reflective method.

If you load this DClass from a java class, you can use the
reflection to inspect the methods inside the original class and
use this method to get the correspondent DMethod. Returns
null if no dmethod is found.

• getMethod
public DMethod getMethod(java.lang.String signature)

– Usage
∗ Get the method with the given signature.

– Returns - a DMethod with matched signature, or null if no such
DMethod exists

– See Also
∗ org.ldp.jdasm.DMethod.DMethod(String)

org.ldp.jdasm– DClass 68

∗ org.ldp.jdasm.DMethod.getSignature()

• getMethods
public DMethod getMethods()

– Usage
∗ Returns all the methods

• getMinorVersion
public short getMinorVersion()

– Usage
∗ Get the minor number for this class file (default is 0).

• getSuperclassName
public String getSuperclassName()

– Usage
∗ Get the name of the super class.

• interfaceCount
public int interfaceCount()

– Usage
∗ Returns the number of interfaces held

• isBuildCustomAttribute
public static boolean isBuildCustomAttribute()

– Usage
∗ Returns the buildCustomAttribute flag for this DClass. When

loaded from a class, they probably have references into the
constant table that cannot be updated without the attribute
knowledge. So false (default) is a safe choice.

• makeChildOfItself
public void makeChildOfItself(java.lang.String newname)

– Parameters
∗ newname -

– Exceptions
∗ org.ldp.jdasm.exception.MethodDescriptorException - if

some of the constructor methods have errors in their types
specification, and JDasm cannot create their method descriptor.

• methodCount
public int methodCount()

– Usage
∗ Returns the number of methods for this class

• removeField
public boolean removeField(org.ldp.jdasm.DField field)

– Usage
∗ Removes the given field (match is done on the name) from the

list.
– Parameters

org.ldp.jdasm– DClass 69

∗ field - A DField with the name of the field you want to
remove.

– Returns - true if a field is removed (if it was present), false it it is
not present in the list.

• removeField
public boolean removeField(java.lang.String name)

– Usage
∗ Removes the field with the given name.

– Returns - true if a field is removed (if it was present), false it it is
not present in the list.

• removeInterface
public void removeInterface(int idx)

– Usage
∗ Removes the interface at given index

• removeInterface
public boolean removeInterface(java.lang.String name)

– Usage
∗ Removes the interface with given name

– Returns - true if the interface is found in the list and removed,
false if it is not present

• removeMethod
public boolean removeMethod(org.ldp.jdasm.DMethod
method)

– Usage
∗ Removes the given method (match is done on the signature)

from the list.
– Parameters

∗ method - A DMethod with the signature of the method you
want to remove.

– Returns - true if a method is removed (if it was present), false it it
is not present in the list.

• removeMethod
public boolean removeMethod(java.lang.String signature)

– Usage
∗ Removes the method with the given method signature

– Returns - true if a method is removed (if it was present), false it it
is not present in the list.

– See Also
∗ org.ldp.jdasm.DMethod.DMethod(String)

∗ org.ldp.jdasm.DMethod.getSignature()

• setAccessFlags
public void setAccessFlags(short accessFlags)

– Usage
∗ Get the access permission qualifier for this class.

org.ldp.jdasm– DClass 70

• setBuildCustomAttribute
public static void setBuildCustomAttribute(boolean
buildCustomAttribute)

– Usage
∗ Sets the buildCustomAttribute flag for this DClass. When

loaded from a class, they probably have references into the
constant table that cannot be updated without the attribute
knowledge. So false (default) is a safe choice. If you want to
build custom attribute pass true here. If you want to use
custom attribute with constant pool reference you can add
manually constants you need and tell the constant pool to build
the unlinked constants too.

– See Also
∗
org.ldp.jdasm.DConstantPool.addConstant(org.ldp.jdasm.constantpool.CpInfo)
(in A.1.3, page 74)

∗
org.ldp.jdasm.DConstantPool.setKeepUnlinkedConstant(boolean)
(in A.1.3, page 76)

• setClassName
public void setClassName(java.lang.String className)

– Usage
∗ Set the class name.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

• setMagic
public void setMagic(int magic)

– Usage
∗ Set the magic number for this class file (default is

0xCAFEBABE).

• setMajorVersion
public void setMajorVersion(short majorVersion)

– Usage
∗ Set the major number for this class file (default is 49).

• setMinorVersion
public void setMinorVersion(short minorVersion)

– Usage
∗ Set the minor number for this class file (default is 0).

org.ldp.jdasm– DClass 71

• setSuperclassName
public void setSuperclassName(java.lang.String
superclassName)

– Usage
∗ Set the name of the super class. Remember that when a class X

is supposed to be child of a super parent class Y, then X is also
supposed to have a call to the Y constructor in any of X
constructor methods

• showClassInfo
public void showClassInfo()

– Usage
∗ Prints on stdout the info returned by DClass#classFileInfo()

• toBytecode
public byte toBytecode()

– Usage
∗ Returns this DClass converted to java bytecode. If no build has

been done yet, then this method calls DClass#build() before,
otherwise the already computed bytecode is used.

• toClass
public Class toClass()

– Usage
∗ Convert the bytecode into a class. If no build has been done

yet, then this method calls DClass#build() before, otherwise
the already computed bytecode is used.

– Returns - The java Class representing the DClass on success, or
null if something goes wrong

• writeClassToFile
public boolean writeClassToFile(java.lang.String filename)

– Usage
∗ We give a fast method to write the class to a file. No exception

are thrown, it just returns true on success, false on error (error
print on output).

– Parameters
∗ filename - the path where to write the class. If it is a

directory, then the file name will be the class name plus ”.class”

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

org.ldp.jdasm– DClass 72

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

org.ldp.jdasm– DConstantPool 73

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.1.3 Class DConstantPool

The constant pool of the java class file.

In the JDasm project the constant pool is mainly automatically managed; it means

that whenever a field, a method, a code is added (or removed) the constant pool will

be automatically updated at the build time (not before!). At each build, the constant

pool is populated with the new entry, while the old ones will be removed. To do this

the constant pool explore the main AConstantPoolUser (that is the DClass) and

recursively its child (see DConstantPool#linkConstants(AConstantPoolUser))

Declaration

public class DConstantPool

extends java.lang.Object
implements org.ldp.jdasm.constantpool.IBuildable

org.ldp.jdasm– DConstantPool 74

Constructors

• DConstantPool
public DConstantPool()

– Usage
∗ Creates an empty DConstantPool.

• DConstantPool
public DConstantPool(java.io.InputStream is)

– Usage
∗ Creates a DConstantPool reading it from an input stream. The

input stream’s cursor must point to the beginning of the
constant pool (it’s entries count), and it is made to advance
until the end (the last entry). All the constants are loaded.

Methods

• addConstant
public short addConstant(org.ldp.jdasm.constantpool.CpInfo
info)

– Usage
∗ Adds the info constant to the list and returns its index. If

such constant already exists it is not inserted again, and the
present’s one index is returned;

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

org.ldp.jdasm– DConstantPool 75

– Usage
∗ Returns a printable String with this DClass information.

– Parameters
∗ indent level - The indentation level (in white-spaces) for each

generated line

• clear
public void clear()

– Usage
∗ Clears all the entries in the constant pool

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstant
public CpInfo getConstant(byte idx)

– Usage
∗ Returns the constant pool element at index idx. Such index is

in the form of the constant pool, so it goes from 1 to n, instead
of classical 0 to n-1.

• getConstant
public short getConstant(org.ldp.jdasm.constantpool.CpInfo
info)

– Usage
∗ Returns the index of given constant info</info>in this
constant pool if it is present. It returns -1 if the
constant is not present

– Parameters
∗ info - the constant to check

– Returns - the index of given constant, or -1 if not present

• getConstant
public CpInfo getConstant(short idx)

– Usage
∗ Returns the constant pool element at index idx. Such index is

in the form of the constant pool, so it goes from 1 to n, instead
of classical 0 to n-1.

• isKeepUnlinkedConstant
public boolean isKeepUnlinkedConstant()

– Usage
∗ Returns the value indicating if the constant pool at build time

will discard all the constants that are not requested by the
other parts of the parent DClass to be inserted in the final
bytecode. The default value for a DConstantPool is false.

org.ldp.jdasm– DField 76

• linkConstants
public void linkConstants(
org.ldp.jdasm.constantpool.AConstantPoolUser user)

– Usage
∗ This function clear the internal state of the constant pool and

rebuild a new one reading recursively the ConstantPoolUser
and its children. After this call any IConstantPoolUser
reachable from user will have constant pool index set.

• setKeepUnlinkedConstant
public void setKeepUnlinkedConstant(boolean
keepUnlinkedConstant)

– Usage
∗ Sets the value indicating if the constant pool at build time will

discard all the constants that are not requested by the other
parts of the parent DClass to be inserted in the final bytecode.
The default value for a DConstantPool is false.

• size
public int size()

– Usage
∗ Returns the constants in the pool

A.1.4 Class DField

This class represents a java class field. It can have an access permission qualifier
(such as ”private”, ”public”, ...) a type and a name. It can also have a list of
attributes.

The attributes that a standard jvm permits are: ConstantValueAttribute ,
SyntheticAttribute , DeprecatedAttribute

The internal class do not store link with a ConstantPool until a build is done, so any

change is fast and a link to a DClass or to a DConstantPool is not needed at

construction time

Declaration

public class DField

extends org.ldp.jdasm.attribute.Attributable
implements org.ldp.jdasm.constantpool.IBuildable

Constructors

• DField
public DField()

– Usage
∗ Creates an empty DField.

• DField
public DField(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

org.ldp.jdasm– DField 77

– Usage
∗ Creates a DField attribute reading it from an input stream

whose cursor must point to the beginning of the field. The
constant pool needs to have all constant values used by this
field and its attribute.

• DField
public DField(short access flags, java.lang.String type,
java.lang.String name)

– Usage
∗ Creates a DField with given arguments.

– Parameters
∗ access flags - (static, final, public, private, protected, ...)
∗ type - the name of the class type (int, float, MySpecialObject[],

...)
∗ name - the name of the field

• DField
public DField(java.lang.String code)

– Usage
∗ Creates a DField from a java code string.

It recognizes strings like: <blockquote>”public int foo”

”static private java.lang.String bar”</blockquote> Throws an
CodeParseException when an invalid string is found

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

org.ldp.jdasm– DField 78

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable String with this DField information.

– Parameters
∗ indent level - The indentation level (in white-spaces) for each

generated line

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match a DField that has the same name and type, or a

String if it is equals to the name of the field.

• getAccessFlagDescription
public static String getAccessFlagDescription(short flag)

– Usage
∗ Returns a printable String of the access permission qualifiers

passed as argument.
– Parameters

∗ flag - The access permission qualifier typical of each DField
class.

• getAccessFlags
public short getAccessFlags()

– Usage
∗ Get the access permission qualifier.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx
)

org.ldp.jdasm– DField 79

– Usage
∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

• getFieldDescriptor
public String getFieldDescriptor()

– Usage
∗ Returns the FieldDescriptor for this DField as specified for the

java class file.
– See Also

∗
org.ldp.jdasm.constantpool.TypeDescriptor.getFieldDescriptorByString(String)

• getName
public String getName()

– Usage
∗ Get the name of the field.

• getType
public String getType()

– Usage
∗ Get the type of the field.

• isAccessFlagsSet
public boolean isAccessFlagsSet()

– Usage
∗ Returns true if at least one access permission qualifier has been

set.

• isNameSet
public boolean isNameSet()

– Usage
∗ Returns true if the name of this field has been set.

• isTypeSet
public boolean isTypeSet()

org.ldp.jdasm– DField 80

– Usage
∗ Returns true if the type of this field has been set.

• setAccessFlags
public void setAccessFlags(short accessFlags)

– Usage
∗ Set the access permission qualifier.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage
∗ Set the name of the field.

• setType
public void setType(java.lang.String type)

– Usage
∗ Set the type of the field. If you use a class type then you need a

fully qualifying name (java.lang.String is ok, but String is not)

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

org.ldp.jdasm– DField 81

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions

org.ldp.jdasm– DMethod 82

∗ java.lang.Exception - if the value is not ready (since the control is
done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.1.5 Class DMethod

This class represents a java class method. It can have an access permission qualifier
(such as ”private”, ”public”, ...) a type, a name and a list of argument, each with
its own type and name. It can also have a list of attributes.

The attributes that a standard jvm permits are: CodeAttribute ,
ExceptionsAttribute

The internal class do not store link with a ConstantPool until a build is done, so any

change is fast and a link to a DClass or to a DConstantPool is not needed at

construction time

Declaration

public class DMethod

extends org.ldp.jdasm.attribute.Attributable
implements org.ldp.jdasm.constantpool.IBuildable

Constructors

• DMethod
public DMethod()

– Usage
∗ Creates an empty DMethod.

• DMethod
public DMethod(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage

org.ldp.jdasm– DMethod 83

∗ Creates a DMethod attribute reading it from an input stream
whose cursor must point to the beginning of the method. The
constant pool needs to have all constant values used by this
method and its attribute.

• DMethod
public DMethod(short access flags, java.lang.String
returnType, java.lang.String name)

– Usage
∗ Creates a DMethod with given arguments.

For a list of argument you can call
DMethod#addArgument(String)

– Parameters
∗ access flags - (static, final, public, private, protected, ...)
∗ returnType - the name of the class type (int, float,

MySpecialObject[], ...)
∗ name - the name of the field

• DMethod
public DMethod(java.lang.String code)

– Usage
∗ Creates a DMethod from a java code string.

It recognizes strings like: <blockquote>”public int foo()”

”static private java.lang.String bar(int, float[])”</blockquote>
Note: The special constructor method is called <init>

Note: The initialization method of a class is called <clinit>

Throws an CodeParseException when an invalid string is found

Methods

• addArgument
public void addArgument(java.lang.String code)

– Usage
∗ Adds a single argument to the method from given code. It

accepts a string of java code in the form like these:

<blockquote>”int foo”

”MyObject[] bar”</blockquote>It throws a
CodeParseException when an error occurs while parsing the
java code

• addArgument
public void addArgument(java.lang.String type,
java.lang.String name)

– Usage
∗ Adds a single argument of given type and name.

org.ldp.jdasm– DMethod 84

• argumentCount
public int argumentCount()

– Usage
∗ Returns the number of argument this method is going to accept.

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable String with this DMethod information.

– Parameters
∗ indent level - The indentation level (in white-spaces) for each

generated line

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• equals
public boolean equals(java.lang.Object o)

– Usage

org.ldp.jdasm– DMethod 85

∗ We match a DMethod that has the same signature, or a String
if it is equals to the signature of the method.

• getAccessFlagDescription
public static String getAccessFlagDescription(short flag)

– Usage
∗ Returns a printable String of the access permission qualifiers

passed as argument.
– Parameters

∗ flag - The access permission qualifier typical of each DMethod
class.

• getAccessFlags
public short getAccessFlags()

– Usage
∗ Get the access permission qualifier for this method.

• getArgumentString
public static String getArgumentString(java.util.Vector
args)

– Usage
∗ Returns a printable String for the argument of the DMethod.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getCodeAttribute
public CodeAttribute getCodeAttribute()

– Usage
∗ Returns the CodeAttribute associated to this method. If this

method doesn’t have any, it will be created before being
returned.

• getCodeAttribute
public CodeAttribute getCodeAttribute(boolean create)

– Usage
∗ Returns the CodeAttribute associated to this method. You can

specify the behavior in case this method doesn’t have the code
attribute: if create is true a new code attribute is created and
returned, if it is false then null is returned and no actions are
done..

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx
)

– Usage
∗ Returns the idx-th IConstantPoolUser instance of this class.

org.ldp.jdasm– DMethod 86

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

• getMethodDescriptor
public String getMethodDescriptor()

– Usage
∗ Returns the MethodDescriptor for this DMethod as specified

for the java class file.
– Exceptions

∗ org.ldp.jdasm.exception.MethodDescriptorException - if
the specified types are not parsable as types

– See Also
∗
org.ldp.jdasm.constantpool.TypeDescriptor.getFieldDescriptorByString(String)

• getName
public String getName()

– Usage
∗ Get the name of the method.

• getReturnType
public String getReturnType()

– Usage
∗ Get the return type of the method. It’s something like ”int”

”double[]” ”mypackage.MyObject”

• getSignature
public String getSignature()

– Usage
∗ Returns a string signature representing this method univocally.

It is in the form ”{name}{descriptor}”, something like
”<init>()V”

• isAccessFlagsSet
public boolean isAccessFlagsSet()

– Usage
∗ Returns true if at least one access permission qualifier has been

set.

org.ldp.jdasm– DMethod 87

• isConstructor
public boolean isConstructor()

– Usage
∗ Returns True if this method’s name is <init>.

