UNIVERSITA DI PIsa

DIPARTIMENTO DI INFORMATICA

TECHNICAL REPORT: TR-08-21

BpMatch: an efficient
algorithm for segmenting
sequences, calculating
genomic distance and
counting repeats

Claudio Felicioli Roberto Marangoni

Giugno 2007

ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: 439 050 2212700 FAX: +39 050 2212726

BpMatch: an efficient algorithm for segmenting
sequences, calculating genomic distance and
counting repeats

Claudio Felicioli Roberto Marangoni

Giugno 2007

Abstract

There are several important reasons (biological, evolutionary, clinical,
etc.) to give a segment-based description of genomic sequences, and, in
particular, to detect repeated segments, written both direct and comple-
mented inverted. In some applications, in particular in medical genomics,
it is also necessary to count the number of occurrences of a segment. More-
over, by detecting common segments shared by two different sequences
it is possible to define a sort of genomic distance between them. Here
we propose BpMatch: an algorithm that, working on a suitably modi-
fied suffix-tree data structure, allows us to achieve all these three goals
(identify repeated segments, including the complemented inverted copies
of them, count repeats number and calculate genomic distance) in a fast
and efficient way. BpMatch is able to identify exact copies (and com-
plemented inverted copies) of a segment. The operator should define a
priori the minimum length [of a string, in order to be considered a seg-
ment, and the minimum number of occurrences minRep, so that only
segments having a number of occurrences greater than minRep are con-
sidered to be significant. BpMatch is very efficient; we determined the
complexity in time to calculate the self-covering of a string S, giving [,
the alphabet dimension d and n = |S|. On the worst case, assuming the
alphabet dimension is a constant, the time required to calculate the cov-
erage is O(I>n). On the average, using I > 2log,(n), the time required
to calculate the coverage is only O(n). It is important to note that this
estimation includes the time required to complete all of the three different
tasks: to identify copied segments, to localize them, to count the number
of occurrences and to evaluate the sequence coverage.

1 Introduction

During the pre-genomic era, the problem of comparing two biological sequences,
in order to infer possible molecular evolution relationships, has been attacked
following the aligment approach. Local and global aligment algorithms have

been proposed (to cite only the classic ones: Needelman and Wunsch; Pearson
and Lipman), and continuosly improved in their heuristic implementations, in
order to find the optimal aligment in the shortest possible time. Most of these
algorithms are based on the same underlying biological hypothesis: the main
molecular evolution process is the so-called “point mutation”, the replacement
of a single character with another. Finding an optimal character-by-character
aligment is, therefore, the way to compare DNA and protein sequences. The
only exception to this rule, is given by the possibility to insert gaps: by inserting
several consecutive gaps the alignment process can take into account a different
type of molecular evolution phenomenon: the insertion/deletion of a segment
(subsequence).

In the current post-genomic era, the biological scenario is completely changed,
in particular for DNA sequences analysis. At genomic level, in fact, point mu-
tation does not represent the main, nor the most frequent, molecular evolution
process: segment translocation, segment complementation and inversion (when
a segment is written in the reversed order, and in the complementary bases),
segment insertion and deletion, segment duplication, are more frequent and
quantitatively relevant (see Liu 1998).

To better describe evolutionary relationships between genomic sequences the fo-
cus should be moved from characters to segments. In this perspective, by anal-
ogy with Image Analysis or signal theory in general, different previously pub-
lished papers are addressing the concept of “segmenting sequences” (Kedzierska
and Husmeier 2006; Keith 2006; Azad et al. 2002; Li 2001; Andre et al. 2001).
Their approaches differ very widely with respect to what should be considered
a segment.

In the present paper, to define what is a segment, we start from the considera-
tion of the existence of certain similarities among particular sequences playing
important biological functions: operators, promoters, TFBSs (transcritpion fac-
tor binding sites), transposons, etc. In most of these cases, in fact, it is possible
to detect the presence of such sequences thanks to some specifity in their struc-
ture: for example, many TFBSs, and most of the transposon edge regions, are
frequently made of short series of repeated segments, followed by (or close to)
some repeats of inverted complemented copies of the same segments. This par-
ticular sequence organization is due to the necessity of the DNA to assume
special 3D conformations such as: hairpins, loops, etc. (see Lewin 2003)

For all these situations, we define a segment as any subsequences that appear to
be repeated either direct or inverted complemented. Our first goal, therefore, is
to identify and localize all the occurrences of repeated segments, and comple-
mented inverted repeated segments.