• isNameSet
public boolean isNameSet()

– Usage
∗ Returns true if the name of this method has been set.

• isReturnTypeSet
public boolean isReturnTypeSet()

– Usage
∗ Returns true if the return type of this method has been set.

• removeArgument
public void removeArgument(int idx)

– Usage
∗ Removes argument at given index.

• removeArgument
public boolean removeArgument(java.lang.String code)

– Usage
∗ Removes argument given as java code. Throws

CodeParseException if an error occurs while parsing the code
– Returns - true if argument is found in the list and removed, false if

it is not present
– See Also

∗ org.ldp.jdasm.DMethod.addArgument(String)

• removeArgument
public boolean removeArgument(java.lang.String type,
java.lang.String name)

– Usage
∗ Removes argument of given type and name

– See Also
∗ org.ldp.jdasm.DMethod.addArgument(String, String)

• setAccessFlags
public void setAccessFlags(short accessFlags)

– Usage
∗ Set the access permission qualifier for this method.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

org.ldp.jdasm– DMethod 88

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage
∗ Set the name of the method.

• setReturnType
public void setReturnType(java.lang.String type)

– Usage
∗ Set the return type of the method. If you use a class type then

you need a fully qualifying name (java.lang.String is ok, but
String is not)

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

org.ldp.jdasm– DMethod 89

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

org.ldp.jdasm– DAttribute 90

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.1.6 Class DAttribute

This class is the super class of all the attributes. It contains the common methods

for all the attributes, such manage the constant pool addressing of the name: since

each attribute needs a name its constructor wants the name as argument.

Declaration

public abstract class DAttribute

extends org.ldp.jdasm.attribute.Attributable
implements org.ldp.jdasm.constantpool.IBuildable

Constructors

• DAttribute
public DAttribute(java.lang.String name)

– Usage
∗ The constructor of the attribute. It needs the name of the

attribute.

• DAttribute
public DAttribute(java.lang.String name, int length)

– Usage
∗ The constructor of the attribute. You can specify the name and

the length of the attribute, if it is a fixed-length attribute. The
length is intended to be the length of the subclass attribute

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

org.ldp.jdasm– DAttribute 91

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx
)

– Usage
∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

org.ldp.jdasm– DAttribute 92

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(
java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ This function read an Attribute from an input stream whose

cursor must point to the first byte (which specify the index into
the constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(
java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage
∗ This function read an Attribute from an input stream whose

cursor must point to the first byte (which specify the index into
the constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage
∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage
∗ Set the name of the attribute.

org.ldp.jdasm– DAttribute 93

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

org.ldp.jdasm– DAttribute 94

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

org.ldp.jdasm.constantpool– DAttribute 95

A.2 Package org.ldp.jdasm.constantpool

Interfaces
IBuildable . 96

A common interface for any class that will be build to form the java class file.

Classes
AConstantPoolUser .97

A common interface for any class that uses the constant pool.
CONSTANT Class Info . 98

The class representing a CONSTANT Class Info in the constant pool.
CONSTANT Double Info . 101

The class representing a CONSTANT Double Info in the constant pool.
CONSTANT FieldRef Info . 103

The class representing a CONSTANT FieldRef Info in the constant pool.

It refers to two other elements into the same constant pool; the first one is a CON-
STANT Class Info representing the name of the class of the object, while the other
is a constant of type CONSTANT NameAndType Info representing the name of
the object and its descriptor.

CONSTANT Float Info . 107
The class representing a CONSTANT Float Info in the constant pool.

CONSTANT Integer Info . 109
The class representing a CONSTANT Integer Info in the constant pool.

CONSTANT InterfaceMethodRef Info . 111
The class representing a CONSTANT InterfaceMethodRef Info in the constant pool.

It refers to two other elements into the same constant pool; the first one is a CON-
STANT Class Info representing the name of the class of the object, while the other
is a constant of type CONSTANT NameAndType Info representing the name of
the object and its descriptor.

CONSTANT Long Info . 115
The class representing a CONSTANT Long Info in the constant pool.

CONSTANT MethodRef Info . 117
The class representing a CONSTANT MethodRef Info in the constant pool.

It refers to two other elements into the same constant pool; the first one is a CON-
STANT Class Info representing the name of the class of the object, while the other
is a constant of type CONSTANT NameAndType Info representing the name of
the object and its descriptor.

CONSTANT NameAndType Info .121
The class representing a CONSTANT NameAndType Info in the constant pool.

It refers to two string into the same constant pool; the first one is a string repre-
senting the name of the object, while the other is a string representing the name of
the type of the object.

CONSTANT String Info . 125
The class representing a CONSTANT String Info in the constant pool.

CONSTANT Utf8 Info . 127
The class representing a CONSTANT Utf8 Info in the constant pool.

CpInfo . 129
CpInfo is the abstract superclass of all the constants pool classes.

TypeDescriptor . 131
...no description...

org.ldp.jdasm.constantpool– AConstantPoolUser 96

A.2.1 Interfaces

A.2.2 Interface IBuildable

A common interface for any class that will be build to form the java class file.

Almost any class that represents a structure in the java class file will known as build

itself, and any of these will be asked to give the length in bytes of its building and to

fill the final byte[] array through int)

Declaration

public interface IBuildable

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

org.ldp.jdasm.constantpool– AConstantPoolUser 97

A.2.3 Classes

A.2.4 Class AConstantPoolUser

A common interface for any class that uses the constant pool. Almost any class that
represents a class file structure uses the class file constant pool. For any variable that
need a place in the constant pool the main class is asked to give its value in an
Object (through AConstantPoolUser#getConstantValue(int)) and its type
(through AConstantPoolUser#getConstantValueType(int)). After this, the
constant pool will assign an index value to the main class through short) .

Since any AConstantPoolUser can have instances of classes that are

AConstantPoolUser too, at build moment any class will be asked to give a reference

to these AConstantPoolUser through

AConstantPoolUser#getConstantPoolUserChild(int) making the constant pool

filling recursive

Declaration

public abstract class AConstantPoolUser

extends java.lang.Object

Constructors

• AConstantPoolUser
public AConstantPoolUser()

Methods

• constantPoolUserChildSize
public abstract int constantPoolUserChildSize()

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(
int idx)

– Usage
∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

org.ldp.jdasm.constantpool– CONSTANT Class Info 98

∗ Returns the idx-th value that this constant pool user wants to
insert into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

A.2.5 Class CONSTANT Class Info

The class representing a CONSTANT Class Info in the constant pool. It refers to a

string into the same constant pool.

Declaration

public class CONSTANT Class Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT Class Info
public CONSTANT Class Info(java.io.InputStream is)

– Usage
∗ Creates a CONSTANT Class Info reading its content by an

input stream. The cursor of the input stream must point to the
beginning of the constant after the byte that specify the type.
All the constant pool reference are saved (as short value).

• CONSTANT Class Info
public CONSTANT Class Info(java.lang.String className
)

– Usage
∗ Creates a CONSTANT Class Info with given class name.

org.ldp.jdasm.constantpool– CONSTANT Class Info 99

Methods

• addToConstantPool
public short addToConstantPool(org.ldp.jdasm.DConstantPool
pool)

– Usage
∗ It overrides the main

CpInfo#addToConstantPool(DConstantPool) because it needs
to add a Utf8 string for the name

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• copyValueFromReference
public void copyValueFromReference(
org.ldp.jdasm.DConstantPool pool)

– Usage
∗ Converts the references to other constants in the pool from

short index to a value (String).

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same class name

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

org.ldp.jdasm.constantpool– CONSTANT Class Info 100

• getClassName
public String getClassName()

– Usage
∗ Get the class name associated to this CONSTANT Class Info.

• getConstantPoolClassNameStringIndex
public short getConstantPoolClassNameStringIndex()

– Usage
∗ Get the class name string index into the constant pool.

• setClassName
public void setClassName(java.lang.String className)

– Usage
∗ Set the class name associated to this CONSTANT Class Info.

• setConstantPoolClassNameStringIndex
public void setConstantPoolClassNameStringIndex(short
cpool classNameString)

– Usage
∗ Set the class name string index into the constant pool.

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

org.ldp.jdasm.constantpool– CONSTANT Double Info 101

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.6 Class CONSTANT Double Info

The class representing a CONSTANT Double Info in the constant pool. It holds a

double constant value.

Declaration

public class CONSTANT Double Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT Double Info
public CONSTANT Double Info(double value)

– Usage
∗ Creates a CONSTANT Double Info with given value.

• CONSTANT Double Info
public CONSTANT Double Info(java.lang.Double value)

– Usage
∗ Creates a CONSTANT Double Info with given value.

• CONSTANT Double Info
public CONSTANT Double Info(java.io.InputStream is)

– Usage
∗ Creates a CONSTANT Double Info reading its content by an

input stream. The cursor of the input stream must point to the
beginning of the constant after the byte that specify the type.
The constant pool value are saved.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

org.ldp.jdasm.constantpool– CONSTANT Double Info 102

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same value

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getValue
public double getValue()

– Usage
∗ Get the integer value associated to this

CONSTANT Double Info

• setValue
public void setValue(double value)

– Usage
∗ Set the integer value associated to this

CONSTANT Double Info

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

org.ldp.jdasm.constantpool– CONSTANT FieldRef Info 103

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.7 Class CONSTANT FieldRef Info

The class representing a CONSTANT FieldRef Info in the constant pool.

It refers to two other elements into the same constant pool; the first one is a

CONSTANT Class Info representing the name of the class of the object, while the

other is a constant of type CONSTANT NameAndType Info representing the name

of the object and its descriptor.

Declaration

public class CONSTANT FieldRef Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT FieldRef Info
public CONSTANT FieldRef Info(java.io.InputStream is)

– Usage
∗ Creates a CONSTANT FieldRef Info reading its content by an

input stream. The cursor of the input stream must point to the
beginning of the constant after the byte that specify the type.
All the constant pool reference are saved (as short value).

• CONSTANT FieldRef Info
public CONSTANT FieldRef Info(java.lang.String value)

org.ldp.jdasm.constantpool– CONSTANT FieldRef Info 104

– Usage
∗ Creates a CONSTANT FieldRef Info from a string in the form

”CLASSNAME NAME DESCRIPTOR”.
– See Also

∗ org.ldp.jdasm.constantpool.TypeDescriptor (in A.2.17,

page 131)

• CONSTANT FieldRef Info
public CONSTANT FieldRef Info(java.lang.String
className, java.lang.String name, java.lang.String
descriptor)

– Usage
∗ Creates a CONSTANT FieldRef Info with given class name,

name and descriptor

Methods

• addToConstantPool
public short addToConstantPool(org.ldp.jdasm.DConstantPool
pool)

– Usage
∗ It overrides the main

CpInfo#addToConstantPool(DConstantPool) because it needs
to add two other constants. These constants are a
CONSTANT Class Info and a
CONSTANT NameAndType Info .

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

org.ldp.jdasm.constantpool– CONSTANT FieldRef Info 105

• copyValueFromReference
public void copyValueFromReference(
org.ldp.jdasm.DConstantPool pool)

– Usage
∗ Converts the references to other constants in the pool from

short index to a value (String).

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same class name, name and

descriptor

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getClassName
public String getClassName()

– Usage
∗ Get the class name associated to this

CONSTANT FieldRef Info.

• getConstantPoolClassNameStringIndex
public short getConstantPoolClassNameStringIndex()

– Usage
∗ Get the class name index of the constant pool.

• getConstantPoolNameAndTypeIndex
public short getConstantPoolNameAndTypeIndex()

– Usage
∗ Get the name and type index of the constant pool.

• getDescriptor
public String getDescriptor()

– Usage
∗ Get the descriptor associated to this

CONSTANT FieldRef Info.

• getName
public String getName()

– Usage
∗ Get the name associated to this CONSTANT FieldRef Info.

• setClassName
public void setClassName(java.lang.String className)

– Usage

org.ldp.jdasm.constantpool– CONSTANT FieldRef Info 106

∗ Set the class name associated to this
CONSTANT FieldRef Info.

• setConstantPoolClassNameIndex
public void setConstantPoolClassNameIndex(short
cpool classNameIndex)

– Usage
∗ Set the class name index of the constant pool.

• setConstantPoolNameAndTypeIndex
public void setConstantPoolNameAndTypeIndex(short
cpool nameAndTypeIndex)

– Usage
∗ Set the name and type index of the constant pool.

• setDescriptor
public void setDescriptor(java.lang.String descriptor)

– Usage
∗ Set the descriptor associated to this CONSTANT FieldRef Info.

• setName
public void setName(java.lang.String name)

– Usage
∗ Set the name associated to this CONSTANT FieldRef Info.

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

org.ldp.jdasm.constantpool– CONSTANT Float Info 107

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.8 Class CONSTANT Float Info

The class representing a CONSTANT Float Info in the constant pool. It holds a

float constant value.

Declaration

public class CONSTANT Float Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT Float Info
public CONSTANT Float Info(float value)

– Usage
∗ Creates a CONSTANT Float Info with given value.

• CONSTANT Float Info
public CONSTANT Float Info(java.lang.Float value)

– Usage
∗ Creates a CONSTANT Float Info with given value.

• CONSTANT Float Info
public CONSTANT Float Info(java.io.InputStream is)

– Usage
∗ Creates a CONSTANT Float Info reading its content by an

input stream. The cursor of the input stream must point to the
beginning of the constant after the byte that specify the type.
The constant pool value are saved.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

org.ldp.jdasm.constantpool– CONSTANT Float Info 108

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same value

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getValue
public float getValue()

– Usage
∗ Get the integer value associated to this CONSTANT Float Info

• setValue
public void setValue(float value)

– Usage
∗ Set the integer value associated to this CONSTANT Float Info

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

org.ldp.jdasm.constantpool– CONSTANT Integer Info 109

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.9 Class CONSTANT Integer Info

The class representing a CONSTANT Integer Info in the constant pool. It holds a

int constant value.

Declaration

public class CONSTANT Integer Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT Integer Info
public CONSTANT Integer Info(java.io.InputStream is)

– Usage
∗ Creates a CONSTANT Integer Info reading its content by an

input stream. The cursor of the input stream must point to the
beginning of the constant after the byte that specify the type.
The constant pool value are saved.

org.ldp.jdasm.constantpool– CONSTANT Integer Info 110

• CONSTANT Integer Info
public CONSTANT Integer Info(int value)

– Usage
∗ Creates a CONSTANT Integer Info with given value.

• CONSTANT Integer Info
public CONSTANT Integer Info(java.lang.Integer value)

– Usage
∗ Creates a CONSTANT Integer Info with given value.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same value

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getValue
public int getValue()

org.ldp.jdasm.constantpool– CONSTANT InterfaceMethodRef Info 111

– Usage
∗ Get the integer value associated to this

CONSTANT Integer Info

• setValue
public void setValue(int value)

– Usage
∗ Set the integer value associated to this

CONSTANT Integer Info

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.10 Class CONSTANT InterfaceMethodRef Info

The class representing a CONSTANT InterfaceMethodRef Info in the constant pool.

It refers to two other elements into the same constant pool; the first one is a

CONSTANT Class Info representing the name of the class of the object, while the

other is a constant of type CONSTANT NameAndType Info representing the name

of the object and its descriptor.

org.ldp.jdasm.constantpool– CONSTANT InterfaceMethodRef Info 112

Declaration

public class CONSTANT InterfaceMethodRef Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT InterfaceMethodRef Info
public CONSTANT InterfaceMethodRef Info(
java.io.InputStream is)

– Usage
∗ Creates a CONSTANT InterfaceMethodRef Info reading its

content by an input stream. The cursor of the input stream
must point to the beginning of the constant after the byte that
specify the type. All the constant pool reference are saved (as
short value).

• CONSTANT InterfaceMethodRef Info
public CONSTANT InterfaceMethodRef Info(
java.lang.String value)

– Usage
∗ Creates a CONSTANT InterfaceMethodRef Info from a string

in the form ”CLASSNAME NAME DESCRIPTOR”.
– See Also

∗ org.ldp.jdasm.constantpool.TypeDescriptor (in A.2.17,

page 131)

• CONSTANT InterfaceMethodRef Info
public CONSTANT InterfaceMethodRef Info(
java.lang.String className, java.lang.String name,
java.lang.String descriptor)

– Usage
∗ Creates a CONSTANT InterfaceMethodRef Info with given

class name, name and descriptor

Methods

• addToConstantPool
public short addToConstantPool(org.ldp.jdasm.DConstantPool
pool)

– Usage
∗ It overrides the main

CpInfo#addToConstantPool(DConstantPool) because it needs
to add two other constants. These constants are a
CONSTANT Class Info and a
CONSTANT NameAndType Info .

• build
public int build(byte [] tofill, int atindex)

– Usage

org.ldp.jdasm.constantpool– CONSTANT InterfaceMethodRef Info 113

∗ It builds the content of this class into a final byte array. Such
array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• copyValueFromReference
public void copyValueFromReference(
org.ldp.jdasm.DConstantPool pool)

– Usage
∗ Converts the references to other constants in the pool from

short index to a value (String).

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same class name, name and

descriptor

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getClassName
public String getClassName()

– Usage
∗ Get the class name associated to this

CONSTANT InterfaceMethodRef Info.

• getConstantPoolClassNameStringIndex
public short getConstantPoolClassNameStringIndex()

– Usage
∗ Get the class name index of the constant pool.

org.ldp.jdasm.constantpool– CONSTANT InterfaceMethodRef Info 114

• getConstantPoolNameAndTypeIndex
public short getConstantPoolNameAndTypeIndex()

– Usage
∗ Get the name and type index of the constant pool.

• getDescriptor
public String getDescriptor()

– Usage
∗ Get the descriptor associated to this

CONSTANT InterfaceMethodRef Info.

• getName
public String getName()

– Usage
∗ Get the name associated to this

CONSTANT InterfaceMethodRef Info.

• setClassName
public void setClassName(java.lang.String className)

– Usage
∗ Set the class name associated to this

CONSTANT InterfaceMethodRef Info.

• setConstantPoolClassNameIndex
public void setConstantPoolClassNameIndex(short
cpool classNameIndex)

– Usage
∗ Set the class name index of the constant pool.

• setConstantPoolNameAndTypeIndex
public void setConstantPoolNameAndTypeIndex(short
cpool nameAndTypeIndex)

– Usage
∗ Set the name and type index of the constant pool.

• setDescriptor
public void setDescriptor(java.lang.String descriptor)

– Usage
∗ Set the descriptor associated to this

CONSTANT InterfaceMethodRef Info.

• setName
public void setName(java.lang.String name)

– Usage
∗ Set the name associated to this

CONSTANT InterfaceMethodRef Info.

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

org.ldp.jdasm.constantpool– CONSTANT Long Info 115

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.11 Class CONSTANT Long Info

The class representing a CONSTANT Long Info in the constant pool. It holds a long

constant value.

Declaration

public class CONSTANT Long Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT Long Info
public CONSTANT Long Info(java.io.InputStream is)

– Usage
∗ Creates a CONSTANT Long Info reading its content by an

input stream. The cursor of the input stream must point to the
beginning of the constant after the byte that specify the type.
The constant pool value are saved.

org.ldp.jdasm.constantpool– CONSTANT Long Info 116

• CONSTANT Long Info
public CONSTANT Long Info(long value)

– Usage
∗ Creates a CONSTANT Long Info with given value.

• CONSTANT Long Info
public CONSTANT Long Info(java.lang.Long value)

– Usage
∗ Creates a CONSTANT Long Info with given value.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same value

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getValue
public long getValue()

org.ldp.jdasm.constantpool– CONSTANT MethodRef Info 117

– Usage
∗ Get the integer value associated to this CONSTANT Long Info

• setValue
public void setValue(long value)

– Usage
∗ Set the integer value associated to this CONSTANT Long Info

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.12 Class CONSTANT MethodRef Info

The class representing a CONSTANT MethodRef Info in the constant pool.

It refers to two other elements into the same constant pool; the first one is a

CONSTANT Class Info representing the name of the class of the object, while the

other is a constant of type CONSTANT NameAndType Info representing the name

of the object and its descriptor.

org.ldp.jdasm.constantpool– CONSTANT MethodRef Info 118

Declaration

public class CONSTANT MethodRef Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT MethodRef Info
public CONSTANT MethodRef Info(java.io.InputStream is
)

– Usage
∗ Creates a CONSTANT MethodRef Info reading its content by

an input stream. The cursor of the input stream must point to
the beginning of the constant after the byte that specify the
type. All the constant pool reference are saved (as short value).

• CONSTANT MethodRef Info
public CONSTANT MethodRef Info(java.lang.String value
)

– Usage
∗ Creates a CONSTANT MethodRef Info from a string in the

form ”CLASSNAME NAME DESCRIPTOR”
– See Also

∗ org.ldp.jdasm.constantpool.TypeDescriptor (in A.2.17,

page 131)

• CONSTANT MethodRef Info
public CONSTANT MethodRef Info(java.lang.String
className, java.lang.String name, java.lang.String
descriptor)

– Usage
∗ Creates a CONSTANT MethodRef Info with given class name,

name and descriptor

Methods

• addToConstantPool
public short addToConstantPool(org.ldp.jdasm.DConstantPool
pool)

– Usage
∗ It overrides the main

CpInfo#addToConstantPool(DConstantPool) because it needs
to add two other constants. These constants are a
CONSTANT Class Info and a
CONSTANT NameAndType Info .

• build
public int build(byte [] tofill, int atindex)

– Usage

org.ldp.jdasm.constantpool– CONSTANT MethodRef Info 119

∗ It builds the content of this class into a final byte array. Such
array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• copyValueFromReference
public void copyValueFromReference(
org.ldp.jdasm.DConstantPool pool)

– Usage
∗ Converts the references to other constants in the pool from

short index to a value (String).

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same class name, name and

descriptor

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getClassName
public String getClassName()

– Usage
∗ Get the class name associated to this

CONSTANT MethodRef Info.

• getConstantPoolClassNameStringIndex
public short getConstantPoolClassNameStringIndex()

– Usage
∗ Get the class name index of the constant pool.

org.ldp.jdasm.constantpool– CONSTANT MethodRef Info 120

• getConstantPoolNameAndTypeIndex
public short getConstantPoolNameAndTypeIndex()

– Usage
∗ Get the name and type index of the constant pool.

• getDescriptor
public String getDescriptor()

– Usage
∗ Get the descriptor associated to this

CONSTANT MethodRef Info.

• getName
public String getName()

– Usage
∗ Get the name associated to this CONSTANT MethodRef Info.

• setClassName
public void setClassName(java.lang.String className)

– Usage
∗ Set the class name associated to this

CONSTANT MethodRef Info.

• setConstantPoolClassNameIndex
public void setConstantPoolClassNameIndex(short
cpool classNameIndex)

– Usage
∗ Set the class name index of the constant pool.

• setConstantPoolNameAndTypeIndex
public void setConstantPoolNameAndTypeIndex(short
cpool nameAndTypeIndex)

– Usage
∗ Set the name and type index of the constant pool.

• setDescriptor
public void setDescriptor(java.lang.String descriptor)

– Usage
∗ Set the descriptor associated to this

CONSTANT MethodRef Info.

• setName
public void setName(java.lang.String name)

– Usage
∗ Set the name associated to this CONSTANT MethodRef Info.

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

org.ldp.jdasm.constantpool– CONSTANT NameAndType Info 121

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.13 Class CONSTANT NameAndType Info

The class representing a CONSTANT NameAndType Info in the constant pool.

It refers to two string into the same constant pool; the first one is a string

representing the name of the object, while the other is a string representing the name

of the type of the object.

Declaration

public class CONSTANT NameAndType Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT NameAndType Info
public CONSTANT NameAndType Info(java.io.InputStream
is)

org.ldp.jdasm.constantpool– CONSTANT NameAndType Info 122

– Usage
∗ Creates a CONSTANT NameAndType Info reading its content

by an input stream. The cursor of the input stream must point
to the beginning of the constant after the byte that specify the
type. All the constant pool reference are saved (as short value).

• CONSTANT NameAndType Info
public CONSTANT NameAndType Info(java.lang.String
value)

– Usage
∗ Creates a CONSTANT NameAndType Info from a string in

the form ”NAME DESCRIPTOR”
– See Also

∗ org.ldp.jdasm.constantpool.TypeDescriptor (in A.2.17,

page 131)

• CONSTANT NameAndType Info
public CONSTANT NameAndType Info(java.lang.String
name, java.lang.String descriptor)

– Usage
∗ Creates a CONSTANT NameAndType Info with given name

and descriptor

Methods

• addToConstantPool
public short addToConstantPool(org.ldp.jdasm.DConstantPool
pool)

– Usage
∗ It overrides the main

CpInfo#addToConstantPool(DConstantPool) because it needs
to add two Utf8 strings, for the name and for the descriptor

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters

org.ldp.jdasm.constantpool– CONSTANT NameAndType Info 123

∗ output - the stream to write onto
– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• copyValueFromReference
public void copyValueFromReference(
org.ldp.jdasm.DConstantPool pool)

– Usage
∗ Converts the references to other constants in the pool from

short index to a value (String).

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same name and descriptor

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantPoolDescriptorStringIndex
public short getConstantPoolDescriptorStringIndex()

– Usage
∗ Get the descriptor string index of the constant pool

• getConstantPoolNameStringIndex
public short getConstantPoolNameStringIndex()

– Usage
∗ Get the name string index of the constant pool

• getDescriptor
public String getDescriptor()

– Usage
∗ Get the descriptor associated to this

CONSTANT NameAndType Info

• getName
public String getName()

– Usage
∗ Get the name associated to this

CONSTANT NameAndType Info

• setConstantPoolDescriptorStringIndex
public void setConstantPoolDescriptorStringIndex(short
cpool descriptorStringIndex)

– Usage
∗ Set the descriptor string index of the constant pool

org.ldp.jdasm.constantpool– CONSTANT String Info 124

• setConstantPoolNameStringIndex
public void setConstantPoolNameStringIndex(short
cpool nameStringIndex)

– Usage
∗ Set the name string index of the constant pool

• setDescriptor
public void setDescriptor(java.lang.String descriptor)

– Usage
∗ Set the descriptor associated to this

CONSTANT NameAndType Info

• setName
public void setName(java.lang.String name)

– Usage
∗ Set the name associated to this

CONSTANT NameAndType Info

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

org.ldp.jdasm.constantpool– CONSTANT String Info 125

A.2.14 Class CONSTANT String Info

The class representing a CONSTANT String Info in the constant pool. It refers to a

string into the same constant pool.

Declaration

public class CONSTANT String Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT String Info
public CONSTANT String Info(java.io.InputStream is)

– Usage
∗ Creates a CONSTANT String Info reading its content by an

input stream. The cursor of the input stream must point to the
beginning of the constant after the byte that specify the type.
All the constant pool reference are saved (as short value).

• CONSTANT String Info
public CONSTANT String Info(java.lang.String value)

– Usage
∗ Creates a CONSTANT String Info with given string value.

Methods

• addToConstantPool
public short addToConstantPool(org.ldp.jdasm.DConstantPool
pool)

– Usage
∗ it overrides the main

CpInfo#addToConstantPool(DConstantPool) because it needs
to add a Utf8 string for the value

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

org.ldp.jdasm.constantpool– CONSTANT String Info 126

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• copyValueFromReference
public void copyValueFromReference(
org.ldp.jdasm.DConstantPool pool)

– Usage
∗ Converts the references to other constants in the pool from

short index to a value (String).

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same string value

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantPoolValueStringIndex
public short getConstantPoolValueStringIndex()

– Usage
∗ Get the value string index into the constant pool

• getValue
public String getValue()

– Usage
∗ Get the string value associated to this CONSTANT String Info

• setConstantPoolValueStringIndex
public void setConstantPoolValueStringIndex(short
cpool valueStringIndex)

– Usage
∗ Set the value string index into the constant pool

• setValue
public void setValue(java.lang.String value)

– Usage
∗ Set the string value associated to this CONSTANT String Info

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

org.ldp.jdasm.constantpool– CONSTANT Utf8 Info 127

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.15 Class CONSTANT Utf8 Info

The class representing a CONSTANT Utf8 Info in the constant pool. It holds a

string constant value.

Declaration

public class CONSTANT Utf8 Info

extends org.ldp.jdasm.constantpool.CpInfo

Constructors

• CONSTANT Utf8 Info
public CONSTANT Utf8 Info(java.io.InputStream is)

– Usage
∗ Creates a CONSTANT Utf8 Info reading its content by an

input stream. The cursor of the input stream must point to the
beginning of the constant after the byte that specify the type.
The constant pool value are saved.

org.ldp.jdasm.constantpool– CONSTANT Utf8 Info 128

• CONSTANT Utf8 Info
public CONSTANT Utf8 Info(java.lang.String value)

– Usage
∗ Creates a CONSTANT Utf8 Info with given string.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• equals
public boolean equals(java.lang.Object o)

– Usage
∗ We match when o has the same value

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getBuiltValue
public byte getBuiltValue()

– Usage
∗ Get the constant pool representation of the corresponding value

• getValue
public String getValue()

org.ldp.jdasm.constantpool– CpInfo 129

– Usage
∗ Get the string value associated to this CONSTANT Utf8 Info

• setValue
public void setValue(java.lang.String value)

– Usage
∗ Set the string value associated to this CONSTANT Utf8 Info

• toString
public String toString()

– Usage
∗ Returns a short description of constant values

Methods inherited from class org.ldp.jdasm.constantpool.CpInfo

(in A.2.16, page 129)
• addToConstantPool

public short addToConstantPool(org.ldp.jdasm.DConstantPool pool
)

– Usage

∗ Adds this constant to the constant pool. If a constant has references
to other constants, then here it creates such constants classes and
add them before adding itself. In such way, it can know the index of
its references.

• copyValueFromReference
public void copyValueFromReference(org.ldp.jdasm.DConstantPool

pool)

– Usage

∗ Converts the references to other constants in the pool from short
index to a value (String). When read the constant pool from a file,
all the constants has a reference number but hasn’t the real value
referenced. All the constant classes that uses references will overload
this method to copy the referenced constant value into its own value.

• getTag
public byte getTag()

– Usage

∗ Get the tag (the type) of this CpInfo.

– See Also

∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage

∗ Returns the hashcode according to inner value. This is used to
hashmapping constants

A.2.16 Class CpInfo

CpInfo is the abstract superclass of all the constants pool classes. It just adds the

tag management for all the constants and two empty method that should be

overloaded from classes that uses references instead of values.

org.ldp.jdasm.constantpool– TypeDescriptor 130

Declaration

public abstract class CpInfo

extends java.lang.Object
implements IBuildable

Constructors

• CpInfo
public CpInfo(byte tag)

– Usage
∗ The Constant Info constructor requires the tag value.

– See Also
∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

Methods

• addToConstantPool
public short addToConstantPool(org.ldp.jdasm.DConstantPool
pool)

– Usage
∗ Adds this constant to the constant pool. If a constant has

references to other constants, then here it creates such
constants classes and add them before adding itself. In such
way, it can know the index of its references.

• copyValueFromReference
public void copyValueFromReference(
org.ldp.jdasm.DConstantPool pool)

– Usage
∗ Converts the references to other constants in the pool from

short index to a value (String). When read the constant pool
from a file, all the constants has a reference number but hasn’t
the real value referenced. All the constant classes that uses
references will overload this method to copy the referenced
constant value into its own value.

• getTag
public byte getTag()

– Usage
∗ Get the tag (the type) of this CpInfo.

– See Also
∗ org.ldp.jdasm.DConstantPool (in A.1.3, page 73)

• hashCode
public int hashCode()

– Usage
∗ Returns the hashcode according to inner value. This is used to

hashmapping constants

org.ldp.jdasm.constantpool– TypeDescriptor 131

A.2.17 Class TypeDescriptor

Declaration

public class TypeDescriptor

extends java.lang.Object

Constructors

• TypeDescriptor
public TypeDescriptor()

Methods

• getFieldDescriptorByString
public static String getFieldDescriptorByString(
java.lang.String type)

– Usage
∗ Converts the human readable stringed type into the java class

file internal representation of such type. Examples:
"int" => "I"
"double[]" => "[D"
"long[][][]" => "[[[J"
"my.pack.MyObject" => "Lmy/pack/MyObject;"

• getMethodArgumentByDescriptor
public static String getMethodArgumentByDescriptor(
java.lang.String descr)

– Usage
∗ Get the descriptor in the form ”(IDLmy/pack/MyObject;[I)D”

and returns ”IDLmy/pack/MyObject;[I” .