Moreover, clinic researches have shown that some genetic diseases are generated
by the increase or decrease of the number of repeats of defined segments. They
can span from a series of triplets, entire genes or even long genomic regions (Re-
don et al. 2006; Komura et al. 2006; Sharp et al. 2005; Stranger et al. 2007).
The importance of counting the number of repeats is so high, that research
lines aimed at studying Copy Number Variation (CNV) have been hosted by
all the most important international molecular biology organizations, in order

to screen genomic variants in human species and make them available though
suitable databases (see, for example, the Database of Genomic variants, avail-
able at: http://project.tcag.ca/variation and described in Zhang et al. 2006).
In other words, medical genomics needs not only to identify repeated segments,
but also to count the number of repetitions.

By working with segments, it is also possible to define a quantitative measure-
ment of the genomic evolutionary distance between two sequences: generally
speaking, it is given by the percentage of covering one sequence using as many
segments as possible taken from the other. Following this approach Varré et
al. (1999) proposed Transformation Distance, a scripting distance that, given
two sequences S and T and a set of elementary operations made on segments
(Copy, ReverseCopy, Insert), each of which has an associated cost. TD(S,T) is
then defined as the cost of the script of minimum cost, by which the string 7" is
generated using, where possible, segments derived from the string S. TD is an
uncommon type of evolutive distance, in particular, different from commonly
used aligment distances, which verify simmetry condition, TD is asymmetric.
This feature is exploitable for some biological applications, for example in the
attempt to reconstruct the history of gene duplication events, where the re-
lationship template-copy is intrinsically asymmetric (see Pisanti et al. 2003).
Unfortunately, the TD algorithm complexity is too high to use TD in practice.
In fact, the algorithm presented to calculate TD, which ignores possible segment
copy overlaps, has a time complexity of O(n®) on the worst case and a high (al-
though not analyzed) spatial complexity which makes it generally inapplicable
on sequences longer than 100Kbp. Another algorithm (compact script graph) is
mentioned in (Varré et al. 1999) showing a graph in which the TD calculation
seems to be quadratic in time without regard to sequences length. A precise
analysis of this second version is not indicated, and no spatial complexity has
been calculated. The high computational cost of the algorithms to calculate TD
has prevented its widespread use, even though they represent a valid attempt
to give a correct reconstruction of the molecular events that cause divergence
between genomic sequences.

We hereby propose a new algorithm (called BpMatch) that, given two se-
quences S and T, finds a covering of T', using only segments and reversed com-
plemented segments of S, eventually overlapped. BpMatch works with the con-
straint that the segments must be at least [characters long and must be repeated
in S at least minRep times, such a covering is the maximal in coverage and the
number of segment utilized is the minimal.

The BpMatch algorithm, thanks to its very low time and space complexity, is
our first achievement. The output of BpMatch is represented by a list of identi-
fied repeated segments and their respective position, and an overall evaluation
of the achievable maximum coverage. In practice, BpMatch performs, in a very
fast time, a segmentation of the two sequences and calculates a mutation dis-
tance measure.

This approach can be used also to have a repetitions analysis on a single se-
quence, using a selfcovering approach, by which we can count the number of

repeated segments included in a sequence. BpMatch is able to indicate which
segments have been extracted from the sequence, in which position they are,
and how many copies have been counted.

In the discussion section of the present paper, the performances of BpMatch
will be compared to those of TD, since the goal, strategy and output of these
two algorithms are very similar to each other.

2 Approach

2.1 The covering as a mutation distance measure

The BpMatch algorithm solves a problem similar to that of TD: the maximum
covering of a target sequence T using the segments and the reversed comple-
mented segments of a source sequence S can be interpreted as an estimation of
the part of T' that can be derived from S through sequence genomic mutation.
The mutation distance derived from the covering is then proportional to the
number of segments and to the ratio between covered part and non covered
part lengths.

2.2 Repetitions analysis

Our approach in repetitions analysis consists in the application of BpMatch
algorithm using for target the same sequence used for source.

Analysing the coverage variations obtained varying ! (minimum segment
length) and minRep (minimum segment repetitions) parameters, the repetition
zones can be characterized.

3 Methods

3.1 BpMatch algorithm

The calculation of T’s maximum coverage, using only the minimized number of
segments and complemented reversed segments of .S, with minimum length of
[and repeated in S at least minRep times, possibly overlapped, requires the
use of two data structures: one capable to recognize the segments of S and the
other capable to recognize the segments of S complemented reversed; these two
structures should also be able to count the number of repeats of the recognized
segments. The suffix-tree (Weiner 1973; McCreight 1976) is a data structure
suitable for these purposes. It is, in its usual form, already able to recognize
segments: in order to make it also able to rapidly count them, it is enough to
introduce an improvement: each inner node should keep note of the number of
leaves of the sub-tree rooted in it. During the recognizing process of a segment,
the number annotated in the reached node represents exactly the repetitions
number of that segment (each occurrence of the segment has a different suffix,

which has that segment as prefix, and every different suffix ends in a different
leaf.

We call G and G’ the suffix trees calculated from S and from the reverse
complement of S, annotated, as previously described, to be able to count the
number of repetition of each recognized segment.