• getMethodDescriptor
public static String getMethodDescriptor(java.lang.String
type, java.util.Vector args)

– Usage
∗ Returns the method descriptor starting from the return type

and its argument.
– Parameters

∗ type - The return type of the method (e.g.: ”int”)
∗ args - The arguments of the method (e.g.: { ”int[] arg0”,

”my.pack.MyObject arg1” })
– Returns - The descriptor, e.g.: ”([ILmy/pack/MyObject;)I”
– Exceptions

∗ org.ldp.jdasm.exception.MethodDescriptorException - if
errors occur while parsing the types or argument strings

org.ldp.jdasm.constantpool– TypeDescriptor 132

• getMethodReturnTypeAndArgumentByDescriptor
public static String
getMethodReturnTypeAndArgumentByDescriptor(
java.lang.String descriptor, java.util.Vector args)

– Usage
∗ Gets the method descriptor and analyzes it to determinate the

return type and the arguments.
– Parameters

∗ descriptor - The method descriptor in the form
”(IDLmy/pack/MyObject;[I)D”

∗ args - The vector is filled (in output) with {”int arg0”, ”double
arg1”, ”long arg2”, ”my.pack.MyObject arg3”, ”int[] arg4”}

– Returns - the return type (”double” in the example given)
– Exceptions

∗ org.ldp.jdasm.exception.MethodDescriptorException - if
errors occur while parsing the descriptor string

• getMethodReturnTypeByDescriptor
public static String getMethodReturnTypeByDescriptor(
java.lang.String descr)

– Usage
∗ Get the descriptor in the form ”(IDLmy/pack/MyObject;[I)D”

and returns the return type ”D” .

• getNextFieldTypeLengthInDescriptor
public static int getNextFieldTypeLengthInDescriptor(
java.lang.String descriptor)

– Usage
∗ Returns the length of the first type descriptor found in the

given descriptor.

E.g.: the descriptor describing these types ”int double[]
MyObject long[][]” is ”ID[LMyObject;[[J”. With this
descriptor, the method returns the length of the first type
found, that is ”I” of integer: it returns 1.

String argument = "ID[LMyObject;[[J";
argument = argument.substring(getNextFieldTypeLengthInDescriptor(argument));
.. arguments now is "D[LMyObject;[[J" ..
argument = argument.substring(getNextFieldTypeLengthInDescriptor(argument));
.. arguments now is "[LMyObject;[[J" ..
argument = argument.substring(getNextFieldTypeLengthInDescriptor(argument));
.. arguments now is "[[J" ..
argument = argument.substring(getNextFieldTypeLengthInDescriptor(argument));
.. arguments now is empty.

– Exceptions
∗ org.ldp.jdasm.exception.FieldDescriptorException - if

the first character do not recognize a valid type (it is not one of
these ”BCDFIJLSZ[”

• getStringByFieldDescriptor
public static String getStringByFieldDescriptor(
java.lang.String descriptor)

org.ldp.jdasm.constantpool– TypeDescriptor 133

– Usage
∗ Returns the name of the class representing the given descriptor.

"I" => "int"
"[D" => "double[]"
"[[[J" => "long[][][]"
"Lmy/pack/MyObject;" => "my.pack.MyObject"

org.ldp.jdasm.attribute– TypeDescriptor 134

A.3 Package org.ldp.jdasm.attribute

Classes
Attributable . 136

This class comes to establish a convention for all the class files structures that can
have attributes.

In fact they all will expose this methods to easy manipulate their attributes.
CodeAttribute . 138

The class representing either the java class file CodeAttribute, and a container for
the instruction of a method.

ConstantValueAttribute .152
This class represents an Attribute of the java class file.

The attribute is intended to store a constant value which can be of one of the prim-
itive types.

CustomAttribute . 159
This class represents a custom Attribute of the java class file.

You can create your own attribute by specifying its name.
DeprecatedAttribute . 165

This class represents an Attribute of the java class file.

The Deprecated attribute is an optional attribute of DClass , DField , and
DMethod classes.

A class, interface, method, or field may be marked using a Deprecated attribute to
indicate that the class, interface, method, or field has been superseded.

ExceptionsAttribute . 170
This class represents an Attribute of the java class file.

The Exceptions attribute is an attribute used in the attributes table of a DMethod
class.

The Exceptions attribute indicates which checked exceptions a method may throw;
there may be at most one Exceptions attribute in each DMethod.

InnerClassesAttribute . 176
This class represents an Attribute of the java class file.

This attribute uses an inner class InnerClassesElement as element of its table.
InnerClassesElement . 182

Class used inside the InnerClassesAttribute .
LineNumberTableAttribute . 185

This class represents an Attribute of the java class file.

LocalVariableTableAttribute .191

org.ldp.jdasm.attribute– TypeDescriptor 135

This class represents an Attribute of the java class file.

This attribute uses the class LocalVariableTableElement as element of its table:
each of these element has information about the starting instruction, the length in
byte of the variable’s scope, the name of the variable and its descriptor..

LocalVariableTableElement . 198
Class used inside the LocalVariableTableAttribute and inside LocalVariableType-
TableAttribute classes: it has informations about the name and descriptor or sig-
nature of the variable, start pc and length of the scope, index into the local variable
array.

LocalVariableTypeTableAttribute . 199
This class represents an Attribute of the java class file.

This attribute uses the class LocalVariableTableElement as element of its table:
each of these element has information about the starting instruction, the length in
byte of the variable’s scope, the name of the variable and its signature..

SignatureAttribute . 205
This class represents an Attribute of the java class file.

This attribute is intended to hold the signature of a class (if it is an attribute of
DClass), of a method (if it is an attribute of DMethod) or of a field (if it is an
attribute of DField).

SourceDebugExtensionAttribute . 211
This class represents an Attribute of the java class file.

This attribute (attribute of DClass) holds a string in UFT-8 format with no ter-
minating zero byte.

SourceFileAttribute . 217
This class represents an Attribute of the java class file.

This attribute is intended to hold the name of the source file from which this class
file was compiled.

StackMapTableAttribute . 223
Unimplemented Attribute.

SyntheticAttribute .223
This class represents an Attribute of the java class file.

A class member that does not appear in the source code must be marked using a
Synthetic attribute.

org.ldp.jdasm.attribute– Attributable 136

A.3.1 Classes

A.3.2 Class Attributable

This class comes to establish a convention for all the class files structures that can
have attributes.

In fact they all will expose this methods to easy manipulate their attributes.

Declaration

public abstract class Attributable

extends org.ldp.jdasm.constantpool.AConstantPoolUser

Constructors

• Attributable
public Attributable()

Methods

• addAttribute
public DAttribute addAttribute(org.ldp.jdasm.DAttribute
attr)

– Usage
∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage
∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage
∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage
∗ Returns the DAttribute with specified name, or null if it

doesn’t exist.

• getAttributes
public DAttribute getAttributes()

– Usage
∗ Returns all the attributes

org.ldp.jdasm.attribute– Attributable 137

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage
∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute
attr)

– Usage
∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false
it it is not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage
∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage
∗ Removes the DAttribute with specified name. Returns true if it

is removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

org.ldp.jdasm.attribute– CodeAttribute 138

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.3 Class CodeAttribute

The class representing either the java class file CodeAttribute, and a container for
the instruction of a method. In this class you will find all the API to interact with
the code.

The class provides an inner computation of the states of the local variable array and
the stack for each instruction instant, offering the possibility to automatically
computing of stack and local variable array size, and offering some other consistency
features while inserting or removing code. Both automatic max stack and locals
computing, and code support can be turned of to improve the performance with
CodeAttribute#setCodeSupportEnabled(boolean) and
CodeAttribute#setAutomaticMaxStackAndLocals(boolean) .

As constant pool user, this class keep the counter of all the instruction that need a

link into the cpool at build time. for efficient reason methods like

CodeAttribute#getConstantValue(int) ,

CodeAttribute#getConstantValueType(int) and short) uses a internal counter to

cycle through the vector of instruction: this mean that the index is ignored if much

greater than DAttribute super class DAttribute#constantPoolValueSize() , and at

each call you get a reference to the next suitable instruction.

Declaration

public class CodeAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• CodeAttribute
public CodeAttribute()

org.ldp.jdasm.attribute– CodeAttribute 139

– Usage
∗ Default constructor. It creates an empty CodeAttribute with

empty code.

• CodeAttribute
public CodeAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ Creates a CodeAttribute attribute reading it from an input

stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool. The constant pool needs to have all the string
constant values used by this attribute.

Methods

• addCode
public void addCode(org.ldp.jdasm.attribute.CodeAttribute
code)

– Usage
∗ Appends all the instruction of the given CodeAttribute to this

CodeAttribute code. Exceptions from the exceptions table are
also added (nothing’s copied).

• addCode
public void addCode(org.ldp.jdasm.attribute.CodeAttribute
code, int idx)

– Usage
∗ Adds all the instruction of the given CodeAttribute to this

CodeAttribute at specific position.

• addCode
public Instruction addCode(
org.ldp.jdasm.attribute.instruction.Instruction instr)

– Usage
∗ Adds a specific instruction instr at the end of the list.

• addCode
public Instruction addCode(
org.ldp.jdasm.attribute.instruction.Instruction instr, int
idx)

– Usage
∗ Adds a specific instruction instr at specific index idx.

Negative value of idx are meant to be relative to the count of
the instructions: using idx = -1 will insert the new instruction
next to the last.

• addCode
public void addCode(java.lang.String code)

– Usage

org.ldp.jdasm.attribute– CodeAttribute 140

∗ Parses the code passed as argument to get a certain number of
instruction that are appended at the end of the list. For how
the string code must be, refer to
CodeAttribute#addCode(String,int)

• addCode
public void addCode(java.lang.String code, int idx)

– Usage
∗ Parses the code passed as argument to get a certain number of

instruction that are added to the list at position idx.

• addException
public void addException(
org.ldp.jdasm.attribute.instruction.ExceptionElement
exception)

– Usage
∗ Adds a specific exception.

• addValidationError
public void addValidationError(
org.ldp.jdasm.attribute.instruction.Instruction instr,
java.lang.String validationError)

– Usage
∗ Adds the given validationError at the error string.

– Parameters
∗ instr - The instruction that raised the error

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• buildInstructionIndex
public void buildInstructionIndex()

org.ldp.jdasm.attribute– CodeAttribute 141

– Usage
∗ Sets the real offset to each instruction by computing each

instruction size. It also change the opcode LDC into LDC W if
needed, and GOTO in GOTO W if needed. Finally the value
codelen is filled with right value.

• buildSupport
public void buildSupport()

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• clearValidationErrors
public void clearValidationErrors()

– Usage
∗ Clears the validation error bit.

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getByteCodeSize
public int getByteCodeSize()

– Usage
∗ Returns the length in byte of this byte code.

• getCodeSize
public int getCodeSize()

– Usage
∗ Returns the number of instruction.

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx
)

org.ldp.jdasm.attribute– CodeAttribute 142

– Usage
∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Parameters

∗ idx - for efficient reason this parameter is mainly ignored.. see
detail in CodeAttribute

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Parameters
∗ idx - for efficient reason this parameter is mainly ignored.. see

detail in CodeAttribute
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getException
public ExceptionElement getException(int idx)

– Usage
∗ Returns the idx-th exception.

• getExceptions
public ExceptionElement getExceptions()

– Usage
∗ Returns all the exceptions.

• getExceptionSize
public int getExceptionSize()

– Usage
∗ Returns the number of try-catch block.

• getFirstInstruction
public Instruction getFirstInstruction()

– Usage
∗ Returns the first instruction, or null it hasn’t any.

• getInstruction
public Instruction getInstruction(int idx)

– Usage

org.ldp.jdasm.attribute– CodeAttribute 143

∗ Returns the idx-th instruction.

• getInstructionAtOffset
public Instruction getInstructionAtOffset(int offset)

– Usage
∗ Returns the instruction that is at specified byte offset. Returns

null if at offset does not correspond any instruction.

• getLastInstruction
public Instruction getLastInstruction()

– Usage
∗ Returns the last instruction, or null it hasn’t any.

• getMaxLocals
public int getMaxLocals()

– Usage
∗ Returns the max use of stack. The value is always computed

and kept updated (unless automatic update is set off).
– See Also

∗
org.ldp.jdasm.attribute.CodeAttribute.setAutomaticMaxStackAndLocals(boolean)
(in A.3.3, page 146)

• getMaxStack
public int getMaxStack()

– Usage
∗ Returns the max use of stack. The value is always computed

and kept updated (unless automatic update is set off).
– See Also

∗
org.ldp.jdasm.attribute.CodeAttribute.setAutomaticMaxStackAndLocals(boolean)
(in A.3.3, page 146)

• getMethodDescriptor
public String getMethodDescriptor()

– Usage
∗ Get the descriptor of the method that encapsulates this

CodeAttribute. If no information about the encapsulater
method has been given with boolean) this always returns null.

– See Also
∗
org.ldp.jdasm.attribute.CodeAttribute.setMethodDescriptor(String,boolean)

• getMethodStaticFlag
public boolean getMethodStaticFlag()

– Usage
∗ Returns true if the method that encapsulate this CodeAttribute

is static. If no information about the encapsulater method has
been given with boolean) this always returns false.

– See Also
∗
org.ldp.jdasm.attribute.CodeAttribute.setMethodDescriptor(String,boolean)

org.ldp.jdasm.attribute– CodeAttribute 144

• getRangedCodeAttribute
public CodeAttribute getRangedCodeAttribute(
org.ldp.jdasm.attribute.instruction.InstructionRange range
)

– Usage
∗ Returns a part of code delimited by the given range.

– See Also
∗
org.ldp.jdasm.attribute.CodeAttribute.getRangedCodeAttribute(int,
int)

• getRangedCodeAttribute
public CodeAttribute getRangedCodeAttribute(int from,
int to)

– Usage
∗ Returns a part of code delimited by the given range.

The new CodeAttribute will have to - from instructions and
no attributes at all. If one of ranged instruction is inside a
try-catch block, then the new CodeAttribute will have an
ExceptionElement that will include this instruction; if the
catching instruction is not present in selected code its value will
be null, so be care and always check the exceptions.

Same thing happens whenever a jump instruction has a target
that falls outside the selected code: it’s target will be set to
null.

– Parameters
∗ from - Inclusive: the index of the first instruction of the range
∗ to - Exclusive: The index of the first instruction after the range

• getValiationError
public String getValiationError()

– Usage
∗ Returns the string containing the validation error. Returns null

if no error has been reported.

• hasValidationError
public boolean hasValidationError()

– Usage
∗ Returns true if a validation error has been reported during the

validation.

• isAutomaticMaxStackAndLocals
public boolean isAutomaticMaxStackAndLocals()

– Usage
∗ Returns true if CodeAttribute is handling max stack and

max locals in automatic way; false otherwise.

• isCodeSupportEnabled
public boolean isCodeSupportEnabled()

org.ldp.jdasm.attribute– CodeAttribute 145

– Usage
∗ Returns true if CodeAttribute builds the support structures

which help to analyze the code.

• removeCode
public void removeCode(
org.ldp.jdasm.attribute.instruction.InstructionRange range
)

– Usage
∗ Removes part of the code. The part is indicated by the

InstructionRange range.

• removeCode
public void removeCode(int from, int to)

– Usage
∗ Removes part of the code. The part is starting at instruction
from (inclusive) and ends at instruction to (exclusive)

– Parameters
∗ from - The first instruction to remove
∗ to - The first instruction that wont be removed

• removeException
public void removeException(int index)

– Usage
∗ Remove the exception at specified index.

• removeInstructionFromAttribute
public void removeInstructionFromAttribute(
org.ldp.jdasm.attribute.instruction.Instruction instr)

– Usage
∗ Tells to any direct attribute of type LineNumberTableAttribute

, LocalVariableTableAttribute and
LocalVariableTypeTableAttribute that the given instruction is
no longer part of this CodeAttribute. Any entry in these
attributes containing this instruction will be deleted.

– See Also
∗
org.ldp.jdasm.attribute.LineNumberTableAttribute.removeInstruction(Instruction)

∗
org.ldp.jdasm.attribute.LocalVariableTableAttribute.removeInstruction(Instruction,
CodeAttribute)

∗
org.ldp.jdasm.attribute.LocalVariableTypeTableAttribute.removeInstruction(Instruction,
CodeAttribute)

• replaceInstruction
public void replaceInstruction(int idx,
org.ldp.jdasm.attribute.instruction.Instruction instr)

– Usage
∗ Replace the instruction at index idx with the given instruction.

If any jump was targeting the old instruction, then the given
instruction will be designed as the new target. The attributes
that use the old instruction will lose the reference.

org.ldp.jdasm.attribute– CodeAttribute 146

• setAutomaticMaxStackAndLocals
public void setAutomaticMaxStackAndLocals(boolean
automaticMaxStackAndLocals)

– Usage
∗ Set whenever CodeAttribute has to handle max stack and

max locals value automatically. If you put this to manual (by
passing false) don’t forget to update max locals and stack
values before a build, or the class wont be able to be loaded.

– Parameters
∗ automaticMaxStackAndLocals - if True, this call will implicitly

turn on the build support by calling
CodeAttribute#setCodeSupportEnabled(boolean) .

• setCodeSupportEnabled
public void setCodeSupportEnabled(boolean
withCodeSupport)

– Usage
∗ Set whenever CodeAttribute has to build the support

structures. With such structures, CodeAttribute keep
informations about the local variable array and the stack state
for each instruction. Doing this makes CodeAttribute enable to
compute max locals and stacks, and help the code consistency
while inserting or removing code, but it needs more
computation.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int).

for efficient reason this parameter is mainly ignored.. see detail
in CodeAttribute

∗ cpool index - the index of the value in the constant pool

• setMaxLocals
public void setMaxLocals(int maxLocals)

– Usage
∗ Set manually the value of max stack. Using this will implicitly

turn off the automatic update of max stack and max locals.
– See Also

∗
org.ldp.jdasm.attribute.CodeAttribute.setAutomaticMaxStackAndLocals(boolean)
(in A.3.3, page 146)

∗
org.ldp.jdasm.attribute.CodeAttribute.setMaxStack(int)
(in A.3.3, page 147)

org.ldp.jdasm.attribute– CodeAttribute 147

• setMaxStack
public void setMaxStack(int maxStack)

– Usage
∗ Set manually the value of max stack. Using this will implicitly

turn off the automatic update of max stack and max locals.
– See Also

∗
org.ldp.jdasm.attribute.CodeAttribute.setAutomaticMaxStackAndLocals(boolean)
(in A.3.3, page 146)

∗
org.ldp.jdasm.attribute.CodeAttribute.setMaxLocals(int)
(in A.3.3, page 146)

• setMethodDescriptor
public void setMethodDescriptor(java.lang.String
methodDescriptor, boolean isStaticMethod)

– Usage
∗ Set the descriptor of the method that encapsulates this

CodeAttribute. This descriptor is necessary to build a correct
CodeAttribute support (manually or automatically with
CodeAttribute#buildSupport()) because of the number and
type of argument of this method that will be put into the local
variable array at the beginning of the code.

– Parameters
∗ methodDescriptor - the descriptor string, something like

”(Ljava/lang/String;ID)V)”
∗ isStaticMethod - must be true if the method that

encapsulates this CodeAttribute is a static method
– See Also

∗
org.ldp.jdasm.attribute.CodeAttribute.getMethodDescriptor()

• wrapSuperConstructor
public void wrapSuperConstructor(java.lang.String
oldSuperConstructorClassName, java.lang.String
newConstructorClassName)

– Usage
∗ Changes the super constructor invocation to call the

constructor of the given class name newConstructorClassName.

To do this the method descriptor for this code attribute must
be set (see boolean)) and this CodeAttribute must represent a
constructor method CodeAttribute.

Consider this CodeAttribute method descriptor as example:
<init>(ILjava/lang/String;)V.

Then the wrap consists in making the INVOKESPECIAL
actual call (to oldSuperConstructorClassName) to invoke
another constructor of the class newConstructorClassName
with the same descriptor. Then all the arguments received by
this method are passed to the new super constructor.

org.ldp.jdasm.attribute– CodeAttribute 148

The example above will generate these instructions:

ALOAD 0
ILOAD 1
ALOAD 2
INVOKESPECIAL newConstructorClassName <init> (ILjava/lang/String;)V

replacing these old instructions:

ALOAD 0
.. any other LOADS ..
INVOKESPECIAL oldSuperConstructorClassName <init> oldSuperConstructorDescriptor

– Exceptions
∗ org.ldp.jdasm.exception.MethodDescriptorException - if

the method descriptor for this CodeAttribute is not set, or if
it’s impossible to find any INVOKESPECIAL call to the super
constructor.

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

org.ldp.jdasm.attribute– CodeAttribute 149

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

org.ldp.jdasm.attribute– CodeAttribute 150

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

org.ldp.jdasm.attribute– CodeAttribute 151

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

org.ldp.jdasm.attribute– ConstantValueAttribute 152

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.4 Class ConstantValueAttribute

This class represents an Attribute of the java class file.

The attribute is intended to store a constant value which can be of one of the

primitive types. The value is stored in an object of type Object, and its type can be

retrieved by the ConstantValueAttribute#getType()

Declaration

public class ConstantValueAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• ConstantValueAttribute
public ConstantValueAttribute()

– Usage
∗ Creates an empty ConstantValue attribute.

• ConstantValueAttribute
public ConstantValueAttribute(boolean value)

– Usage
∗ Creates a ConstantValue attribute with a boolean value.

• ConstantValueAttribute
public ConstantValueAttribute(byte value)

– Usage
∗ Creates a ConstantValue attribute with a byte value.

• ConstantValueAttribute
public ConstantValueAttribute(char value)

– Usage
∗ Creates a ConstantValue attribute with a char value.

• ConstantValueAttribute
public ConstantValueAttribute(double value)

– Usage
∗ Creates a ConstantValue attribute with a double value.

• ConstantValueAttribute
public ConstantValueAttribute(float value)

org.ldp.jdasm.attribute– ConstantValueAttribute 153

– Usage
∗ Creates a ConstantValue attribute with a float value.

• ConstantValueAttribute
public ConstantValueAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ Creates a ConstantValue attribute reading it from an input

stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool.

• ConstantValueAttribute
public ConstantValueAttribute(int value)

– Usage
∗ Creates a ConstantValue attribute with a integer value.

• ConstantValueAttribute
public ConstantValueAttribute(long value)

– Usage
∗ Creates a ConstantValue attribute with a long value.

• ConstantValueAttribute
public ConstantValueAttribute(short value)

– Usage
∗ Creates a ConstantValue attribute with a short value.

• ConstantValueAttribute
public ConstantValueAttribute(java.lang.String value)

– Usage
∗ Creates a ConstantValue attribute with a String value.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

org.ldp.jdasm.attribute– ConstantValueAttribute 154

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getType
public short getType()

– Usage
∗ Retrieve the type of the value stored in this ConstantValue

attribute.

• getValue
public Object getValue()

org.ldp.jdasm.attribute– ConstantValueAttribute 155

– Usage
∗ Retrieves the constant stored value.

The retrieved Object can be of type Long, Float, Double,
Integer, Character, Short, Byte, Boolean or String according to
the type retrievable with ConstantValueAttribute#getType()

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

• setValue
public void setValue(boolean value)

– Usage
∗ Change the value of this attribute to a boolean value.

• setValue
public void setValue(byte value)

– Usage
∗ Change the value of this attribute to a byte value.

• setValue
public void setValue(char value)

– Usage
∗ Change the value of this attribute to a char value.

• setValue
public void setValue(double value)

– Usage
∗ Change the value of this attribute to a double value.

• setValue
public void setValue(float value)

– Usage
∗ Change the value of this attribute to a float value.

• setValue
public void setValue(int value)

– Usage
∗ Change the value of this attribute to a integer value.

• setValue
public void setValue(long value)

– Usage

org.ldp.jdasm.attribute– ConstantValueAttribute 156

∗ Change the value of this attribute to a long value.

• setValue
public void setValue(short value)

– Usage
∗ Change the value of this attribute to a short value.

• setValue
public void setValue(java.lang.String value)

– Usage
∗ Change the value of this attribute to a string value.

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

org.ldp.jdasm.attribute– ConstantValueAttribute 157

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

org.ldp.jdasm.attribute– ConstantValueAttribute 158

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

org.ldp.jdasm.attribute– CustomAttribute 159

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.5 Class CustomAttribute

This class represents a custom Attribute of the java class file.

You can create your own attribute by specifying its name. It is seen as a fully

customizable array of byte.

org.ldp.jdasm.attribute– CustomAttribute 160

Declaration

public class CustomAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• CustomAttribute
public CustomAttribute(java.lang.String name)

– Usage
∗ Creates a CustomAttribute with specified name. This will

implicitly call DClass#setBuildCustomAttribute(boolean) and
turn on the build of custom attributes

• CustomAttribute
public CustomAttribute(java.lang.String name,
java.io.InputStream is)

– Usage
∗ Creates a CustomAttribute attribute reading it from an input

stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool. This will implicitly call
DClass#setBuildCustomAttribute(boolean) and turn off the
build of custom attributes

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument. If the class has
been read from a java class file, it can happen that many
unrecognized attribute has been loaded as custom attribute.
Such attribute can have references into the constant pool,
references that cannot be updated by jdasm (not recognizing
the attribute), so by default custom attribute are not build. If
instead, the constructor a custom attribute
CustomAttribute#CustomAttribute(String) is called, then the
build is automatically turned on. You can always change this
behavior with DClass#setBuildCustomAttribute(boolean)

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

org.ldp.jdasm.attribute– CustomAttribute 161

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength(). If the class has been read from a java class
file, it can happen that many unrecognized attribute has been
loaded as custom attribute. Such attribute can have references
into the constant pool, references that cannot be updated by
jdasm (not recognizing the attribute), so by default custom
attribute are not build. If instead, the constructor a custom
attribute CustomAttribute#CustomAttribute(String) is called,
then the build is automatically turned on. You can always
change this behavior with
DClass#setBuildCustomAttribute(boolean)

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

org.ldp.jdasm.attribute– CustomAttribute 162

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions

org.ldp.jdasm.attribute– CustomAttribute 163

∗ java.lang.Exception - if the value is not ready (since the control is
done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

org.ldp.jdasm.attribute– CustomAttribute 164

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

org.ldp.jdasm.attribute– DeprecatedAttribute 165

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.6 Class DeprecatedAttribute

This class represents an Attribute of the java class file.

The Deprecated attribute is an optional attribute of DClass , DField , and
DMethod classes.

A class, interface, method, or field may be marked using a Deprecated attribute to

indicate that the class, interface, method, or field has been superseded.

Declaration

public class DeprecatedAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• DeprecatedAttribute
public DeprecatedAttribute()

– Usage
∗ Creates a Deprecated attribute.

org.ldp.jdasm.attribute– DeprecatedAttribute 166

• DeprecatedAttribute
public DeprecatedAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ Creates a DeprecatedAttribute attribute reading it from an

input stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool.

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

org.ldp.jdasm.attribute– DeprecatedAttribute 167

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

org.ldp.jdasm.attribute– DeprecatedAttribute 168

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

org.ldp.jdasm.attribute– ExceptionsAttribute 169

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

org.ldp.jdasm.attribute– ExceptionsAttribute 170

A.3.7 Class ExceptionsAttribute

This class represents an Attribute of the java class file.

The Exceptions attribute is an attribute used in the attributes table of a DMethod
class.

The Exceptions attribute indicates which checked exceptions a method may throw;

there may be at most one Exceptions attribute in each DMethod. In its internals an

ExceptionAttribute is a container of a list of class names

Declaration

public class ExceptionsAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• ExceptionsAttribute
public ExceptionsAttribute()

– Usage
∗ Creates a Exceptions attribute.

• ExceptionsAttribute
public ExceptionsAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ Creates an ExceptionsAttribute attribute reading it from an

input stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool. The constant pool needs to have all the string
constant values used by this attribute.

Methods

• addException
public void addException(java.lang.String className)

– Usage
∗ Adds an exception to the list.

– Parameters
∗ className - the name of the class the method can throw

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters

org.ldp.jdasm.attribute– ExceptionsAttribute 171

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• exceptionCount
public int exceptionCount()

– Usage
∗ Returns the number of class names in the list.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

org.ldp.jdasm.attribute– ExceptionsAttribute 172

∗ Returns the value type of the idx-th value that this constant
pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getExceptions
public String getExceptions()

– Usage
∗ Returns the name of all the exceptions.

• getExceptions
public String getExceptions(int idx)

– Usage
∗ Returns the idx-th name of the exception.

• removeException
public boolean removeException(java.lang.String
className)

– Usage
∗ Removes an exception from the list.

– Parameters
∗ className - the name of the class throwable

– Returns - true if such class is removed, false if it is not present in
the list

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

org.ldp.jdasm.attribute– ExceptionsAttribute 173

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

org.ldp.jdasm.attribute– ExceptionsAttribute 174

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

org.ldp.jdasm.attribute– ExceptionsAttribute 175

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

org.ldp.jdasm.attribute– InnerClassesAttribute 176

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.8 Class InnerClassesAttribute

This class represents an Attribute of the java class file.

This attribute uses an inner class InnerClassesElement as element of its table.

Declaration

public class InnerClassesAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• InnerClassesAttribute
public InnerClassesAttribute()

– Usage
∗ Creates an empty LineNumberTable attribute.

• InnerClassesAttribute
public InnerClassesAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ Creates a InnerClassesAttribute attribute reading it from an

input stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool. The constant pool needs to have all the string
constant values used by this attribute.

org.ldp.jdasm.attribute– InnerClassesAttribute 177

Methods

• add
public void add(org.ldp.jdasm.attribute.InnerClassesElement
item)

– Usage
∗ Add a InnerClassesElement element to the table

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• clearElements
public void clearElements()

– Usage
∗ Clears all the items.

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• elementAt
public InnerClassesElement elementAt(int idx)

– Usage
∗ Returns the idx-th InnerClassesElement of the table

org.ldp.jdasm.attribute– InnerClassesAttribute 178

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx
)

– Usage
∗ Returns the idx-th IConstantPoolUser instance of this class.

• getElementSize
public int getElementSize()

– Usage
∗ Returns the number of items in this attribute.

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

org.ldp.jdasm.attribute– InnerClassesAttribute 179

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

org.ldp.jdasm.attribute– InnerClassesAttribute 180

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

org.ldp.jdasm.attribute– InnerClassesAttribute 181

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

org.ldp.jdasm.attribute– InnerClassesElement 182

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.9 Class InnerClassesElement

Class used inside the InnerClassesAttribute .

Declaration

public class InnerClassesElement

extends org.ldp.jdasm.constantpool.AConstantPoolUser

Constructors

• InnerClassesElement
public InnerClassesElement()

– Usage
∗ Default empty constructor.

• InnerClassesElement
public InnerClassesElement(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ Creates a InnerClassesElement attribute reading it from an

input stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool. The constant pool needs to have all the string
constant values used by this attribute.

• InnerClassesElement
public InnerClassesElement(java.lang.String innerClass,
java.lang.String outerClass, java.lang.String innerName,
short accessFlag)

– Usage
∗ Constructs a InnerClassesElement with all values specified.

Methods

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

org.ldp.jdasm.attribute– InnerClassesElement 183

– Usage
∗ Returns the number of IConstantPoolUser instances of this

class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• getAccessFlag
public short getAccessFlag()

– Usage
∗ Get access flags.

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx
)

– Usage
∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getInnerClass
public String getInnerClass()

– Usage
∗ Get the inner class name or null.

• getInnerName
public String getInnerName()

– Usage
∗ Get the inner name or null if anonymous.

• getOuterClass
public String getOuterClass()

org.ldp.jdasm.attribute– InnerClassesElement 184

– Usage
∗ Set the outer class name or null.

• setAccessFlag
public void setAccessFlag(short accessFlag)

– Usage
∗ Set access flags.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

• setInnerClass
public void setInnerClass(java.lang.String innerClass)

– Usage
∗ Set the inner class name or null.

• setInnerName
public void setInnerName(java.lang.String innerName)

– Usage
∗ Set the inner name or null if anonymous.

• setOuterClass
public void setOuterClass(java.lang.String outerClass)

– Usage
∗ Get the outer class name or null.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

org.ldp.jdasm.attribute– LineNumberTableAttribute 185

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.10 Class LineNumberTableAttribute

This class represents an Attribute of the java class file.

Declaration

public class LineNumberTableAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• LineNumberTableAttribute
public LineNumberTableAttribute()

– Usage
∗ Creates an empty LineNumberTable attribute.

• LineNumberTableAttribute
public LineNumberTableAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

org.ldp.jdasm.attribute– LineNumberTableAttribute 186

– Usage
∗ Creates a LineNumberTableAttribute attribute reading it from

an input stream whose cursor must point to the beginning of
the attribute just after the two bytes that reference the name in
the constant pool. The constant pool needs to have all the
string constant values used by this attribute.

In order to have a link with instructions, this constructor needs
the filled CodeAttribute it refers to.

Methods

• addLineNumber
public void addLineNumber(
org.ldp.jdasm.attribute.instruction.Instruction start pc,
int line number)

– Usage
∗ Adds a line number information for specified start pc.

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• clearElements
public void clearElements()

– Usage
∗ Clears all the items.

org.ldp.jdasm.attribute– LineNumberTableAttribute 187

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getElementSize
public int getElementSize()

– Usage
∗ Returns the number of items in this attribute.

• getLineNumber
public short getLineNumber(int idx)

– Usage
∗ Get the idx-th item’s line number

• getStartPc
public Instruction getStartPc(int idx)

– Usage
∗ Get the idx-th item’s start pc

• removeInstruction
public boolean removeInstruction(
org.ldp.jdasm.attribute.instruction.Instruction instruction
)

– Usage
∗ Search for given instruction: if it’s found, its line information

is removed and true is returned, otherwise false is returned.

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

org.ldp.jdasm.attribute– LineNumberTableAttribute 188

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

org.ldp.jdasm.attribute– LineNumberTableAttribute 189

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

org.ldp.jdasm.attribute– LineNumberTableAttribute 190

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

org.ldp.jdasm.attribute– LocalVariableTableAttribute 191

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.11 Class LocalVariableTableAttribute

This class represents an Attribute of the java class file.

This attribute uses the class LocalVariableTableElement as element of its table:

each of these element has information about the starting instruction, the length in

byte of the variable’s scope, the name of the variable and its descriptor.. all mapped

to an index into the local variable array. If you really want to use this manually to

add debugging information to your class see Instruction#getInstructionOffset() to

correctly fit in start pc and length fields.

Declaration

public class LocalVariableTableAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• LocalVariableTableAttribute
public LocalVariableTableAttribute()

– Usage
∗ Creates an empty LocalVariableTable attribute.

• LocalVariableTableAttribute
public LocalVariableTableAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

org.ldp.jdasm.attribute– LocalVariableTableAttribute 192

∗ Creates a LocalVariableTableAttribute attribute reading it
from an input stream whose cursor must point to the beginning
of the attribute just after the two bytes that reference the name
in the constant pool. The constant pool needs to have all the
string constant values used by this attribute. In order to have a
link with instructions, this constructor needs the filled
CodeAttribute it refers to.

Methods

• add
public void add(
org.ldp.jdasm.attribute.LocalVariableTableElement item)

– Usage
∗ Add a LocalVariableTableElement element to the table.

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• clearElements
public void clearElements()

– Usage
∗ Clears all the items.

• constantPoolValueSize
public int constantPoolValueSize()

org.ldp.jdasm.attribute– LocalVariableTableAttribute 193

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getElement
public LocalVariableTableElement getElement(int idx)

– Usage
∗ Returns the idx-th LocalVariableTableElement of the table.

• getElements
public LocalVariableTableElement getElements()

– Usage
∗ Returns all the LocalVariableTableElement of the table.

• getElementSize
public int getElementSize()

– Usage
∗ Returns the number of items in this attribute.

• removeInstruction
public boolean removeInstruction(
org.ldp.jdasm.attribute.instruction.Instruction instruction,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

org.ldp.jdasm.attribute– LocalVariableTableAttribute 194

∗ Search for given instruction as starting of a local variable
information: if it’s found, this information is removed and true
is returned, otherwise false is returned. If this instruction is
found to be an end scope instruction, some adjustment is done:
the new ending instruction becomes the previous one (code is
used for this purpose).

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

org.ldp.jdasm.attribute– LocalVariableTableAttribute 195

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

org.ldp.jdasm.attribute– LocalVariableTableAttribute 196

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

org.ldp.jdasm.attribute– LocalVariableTableElement 197

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

org.ldp.jdasm.attribute– LocalVariableTypeTableAttribute 198

A.3.12 Class LocalVariableTableElement

Class used inside the LocalVariableTableAttribute and inside

LocalVariableTypeTableAttribute classes: it has informations about the name and

descriptor or signature of the variable, start pc and length of the scope, index into

the local variable array.

Declaration

public class LocalVariableTableElement

extends java.lang.Object

Constructors

• LocalVariableTableElement
public LocalVariableTableElement()

– Usage
∗ Default empty constructor.

• LocalVariableTableElement
public LocalVariableTableElement(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage
∗ Creates a LocalVariableTableElement attribute reading it from

an input stream whose cursor must point to the beginning of
the attribute just after the two bytes that reference the name in
the constant pool. The constant pool needs to have all the
string constant values used by this attribute. In order to have a
link with instructions, this constructor needs the filled
CodeAttribute it refers to.

• LocalVariableTableElement
public LocalVariableTableElement(
org.ldp.jdasm.attribute.instruction.Instruction start pc,
org.ldp.jdasm.attribute.instruction.Instruction end pc,
java.lang.String name, java.lang.String descriptor, int
index)

– Usage
∗ Constructs a LocalVariableTableElement with all values

specified.
– Parameters

∗ end pc - it is the last inclusive instruction this scope is valid
until.

Methods

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

org.ldp.jdasm.attribute– LocalVariableTypeTableAttribute 199

A.3.13 Class LocalVariableTypeTableAttribute

This class represents an Attribute of the java class file.

This attribute uses the class LocalVariableTableElement as element of its table:

each of these element has information about the starting instruction, the length in

byte of the variable’s scope, the name of the variable and its signature.. all mapped

to an index into the local variable array. This attribute differs from

LocalVariableTableAttribute in that it provides signature information rather than

descriptor information. This difference is only significant for variable whose type is a

generic reference type. Such variables will appear in both tables, while variables of

other types will appear only in LocalVariableTableAttribute . Nevertheless, the

LocalVariableTableElement class is used both in LocalVariableTableAttribute and

in LocalVariableTypeTableAttribute

Declaration

public class LocalVariableTypeTableAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• LocalVariableTypeTableAttribute
public LocalVariableTypeTableAttribute()

– Usage
∗ Creates an empty LocalVariableTypeAttribute attribute.

• LocalVariableTypeTableAttribute
public LocalVariableTypeTableAttribute(java.io.InputStream
is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage
∗ Creates a LocalVariableTypeTableAttribute attribute reading it

from an input stream whose cursor must point to the beginning
of the attribute just after the two bytes that reference the name
in the constant pool. The constant pool needs to have all the
string constant values used by this attribute. In order to have a
link with instructions, this constructor needs the filled
CodeAttribute it refers to.

Methods

• add
public void add(
org.ldp.jdasm.attribute.LocalVariableTableElement item)

– Usage
∗ Add a LocalVariableTableElement element to the table

• build
public int build(byte [] tofill, int atindex)

org.ldp.jdasm.attribute– LocalVariableTypeTableAttribute 200

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• clearElements
public void clearElements()

– Usage
∗ Clears all the items.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• elementAt
public LocalVariableTableElement elementAt(int idx)

– Usage
∗ Returns the idx-th LocalVariableTableElement of the table

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantValue
public Object getConstantValue(int idx)

org.ldp.jdasm.attribute– LocalVariableTypeTableAttribute 201

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getElementSize
public int getElementSize()

– Usage
∗ Returns the number of items in this attribute.

• removeInstruction
public boolean removeInstruction(
org.ldp.jdasm.attribute.instruction.Instruction instruction,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage
∗ Search for given instruction as starting of a local variable

information: if it’s found, this information is removed and true
is returned, otherwise false is returned. If this instruction is
found to be an end scope instruction, some adjustment is done:
the new ending instruction becomes the previous one (code is
used for this purpose).

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

org.ldp.jdasm.attribute– LocalVariableTypeTableAttribute 202

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

org.ldp.jdasm.attribute– LocalVariableTypeTableAttribute 203

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

org.ldp.jdasm.attribute– LocalVariableTypeTableAttribute 204

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

org.ldp.jdasm.attribute– SignatureAttribute 205

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.14 Class SignatureAttribute

This class represents an Attribute of the java class file.

This attribute is intended to hold the signature of a class (if it is an attribute of

DClass), of a method (if it is an attribute of DMethod) or of a field (if it is an

attribute of DField).

Declaration

public class SignatureAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• SignatureAttribute
public SignatureAttribute()

– Usage
∗ Creates an empty SignatureAttribute attribute.

org.ldp.jdasm.attribute– SignatureAttribute 206

• SignatureAttribute
public SignatureAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ Creates a Signature attribute reading it from an input stream

whose cursor must point to the beginning of the attribute just
after the two bytes that reference the name in the constant
pool.

• SignatureAttribute
public SignatureAttribute(java.lang.String signatureValue
)

– Usage
∗ Creates a SignatureAttribute attribute with given signature

value.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

org.ldp.jdasm.attribute– SignatureAttribute 207

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the

control is done only at build time)

• getSignatureValue
public String getSignatureValue()

– Usage
∗ Get the value of the signature in this attribute

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

• setSignatureValue
public void setSignatureValue(java.lang.String
signatureValue)

– Usage
∗ Set the value of the signature in this attribute

org.ldp.jdasm.attribute– SignatureAttribute 208

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

org.ldp.jdasm.attribute– SignatureAttribute 209

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

org.ldp.jdasm.attribute– SignatureAttribute 210

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

org.ldp.jdasm.attribute– SourceDebugExtensionAttribute 211

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.15 Class SourceDebugExtensionAttribute

This class represents an Attribute of the java class file.

This attribute (attribute of DClass) holds a string in UFT-8 format with no

terminating zero byte. The string will be interpreted as extended debugging

information. The content of this string has no semantic effect on the jvm.

Declaration

public class SourceDebugExtensionAttribute

extends org.ldp.jdasm.DAttribute

org.ldp.jdasm.attribute– SourceDebugExtensionAttribute 212

Constructors

• SourceDebugExtensionAttribute
public SourceDebugExtensionAttribute()

– Usage
∗ Creates an empty SourceDebugExtensionAttribute.

• SourceDebugExtensionAttribute
public SourceDebugExtensionAttribute(byte [] content)

– Usage
∗ Creates a SourceDebugExtensionAttribute with specific

content.

• SourceDebugExtensionAttribute
public SourceDebugExtensionAttribute(java.io.InputStream
is)

– Usage
∗ Creates a SourceDebugExtensionAttribute attribute reading it

from an input stream whose cursor must point to the beginning
of the attribute just after the two bytes that reference the name
in the constant pool.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

org.ldp.jdasm.attribute– SourceDebugExtensionAttribute 213

∗ Returns a printable info string

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getDebugInfo
public byte getDebugInfo()

– Usage
∗ Get the content of this SourceDebugExtensionAttribute.

• setDebugInfo
public void setDebugInfo(byte [] info)

– Usage
∗ Set the content of this SourceDebugExtensionAttribute.

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

org.ldp.jdasm.attribute– SourceDebugExtensionAttribute 214

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

org.ldp.jdasm.attribute– SourceDebugExtensionAttribute 215

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

org.ldp.jdasm.attribute– SourceDebugExtensionAttribute 216

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

org.ldp.jdasm.attribute– SourceFileAttribute 217

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.16 Class SourceFileAttribute

This class represents an Attribute of the java class file.

This attribute is intended to hold the name of the source file from which this class

file was compiled.

Declaration

public class SourceFileAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• SourceFileAttribute
public SourceFileAttribute()

– Usage
∗ Creates an empty SourceFile attribute.

• SourceFileAttribute
public SourceFileAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

– Usage
∗ Creates a SourceFileAttribute attribute reading it from an

input stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool.

• SourceFileAttribute
public SourceFileAttribute(java.lang.String
sourceFileName)

– Usage
∗ Creates a SourceFile attribute with given source file name.

Methods

• build
public int build(byte [] tofill, int atindex)

– Usage
∗ It builds the content of this class into a final byte array. Such

array is passed as first argument, and the index from where
start to insert bytes is the second argument.

org.ldp.jdasm.attribute– SourceFileAttribute 218

– Parameters
∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage
∗ It builds the content of this class into an output stream. This

method is a faster version of int) since it doesn’t need to call
the IBuildable#getBuildLength() before.

– Parameters
∗ output - the stream to write onto

– Returns - the number of byte inserted
– Exceptions

∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage
∗ Returns a printable info string

• constantPoolValueSize
public int constantPoolValueSize()

– Usage
∗ Returns the number of values that this constant pool user

wants to insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage
∗ Returns the length of portion of byte array the IBuildable class

is going to create. If this class has instances of other IBuildable
classes, then it will return the whole sum of all the various
getBuildLength().

• getConstantValue
public Object getConstantValue(int idx)

– Usage
∗ Returns the idx-th value that this constant pool user wants to

insert into the constant pool.
– Exceptions

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage
∗ Returns the value type of the idx-th value that this constant

pool user wants to insert into the constant pool. The list of the
types is declared in DConstantPool

– Exceptions

org.ldp.jdasm.attribute– SourceFileAttribute 219

∗ java.lang.Exception - if the value is not ready (since the
control is done only at build time)

• getSourceFileName
public String getSourceFileName()

– Usage
∗ Get the name of the source file hold in this attribute

• setConstantValueIndex
public void setConstantValueIndex(int idx, short
cpool index)

– Usage
∗ The constant pool tells the user that the value retrieved with

AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters
∗ idx - the index of the value mapped with the ones returned by

getConstantValue(int)
∗ cpool index - the index of the value in the constant pool

• setSourceFileName
public void setSourceFileName(java.lang.String
sourceFileName)

– Usage
∗ Set the name of the source file hold in this attribute

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

org.ldp.jdasm.attribute– SourceFileAttribute 220

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

org.ldp.jdasm.attribute– SourceFileAttribute 221

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

org.ldp.jdasm.attribute– SourceFileAttribute 222

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

org.ldp.jdasm.attribute– SyntheticAttribute 223

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

A.3.17 Class StackMapTableAttribute

Unimplemented Attribute.

Declaration

public class StackMapTableAttribute

extends java.lang.Object

Constructors

• StackMapTableAttribute
public StackMapTableAttribute()

A.3.18 Class SyntheticAttribute

This class represents an Attribute of the java class file.

A class member that does not appear in the source code must be marked using a

Synthetic attribute.

Declaration

public class SyntheticAttribute

extends org.ldp.jdasm.DAttribute

Constructors

• SyntheticAttribute
public SyntheticAttribute()

– Usage
∗ Creates a Synthetic attribute.

• SyntheticAttribute
public SyntheticAttribute(java.io.InputStream is,
org.ldp.jdasm.DConstantPool cpool)

org.ldp.jdasm.attribute– SyntheticAttribute 224

– Usage
∗ Creates a SyntheticAttribute attribute reading it from an input

stream whose cursor must point to the beginning of the
attribute just after the two bytes that reference the name in the
constant pool.

Methods inherited from class org.ldp.jdasm.DAttribute

(in A.1.6, page 90)
• build

public int build(byte [] tofill, int atindex)

– Usage

∗ It builds the content of this class into a final byte array. Such array
is passed as first argument, and the index from where start to insert
bytes is the second argument.

– Parameters

∗ tofill - the array to fill
∗ atindex - the index from where start to fill

– Returns - the number of byte inserted

• build
public int build(java.io.OutputStream output)

– Usage

∗ It builds the content of this class into an output stream. This
method is a faster version of int) since it doesn’t need to call the
IBuildable#getBuildLength() before.

– Parameters

∗ output - the stream to write onto

– Returns - the number of byte inserted

– Exceptions
∗ on - error while writing onto the stream

• classFileInfo
public String classFileInfo(int indent level)

– Usage

∗ Returns a printable info string

• constantPoolUserChildSize
public int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getBuildLength
public int getBuildLength()

– Usage

∗ Returns the length of portion of byte array the IBuildable class is
going to create. If this class has instances of other IBuildable classes,
then it will return the whole sum of all the various getBuildLength().

• getConstantPoolUserChild
public AConstantPoolUser getConstantPoolUserChild(int idx)

– Usage

org.ldp.jdasm.attribute– SyntheticAttribute 225

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name).

• getDAttributeFromInputStream
public static DAttribute getDAttributeFromInputStream(

java.io.InputStream is, org.ldp.jdasm.DConstantPool cpool,
org.ldp.jdasm.attribute.CodeAttribute code)

– Usage

∗ This function read an Attribute from an input stream whose cursor
must point to the first byte (which specify the index into the
constant pool of the name). If the attribute’s parent is a
CodeAttribute, it must be specified as argument to allow the
LineNumberTableAttribute to have link to instructions.

• getName
public String getName()

– Usage

∗ Get the name of the attribute.

• setConstantValueIndex
public void setConstantValueIndex(int idx, short cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

• setName
public void setName(java.lang.String name)

– Usage

∗ Set the name of the attribute.

org.ldp.jdasm.attribute– SyntheticAttribute 226

Methods inherited from class
org.ldp.jdasm.attribute.Attributable

(in A.3.2, page 136)
• addAttribute

public DAttribute addAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Adds a DAttribute.

– Returns - the inserted DAttribute

• attributeCount
public int attributeCount()

– Usage

∗ Returns the number of attribute for this class

• getAttribute
public DAttribute getAttribute(int idx)

– Usage

∗ Get the DAttribute at specified position

• getAttribute
public DAttribute getAttribute(java.lang.String name)

– Usage

∗ Returns the DAttribute with specified name, or null if it doesn’t
exist.

• getAttributes
public DAttribute getAttributes()

– Usage

∗ Returns all the attributes

• hasAttribute
public boolean hasAttribute(java.lang.String name)

– Usage

∗ Returns true if an attribute with given name exists.

• removeAttribute
public boolean removeAttribute(org.ldp.jdasm.DAttribute attr)

– Usage

∗ Removes the specified DAttribute (match on equals())

– Returns - true if the attribute is removed (if it was present), false it it is
not present in the list.

• removeAttribute
public void removeAttribute(int idx)

– Usage

∗ Removes the DAttribute at specified position

• removeAttribute
public boolean removeAttribute(java.lang.String name)

– Usage

∗ Removes the DAttribute with specified name. Returns true if it is
removed (if it was present), false if it is not present in the list.

org.ldp.jdasm.attribute– SyntheticAttribute 227

Methods inherited from class
org.ldp.jdasm.constantpool.AConstantPoolUser

(in A.2.4, page 97)
• constantPoolUserChildSize

public abstract int constantPoolUserChildSize()

– Usage

∗ Returns the number of IConstantPoolUser instances of this class.

• constantPoolValueSize
public abstract int constantPoolValueSize()

– Usage

∗ Returns the number of values that this constant pool user wants to
insert into the constant pool.

• getConstantPoolUserChild
public abstract AConstantPoolUser getConstantPoolUserChild(int

idx)

– Usage

∗ Returns the idx-th IConstantPoolUser instance of this class.

• getConstantValue
public abstract Object getConstantValue(int idx)

– Usage

∗ Returns the idx-th value that this constant pool user wants to insert
into the constant pool.

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• getConstantValueType
public abstract int getConstantValueType(int idx)

– Usage

∗ Returns the value type of the idx-th value that this constant pool
user wants to insert into the constant pool. The list of the types is
declared in DConstantPool

– Exceptions
∗ java.lang.Exception - if the value is not ready (since the control is

done only at build time)

• setConstantValueIndex
public abstract void setConstantValueIndex(int idx, short

cpool index)

– Usage

∗ The constant pool tells the user that the value retrieved with
AConstantPoolUser#getConstantValue(int) at index ”idx” has
received the ”cpool index” index in the constant pool.

– Parameters

∗ idx - the index of the value mapped with the ones returned by
getConstantValue(int)

∗ cpool index - the index of the value in the constant pool

Appendix B

JCodeBrick API
Documentation

B.1 Package org.ldp.jcodebrick

Classes
BrickedClass .229

BrickedClass is intended to make easy the instantiation of manipulated CbClasses.
BrickedMethod .231

This class allows you to invoke the code contained by a fragment.
BrickOperation .233

BrickOperation.InsertionPosition . 234
Position of fragment insertions. You can insert a fragment A in four different
positions relative to another fragment B.

BEFORE START: you insert A before the B beginner marker
AFTER START: you insert A after the B beginner marker
BEFORE END: you insert A before the B ending marker
AFTER END: you insert A after the B ending marker

BuildException .235
This exception is raised when the build process fails for some reason.

CbClass . 237
...no description...

Fragment . 240
...no description...

LocalVariableTableNotPresentException . 245
When a needed LocalVariableTableAttribute is not found this exception is raised.

MultiAnnotation . 246
Class that comes in help to parse java classes through the reflection in search of
Annotation suitable from JCodeBrick.

228

org.ldp.jcodebrick– BrickedClass 229

B.1.1 Classes

B.1.2 Class BrickedClass

BrickedClass is intended to make easy the instantiation of manipulated CbClasses. It

provides several overload of newInstance method

Declaration

public class BrickedClass

extends java.lang.Object

Constructors

• BrickedClass
public BrickedClass(java.lang.String realName,
java.lang.Class c, byte [] bytecode)

– Usage
∗ Construct the BrickedClass on a real class name and an already

loaded Class
– Parameters

∗ realName - the name of the real class before being manipulated
∗ c - the Class this BrickedClass refers to

Methods

• getClazz
public Class getClazz()

– Usage
∗ Returns the java class represented by this BrickedClass.

• getName
public String getName()

– Usage
∗ Returns the name of the java class represented by this

BrickedClass. This name wont be the name of the class you
brick-operate onto, but the new generated name of the
generated bricked class.

• getRealName
public String getRealName()

– Usage
∗ Returns the name of the class this BrickedClass refers to (the

real one, not the bricked one).

• newInstance
public Object newInstance()

– Usage
∗ It returns an instance of this class for a constructor with no

argument

org.ldp.jcodebrick– BrickedMethod 230

– Returns - an instance of type Class
– Exceptions

∗ java.lang.InstantiationException -
∗ java.lang.IllegalAccessException -

• newInstance
public Object newInstance(java.lang.Class [] types,
java.lang.Object [] args)

– Usage
∗ It returns an instance of this class for a constructor with any

kind of argument
– Parameters

∗ types - an array of N types, with N equal to the size of args
∗ args - an array of N argument of type specified in types

– Returns - an instance of type Class
– Exceptions

∗ java.lang.SecurityException -
∗ java.lang.NoSuchMethodException -
∗ java.lang.IllegalArgumentException -
∗ java.lang.InstantiationException -
∗ java.lang.IllegalAccessException -
∗ java.lang.reflect.InvocationTargetException -

• newInstance
public Object newInstance(java.lang.Object [] args)

– Usage
∗ It returns an instance of this class for a constructor with any

kind of argument If the class constructor you want to call takes
argument of primitive types (int,float..), then pass object of
type Integer, Float.. and they will be automagically converted.
If you want to use a constructor that need class Integer, Float..
you cannot use this method, see Object[]) overload

– Parameters
∗ args - The argument of the constructor you want to use:

Integer, Float.. are converted in int, float..
– Returns - an instance of type Class
– Exceptions

∗ java.lang.SecurityException -
∗ java.lang.IllegalArgumentException -
∗ java.lang.NoSuchMethodException -
∗ java.lang.InstantiationException -
∗ java.lang.IllegalAccessException -
∗ java.lang.reflect.InvocationTargetException -

• toClass
public Class toClass()

– Usage
∗ Returns the java class represented by this BrickedClass.

• writeToFile
public void writeToFile(java.lang.String filename)

org.ldp.jcodebrick– BrickedMethod 231

B.1.3 Class BrickedMethod

This class allows you to invoke the code contained by a fragment.

You build the BrickedMethod with a source fragment, and a new class is created and
loaded: the anonymous class which contains the fragment made method. The class is
named ”anonymousX”, where X is an incremental number. The only method this
class contains is:

public static returnType exec(argument)

The returnType type is set by watching inside the fragment code for a return
instruction: if no returning instruction is found, then the method is ”void”; if, for
example, a LRETURN is found, then the method is ”long”. For any reference
(ARETURN), the method is ”Object”.

The arguments are the free variables: see BrickedMethod#getArgumentSize() ,

BrickedMethod#getArgumentTypes() , BrickedMethod#getArgumentType(int)

Declaration

public class BrickedMethod

extends java.lang.Object

Constructors

• BrickedMethod
public BrickedMethod(org.ldp.jcodebrick.Fragment f)

– Usage
∗ The default Constructor.

When you constructs a BrickedMethod the anonymous class
that will declare the fragment method is soon build. If this
build fails, you’ll get an exception. After the constructor call,
you will be able to invoke the static method by using
BrickedMethod#Invoke(Object...) , or you can get the java
Method and use it by your own with
BrickedMethod#getMethod()

Methods

• getArgumentName
public String getArgumentName(int idx)

– Usage
∗ Returns the name of the argument at position idx that this

bricked method takes. You have to specify all the arguments
when calling BrickedMethod#Invoke(Object[])

• getArgumentNames
public String getArgumentNames()

– Usage

org.ldp.jcodebrick– BrickedMethod 232

∗ Returns the name of the arguments this bricked method takes.
You have to specify these arguments when calling
BrickedMethod#Invoke(Object[])

• getArgumentSize
public int getArgumentSize()

– Usage
∗ Returns the number of arguments this bricked method takes.

You have to specify these arguments when calling
BrickedMethod#Invoke(Object[])

• getArgumentType
public String getArgumentType(int idx)

– Usage
∗ Returns the type of the argument at position idx that this

bricked method takes. You have to specify all the arguments
when calling BrickedMethod#Invoke(Object[])

• getArgumentTypes
public String getArgumentTypes()

– Usage
∗ Returns the type of the arguments this bricked method takes.

You have to specify these arguments when calling
BrickedMethod#Invoke(Object[])

• getDClass
public DClass getDClass()

– Usage
∗ Returns the DClass used in this bricked method.

• getMethod
public Method getMethod()

– Usage
∗ Returns the java Method created by this BrickedMethod. Such

method is both public and static, and has the name ”exec”. It’s
argument list is computed with the free variables list obtained
by the fragment (variables that are used inside the block of
code, but declared outside)

• getSourceFragment
public Fragment getSourceFragment()

– Usage
∗ Returns the original Fragment that this BrickedMethod has

been created with.

• getThrowableExceptionSize
public int getThrowableExceptionSize()

– Usage
∗ Returns the number of exceptions this bricked method can

throws.

• getThrowableExceptionType
public String getThrowableExceptionType()

org.ldp.jcodebrick– BrickOperation 233

– Usage
∗ Returns the type of the exceptions this bricked method can

throws.

• getThrowableExceptionType
public String getThrowableExceptionType(int idx)

– Usage
∗ Returns the type of the exception at position idx that this

bricked method can throws.

• Invoke
public Object Invoke()

– Usage
∗ Invoke the fragment method with no argument.

– See Also
∗ org.ldp.jcodebrick.BrickedMethod.Invoke(Object...)

• Invoke
public Object Invoke(java.lang.Object [] args)

– Usage
∗ Get the fragment method and invoke it. You can specify the

arguments of the method, which will be mapped with the free
variables in the block of code represented by the source
fragment BrickedMethod#getSourceFragment() . If you want
to be able to invoke the method by your self, for example to
catch the exception, you can use BrickedMethod#getMethod()
and then the Invoke standard reflection api.

– Returns - If the code returned a value, you’ll get such value as the
return value of this method.

– See Also
∗ org.ldp.jcodebrick.BrickedMethod.getMethod()

• methodInfo
public String methodInfo()

– Usage
∗ Returns a full description of the bricked method.

• showInfo
public void showInfo()

– Usage
∗ Prints out the description of the bricked method.

B.1.4 Class BrickOperation

Declaration

public class BrickOperation

extends java.lang.Object

org.ldp.jcodebrick– BrickOperation.InsertionPosition 234

Methods

• getBrickOperationInfo
public String getBrickOperationInfo()

– Usage
∗ Returns an informational printable string.

• getInsertionPosition
public BrickOperation.InsertionPosition getInsertionPosition(
)

• getNewJCodeBrickId
public int getNewJCodeBrickId()

• getObjectFragment
public Fragment getObjectFragment()

• getOperationType
public BrickOperation.OperationType getOperationType()

• getRemoveFromCbClass
public CbClass getRemoveFromCbClass()

• getSourceFragment
public Fragment getSourceFragment()

• setInsertionPosition
public void setInsertionPosition(
org.ldp.jcodebrick.BrickOperation.InsertionPosition position
)

B.1.5 Class BrickOperation.InsertionPosition

Position of fragment insertions.

You can insert a fragment A in four different positions relative to another fragment
B.

BEFORE START: you insert A before the B beginner marker

AFTER START: you insert A after the B beginner marker

BEFORE END: you insert A before the B ending marker

AFTER END: you insert A after the B ending marker

Declaration

public static final class BrickOperation.InsertionPosition

extends java.lang.Enum

Methods

• valueOf
public static BrickOperation.InsertionPosition valueOf(
java.lang.String name)

• values
public static BrickOperation.InsertionPosition values()

org.ldp.jcodebrick– BuildException 235

Methods inherited from class java.lang.Enum

• compareTo
public final int compareTo(java.lang.Enum arg0)

• equals
public final boolean equals(java.lang.Object arg0)

• getDeclaringClass
public final Class getDeclaringClass()

• hashCode
public final int hashCode()

• name
public final String name()

• ordinal
public final int ordinal()

• toString
public String toString()

• valueOf
public static Enum valueOf(java.lang.Class arg0,
java.lang.String arg1)

B.1.6 Class BuildException

This exception is raised when the build process fails for some reason. In its details

you can get all the information about the error.

Declaration

public class BuildException

extends java.lang.Exception

Serializable Fields

• private BrickOperation.OperationType operationType

–

• private String errorMessage

–

Constructors

• BuildException
public BuildException()

– Usage
∗ Constructs an empty exception.

• BuildException
public BuildException(
org.ldp.jcodebrick.BrickOperation.OperationType
operationType, java.lang.String errorMessage)

– Usage

org.ldp.jcodebrick– BuildException 236

∗ Constructs the exception with given operationType and given
errorMessage.

• BuildException
public BuildException(java.lang.String errorMessage)

– Usage
∗ Constructs the exception with given errorMessage.

Methods

• getErrorMessage
public String getErrorMessage()

– Usage
∗ Returns the message associated to this exception.

• getOperationType
public BrickOperation.OperationType getOperationType()

– Usage
∗ Returns the operation type that raised this exception.

• setOperationType
public void setOperationType(
org.ldp.jcodebrick.BrickOperation.OperationType optype)

– Usage
∗ Set the operation type to this exception.

• toString
public String toString()

– Usage
∗ Returns the message associated to this exception.

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable arg0
)

• printStackTrace
public void printStackTrace()

org.ldp.jcodebrick– CbClass 237

• printStackTrace
public void printStackTrace(java.io.PrintStream arg0)

• printStackTrace
public void printStackTrace(java.io.PrintWriter arg0)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [] arg0)

• toString
public String toString()

B.1.7 Class CbClass

Declaration

public class CbClass

extends java.lang.Object

Constructors

• CbClass
public CbClass(java.lang.Class c)

– Usage
∗ Constructs a CbClass reading the data from a java class. The

class is inspected through the reflection and all the JCodeBrick
annotations are loaded and indexed.

Methods

• build
public BrickedClass build()

– Usage
∗ Builds the CbClass to create a java class. It returns a

BrickedClass , a container of the created java class.

• getCbClassInfo
public String getCbClassInfo()

– Usage
∗ Returns an informational printable string.

• getClazz
public Class getClazz()

– Usage
∗ Returns the class on which this CbClass has been created.

• getDClass
public DClass getDClass()

– Usage
∗ Used by the fragments.

org.ldp.jcodebrick– CbClass 238

• getFragment
public Fragment getFragment(java.lang.String name)

– Usage
∗ Retrieve the first fragment found with the given name, or null if

no fragment is found.

• getFragment
public Fragment getFragment(java.lang.String name, int
n)

– Usage
∗ Retrieve the n-th fragment with the given name searched in any

method with no order, or null if no fragment is found.

• getFragment
public Fragment getFragment(java.lang.String name,
java.lang.reflect.Method method, int n)

– Usage
∗ Retrieve the n-th fragment with the given name in the given

method
– Parameters

∗ name - the name of the annotation the block refers to
∗ method - if not null, only block in the given method is searched
∗ n - the n-th fragment found

– Returns - the searched fragment, or null if no fragment is found.

• getFragmentById
public Fragment getFragmentById(int id)

– Usage
∗ Retrieve the fragment with specified id. Returns null if no such

fragment is found.

• getFragments
public Fragment getFragments()

– Usage
∗ Retrieve all the fragments found into this class.

• getFragments
public Fragment getFragments(
java.lang.annotation.Annotation annotation)

– Usage
∗ Retrieve all the fragments found into this class matching the

given annotation.

• getFragments
public Fragment getFragments(
java.lang.annotation.Annotation annotation,
java.lang.reflect.Method method)

– Usage
∗ Retrieve all the fragments found into this class matching the

given annotation and method
– Parameters

∗ annotation - the annotation of the block

org.ldp.jcodebrick– CbClass 239

∗ method - if Method is not given (null) this argument is ignored

• getFragments
public Fragment getFragments(java.lang.String name)

– Usage
∗ Retrieve all the fragments found into this class matching the

given name.

• getFragments
public Fragment getFragments(java.lang.String name,
java.lang.reflect.Method method)

– Usage
∗ Retrieve all the fragments found into this class matching the

given name and method
– Parameters

∗ name - the name of the annotation of the block
∗ method - if Method is not given (null) this argument is ignored

• getFragmentsVector
public Vector getFragmentsVector()

– Usage
∗ Retrieve all the fragments found into this class.

• getFragmentsVector
public Vector getFragmentsVector(java.lang.String name)

– Usage
∗ Retrieve all the fragments found into this class matching the

given name.

• getFragmentsVector
public Vector getFragmentsVector(java.lang.String name,
java.lang.reflect.Method method)

– Usage
∗ Retrieve all the fragments found into this class matching the

given name and method
– Parameters

∗ name - the name of the annotation of the block
∗ method - if Method is not given (null) this argument is ignored

• getOperationAt
public BrickOperation getOperationAt(int i)

– Usage
∗ Returns the i-th registered operation.

– See Also
∗ org.ldp.jcodebrick.CbClass.operationsSize()

∗
org.ldp.jcodebrick.CbClass.addOperation(BrickOperation)

• operationsSize
public int operationsSize()

– Usage

org.ldp.jcodebrick– Fragment 240

∗ Returns the number of BrickOperation registered to be
executed at build time.

• removeInsertedFragment
public void removeInsertedFragment(int id, boolean
onlyMarkers)

– Usage
∗ Removes a fragment previously inserted with Fragment) .

The new inserted fragment always receives a new unique
jcodebrickid (the return value of Fragment)); you have to
specify this id in order to remove the new inserted fragment.
Consider that if you insert A into B, then B into C, and then
you remove A with this function, you will remove A from B and
from C.

– Parameters
∗ id - The jcodebrickid of a fragment previously inserted with

Fragment)
∗ onlyMarkers - if true, only the markers are removed, otherwise

both the markers and the code.
– See Also

∗
org.ldp.jcodebrick.Fragment.insertFragment(org.ldp.jcodebrick.BrickOperation.InsertionPosition,
Fragment)

• showInfo
public void showInfo()

– Usage
∗ Prints on the System.out informations about this CbClass.

B.1.8 Class Fragment

Declaration

public class Fragment

extends java.lang.Object

Methods

• BrickBegin
public static void BrickBegin(int id)

– Usage
∗ Does nothing.

This method is used by the JCodeBrick parser as marker at the
begin of a fragment

• BrickEnd
public static void BrickEnd(int id)

– Usage

org.ldp.jcodebrick– Fragment 241

∗ Does nothing.

This method is used by the JCodeBrick parser as marker at the
end of a fragment

• buildFragmentSearcher
public static InstructionSearcher buildFragmentSearcher(
org.ldp.jdasm.attribute.CodeAttribute code, int
jcodebrickid)

– Usage
∗ Returns an InstructionSearcher able to find the fragment

markers into given CodeAttribute .
– Parameters

∗ code - The CodeAttribute the fragment markers refers to
∗ jcodebrickid - The unique id of the fragment markers

• buildInstructionSearcher
public InstructionSearcher buildInstructionSearcher()

– Usage
∗ Returns an InstructionSearcher able to find this fragment

markers.

• delete
public void delete()

– Usage
∗ Deletes the fragment and its markers. No further operations

that was referring to such markers will be available.
– See Also

∗ org.ldp.jcodebrick.Fragment.undoDelete()

• delete
public void delete(boolean withMarker)

– Usage
∗ Deletes this fragment and all the code contained inside its

marker.
– Parameters

∗ withMarker - if true, the markers are deleted too, otherwise the
markers are left while the code is removed.

– See Also
∗ org.ldp.jcodebrick.Fragment.undoDelete(boolean)

• deleteMarker
public void deleteMarker()

– Usage
∗ Deletes the marker of this fragment. The fragment becomes

untrackable and no further operations will be available on it.
– See Also

∗ org.ldp.jcodebrick.Fragment.delete()

∗ org.ldp.jcodebrick.Fragment.undoDeleteMarker()

• getAnnotation
public Annotation getAnnotation()

org.ldp.jcodebrick– Fragment 242

– Usage
∗ Returns the java Annotation associated to this Fragment.

• getDMethod
public DMethod getDMethod()

– Usage
∗ Returns the JDasm DMethod that encloses this Fragment.

• getFragmentCodeAttribute
public CodeAttribute getFragmentCodeAttribute()

– Usage
∗ Returns the code of this fragment.

• getFragmentInfo
public String getFragmentInfo()

– Usage
∗ Returns an informational printable string.

• getFreeVariable
public Fragment.FreeVariable getFreeVariable(int idx)

– Usage
∗ Returns the free variable at given index.

– See Also
∗ org.ldp.jcodebrick.Fragment.getFreeVariableSize()

∗ org.ldp.jcodebrick.Fragment.getFreeVariables()

• getFreeVariables
public Fragment.FreeVariable getFreeVariables()

– Usage
∗ Returns all the free variables of this fragment.

– See Also
∗ org.ldp.jcodebrick.Fragment.getFreeVariableSize()

∗ org.ldp.jcodebrick.Fragment.getFreeVariable(int) (in

B.1.8, page 242)

• getFreeVariableSize
public int getFreeVariableSize()

– Usage
∗ Returns the number variables used in this fragment that are

declared somewhere in this fragment method outside the
fragment.

– See Also
∗ org.ldp.jcodebrick.Fragment.getFreeVariable(int) (in

B.1.8, page 242)

∗ org.ldp.jcodebrick.Fragment.getFreeVariables()

• getJCodebrickid
public int getJCodebrickid()

– Usage
∗ Returns the JCodeBrick id associated to this Fragment.

org.ldp.jcodebrick– Fragment 243

• getMethod
public Method getMethod()

– Usage
∗ Returns the java Method that encloses this Fragment.

• getMethodCodeAttribute
public CodeAttribute getMethodCodeAttribute()

– Usage
∗ Returns the code of the method that encloses this fragment.

• getName
public String getName()

– Usage
∗ Returns the name of this Fragment (that is the annotation

name).

• insertFragment
public int insertFragment(
org.ldp.jcodebrick.BrickOperation.InsertionPosition where,
org.ldp.jcodebrick.Fragment what)

– Usage
∗ This is an overload of Fragment, String[]) that doesn’t offer a

way to have a variable mapping.
– Parameters

∗ where - The position the fragment will be insert into.
∗ what - The fragment that must be inserted close to this one.

– Returns - Returns a new unique jcodebrickid. This id can be used
to abort the effect of this operation using
CbClass#removeInsertedFragment(int) .

– See Also
∗
org.ldp.jcodebrick.Fragment.insertFragment(org.ldp.jcodebrick.BrickOperation.InsertionPosition,
Fragment, String[])

• insertFragment
public int insertFragment(
org.ldp.jcodebrick.BrickOperation.InsertionPosition where,
org.ldp.jcodebrick.Fragment what, java.lang.String []
variableMapping)

– Usage
∗ Insert a fragment in a position relative to this fragment.

You can insert any fragment in one of this four position:

BrickOperation.InsertionPosition.BEFORE START: the fragment is inserted before the starting marker
BrickOperation.InsertionPosition.AFTER START: the fragment is inserted after the starting marker
BrickOperation.InsertionPosition.BEFORE END: the fragment is inserted before the ending marker
BrickOperation.InsertionPosition.AFTER END: the fragment is inserted after the ending marker

The new fragment will have a different two new markers at the
beginning and at the end of its position. These markers use a
new unique id, so delete operations on the original fragment

org.ldp.jcodebrick– Fragment 244

wont delete this new inserted one; to delete this fragment as
subsequent operation you can call
CbClass#removeInsertedFragment(int) using the unique id
returned by this method.

When you perform an insertion of a fragment there are few
things you should care of.

Try-Catch block: if the object fragment contains a code that
was protected by a try block, (but no catch handler is part of
the fragment) then it is added with a special try-catch block
that catches any exception and raise a new
java.lang.RuntimeException.

Returns: in the object fragment code you can find a return
instruction whose type is incompatible with the return type of
the method. If this situation occurs, this instruction is replaced
with a return of the correct type according to the method
return type: if it should return void, then a RETURN is added
in place of the old return, otherwise two instructions are added:
the first will push onto the stack a default value of the correct
type (that is false, zero or null for a boolean, any number or any
reference), and the second will return the pushed default value.

Variable mapping: you can encounter this situation:

..
int n = 10;
..
[Begin of the object Fragment]
.. int q = n / 5; ..
[End of the object Fragment]
..

In this case the object fragment uses the variable n but it
doesn’t know where it comes from. You can use a variable
mapping to inform it to use another local variable when n is
should be moved from the local variable array onto the stack.
Example:

[method of the source Fragment]
..
int k = 10;
..
[point where the object Fragment is inserted]
..

Through the variable mapping (variableMapping argument)
you can specify that the new fragment copied must use k
instead of n when needed.

Other registers: any other register used that can conflict
with the original method will be simply shifted to upper values.

– Parameters

org.ldp.jcodebrick– LocalVariableTableNotPresentException 245

∗ where - The position the fragment will be insert into.
∗ what - The fragment that must be inserted close to this one.
∗ variableMapping - An array of even strings reporting at k

position (with k%2 == 0) the name of the variable in the object
fragment that must be covered by the variable in the source
method named as specified at position k+1

– Returns - Returns a new unique jcodebrickid. This id can be used
to abort the effect of this operation using
CbClass#removeInsertedFragment(int) .

– See Also
∗ org.ldp.jcodebrick.Fragment.getUsedVariableSize()

∗ org.ldp.jcodebrick.Fragment.getFreeVariableNames()

∗ org.ldp.jcodebrick.Fragment.getUsedVariableTypes()

• insertWrap
public void insertWrap(
org.ldp.jcodebrick.BrickOperation.InsertionPosition
position, java.lang.String className, java.lang.String
methodName)

– Usage
∗ Insert a call to a static method at specified position in the

current fragment. The method must be specified by the name
of its class and its method name. It must be a static public
method, with no arguments and returning void.

• showInfo
public void showInfo()

– Usage
∗ Shows informations about this fragment.

• toString
public String toString()

– Usage
∗ Returns an informational printable string.

B.1.9 Class LocalVariableTableNotPresentException

When a needed LocalVariableTableAttribute is not found this exception is raised.

Declaration

public class LocalVariableTableNotPresentException

extends java.lang.Exception

Constructors

• LocalVariableTableNotPresentException
public LocalVariableTableNotPresentException()

org.ldp.jcodebrick– MultiAnnotation 246

Methods inherited from class java.lang.Exception

Methods inherited from class java.lang.Throwable

• fillInStackTrace
public synchronized native Throwable fillInStackTrace()

• getCause
public Throwable getCause()

• getLocalizedMessage
public String getLocalizedMessage()

• getMessage
public String getMessage()

• getStackTrace
public StackTraceElement getStackTrace()

• initCause
public synchronized Throwable initCause(java.lang.Throwable arg0
)

• printStackTrace
public void printStackTrace()

• printStackTrace
public void printStackTrace(java.io.PrintStream arg0)

• printStackTrace
public void printStackTrace(java.io.PrintWriter arg0)

• setStackTrace
public void setStackTrace(java.lang.StackTraceElement [] arg0)

• toString
public String toString()

B.1.10 Class MultiAnnotation

Class that comes in help to parse java classes through the reflection in search of
Annotation suitable from JCodeBrick. Such annotation are at method level and
present two values: one called MultiXX (where XX is the name of the annotation
used to mark pieces of code) which is an array of all the annotations used inside the
method, and one called jcodebrickids, an array of all the unique id associated to each
of such annotations.

Once these annotations are correctly recognized, this class offers method to access

them one by one.

Declaration

public class MultiAnnotation

extends java.lang.Object

Constructors

• MultiAnnotation
public MultiAnnotation(java.lang.annotation.Annotation []
ann)

– Usage
∗ The constructor takes an array of all the annotation of a

method. In these annotation you can find any number of
JCodeBrick suitable annotation: This instance will parse them
to identify the suitable ones.

org.ldp.jcodebrick– MultiAnnotation 247

Methods

• fragmentCount
public int fragmentCount()

– Usage
∗ Returns the count of the valid annotation found.

• getAnnotation
public Annotation getAnnotation(int idx)

– Usage
∗ Returns the idx-th annotation.

• getCodebrickid
public int getCodebrickid(int idx)

– Usage
∗ Returns the jcodebrickid of idx-th annotation.

• getUnusedCodeBrickId
public static int getUnusedCodeBrickId()

– Usage
∗ Returns an id suitable as jcodebrickid for new fragment

insertion. The class ensures that this id is the higher id it has
never met, resulting in a unique id over all the loaded
fragments.

• isMultiAnnotation
public static boolean isMultiAnnotation(
java.lang.annotation.Annotation ann)

– Usage
∗ Returns true if the given annotation is a JCodeBrick

annotation. A JCodeBrick annotation is an annotation
originally used to mark a piece of code and then moved by a
parser outside the method body, and now associated to the
body.

Contents

1 Introduction 1

2 Java Annotations 6
2.1 The annotations model in Java 5 6
2.2 Limitations of the Java 5 annotation model 7

3 The @Java language 9
3.1 Syntax extension . 9
3.2 Compilation strategy . 10
3.3 The preprocessor parser . 11

3.3.1 Definitions . 12
3.3.2 Implementations . 14

4 Bytecode Engineering through JDAsm 16
4.1 Structure . 16
4.2 Constant pool . 17
4.3 Fields and Methods . 20
4.4 Attributes . 20
4.5 Code Attribute . 22
4.6 Advanced Features . 28
4.7 Build time . 28
4.8 Benchmarks . 29

5 Manipulating annotated code: JCodeBrick 31
5.1 Notation and definitions . 31
5.2 Basic implementation . 33
5.3 Operations . 34

5.3.1 Search . 34
5.3.2 Insertion . 36
5.3.3 Deletion . 40
5.3.4 Extrusion . 41

5.4 Build Operation . 45
5.5 Examples . 47

6 Applications 50
6.1 Logging . 50
6.2 Environment-based reconfiguration 51
6.3 Dynamic optimization . 51
6.4 Adaptable declarative security 52
6.5 Parallelization . 52

7 Case Study 53

8 Conclusions and future work 58

248

– 249

A JDAsm API Documentation 62
A.1 Package org.ldp.jdasm . 62

A.1.1 Classes . 63
A.1.2 Class DClass . 63
A.1.3 Class DConstantPool 73
A.1.4 Class DField . 76
A.1.5 Class DMethod . 82
A.1.6 Class DAttribute . 90

A.2 Package org.ldp.jdasm.constantpool 95
A.2.1 Interfaces . 96
A.2.2 Interface IBuildable 96
A.2.3 Classes . 97
A.2.4 Class AConstantPoolUser 97
A.2.5 Class CONSTANT Class Info 98
A.2.6 Class CONSTANT Double Info 101
A.2.7 Class CONSTANT FieldRef Info 103
A.2.8 Class CONSTANT Float Info 107
A.2.9 Class CONSTANT Integer Info 109
A.2.10 Class CONSTANT InterfaceMethodRef Info . . . 111
A.2.11 Class CONSTANT Long Info 115
A.2.12 Class CONSTANT MethodRef Info 117
A.2.13 Class CONSTANT NameAndType Info 121
A.2.14 Class CONSTANT String Info 125
A.2.15 Class CONSTANT Utf8 Info 127
A.2.16 Class CpInfo . 129
A.2.17 Class TypeDescriptor 131

A.3 Package org.ldp.jdasm.attribute 134
A.3.1 Classes . 136
A.3.2 Class Attributable . 136
A.3.3 Class CodeAttribute 138
A.3.4 Class ConstantValueAttribute 152
A.3.5 Class CustomAttribute 159
A.3.6 Class DeprecatedAttribute 165
A.3.7 Class ExceptionsAttribute 170
A.3.8 Class InnerClassesAttribute 176
A.3.9 Class InnerClassesElement 182
A.3.10 Class LineNumberTableAttribute 185
A.3.11 Class LocalVariableTableAttribute 191
A.3.12 Class LocalVariableTableElement 198
A.3.13 Class LocalVariableTypeTableAttribute 199
A.3.14 Class SignatureAttribute 205
A.3.15 Class SourceDebugExtensionAttribute 211
A.3.16 Class SourceFileAttribute 217
A.3.17 Class StackMapTableAttribute 223
A.3.18 Class SyntheticAttribute 223

B JCodeBrick API Documentation 228
B.1 Package org.ldp.jcodebrick 228

B.1.1 Classes . 229
B.1.2 Class BrickedClass . 229
B.1.3 Class BrickedMethod 231
B.1.4 Class BrickOperation 233
B.1.5 Class BrickOperation.InsertionPosition 234
B.1.6 Class BuildException 235
B.1.7 Class CbClass . 237
B.1.8 Class Fragment . 240

org.ldp.jcodebrick– MultiAnnotation 250

B.1.9 Class LocalVariableTableNotPresentException . . 245
B.1.10 Class MultiAnnotation 246