The algorithm processes the sequence T, it starts by considering the first
character as a possible beginning for a segment and proceeds for iterations,
processing ahead by one or more character steps for each iteration, until it
catches up the end of T.

During each iteration two cases can take place:

case 1: the character immediately previous to that currently analyzed can
not be covered by any segment

case 2: a segment ends exactly before the currently analyzed character.

In the first iteration we are in case 1.
co is defined as the currently analyzed character and ¢; as the character
distant ahead ¢ positions from cg, ¢ is complemented c.

3.1.1 Casel

The hypothesis that the character c_;, immediately before the currently ana-
lyzed one, can not be covered by any segment is verified, therefore ¢y can be
covered only if it is the starting character of a covering segment.

Let us start by searching a direct segment of length at least [, starting from
co, covering T' as far as at least ¢;—1. Such a segment exists only if we try to
find a path in G’ processing in order the complemented characters 1 ¢_3 ...
Co-

If the operation of recognition through G’ is successful, then cq is the first
character of a direct segment of length at least [, so let us start by searching
such a direct segment, trying to find a path in G processing in order ¢y ¢; ...
until, processing ¢; (surely ¢ > [, thanks to the previous G’ utilization), it fails
to find a path, therefore the direct S’s segment ¢y ¢y ... ¢;—1 is found.

Otherwise, if the research of the reversed segment starting from ¢;—; fails
during the process of a certain ¢;, this means that ¢y can not be covered by any
direct segment of the minimum length [, because such a segment must contain
the segment ¢; ¢;41 ... ¢;—1 which, since it is not an S’s direct segment (since
it is not recognized by G’ its complemented reversion), can not be contained in
any S’s direct segment and so, from the case 1 hypothesis, ¢y can not be covered
by any direct segment, but this means that ¢; falls back in case 1 hypothesis
(at least for the direct segments) too, and, for the same reasons, it can not be
covered also by direct segments. Therefore all the characters up to ¢; included
can not be covered by direct segments.

In order to find a complemented reversed segment of S, starting from c¢g, the
same procedure has to be used, but using G in place of G’ and vice versa.

After that, three distinct situations can occur :

1. If only a segment is found, direct or complemented reverse, starting from
co, then it will be added to the coverage and the character immediately
after such a segment has to be processed by following the procedure de-
scribed on case 2.

2. If both the direct and the complemented reverse segments are found, then
the longer one of them will be added to the coverage and the character
immediately after such a segment has to be processed by following the
procedure described on case 2.

3. If neither the direct nor the complemented reverse segments are found,
then all the characters that can not be covered by neither direct nor
complemented reverse segments have to be excluded and the character
immediately after these has to be processed by following the procedure
described on case 1.

3.1.2 Case 2

The hypothesis that the character c_;, immediately before the currently ana-
lyzed one, is the last character of a covering segment is verified, therefore all the
previous characters up to ¢_; (included) are surely covered and ¢y can be not
only the first character of a new segment, but it can occur in a central position
of a segment, of length at least [, partially overlapped to the segment ending at
character c_1.

In order to find the best direct segment covering cg, if it exists, ¢y ¢1 ... ¢
are processed by G until, during the ¢; processing, it fails to find a path.

If ¢ > [then it is found: such a segment can also be just the final part of an
overlapping segment, but it is obvious that there does not exist any overlapping
segment that includes the characters from ¢y to ¢; because ¢y ¢q ... ¢; is not
recognized as a direct S’s segment, so every segment having cg ¢1 ... ¢; as one
of its substrings can not be recognized either.

If instead ¢ < [, then we have to make a search for a partial overlapping direct
segment, covering the maximum possible amount of not yet covered characters
and known to be unable to cover ¢; (not being cg ¢ ... ¢; a direct segment).

Characters ¢y ¢_1 ... ¢_j have to be processed by G’ while k < [or until
a fail in suffix tree’s path finding occurs , so c_1 ¢_o ... c_j is a reverse S’s
segment and it is the longest totally overlapped prefix (of length k) of the direct
partially overlapping segment we are searching for.

The longest suffix (¢g ¢1 ... ¢;—1) is of length 4, then if k + ¢ < [the direct
segment does not exists, else ¢;—; ¢;—i4+1 ... ¢;—1 has to be processed by G.

If the sequence is recognized then a direct segment covering all the maximum
suffix is found, else, if it fails in suffix tree’s path finding at c;, it means that
Ci—l Ci—i+1 ... Cj is not a direct S’s segment and therefore, since it is not able
to be included in any direct segment of minimum length [, as ¢;_;41 can not be
the starting character of a direct segment arriving to ¢;—1 (it would be at most
of length I — 1), the length of the longest suffix need to be reduced from i to j.

If £+ 5 < I then the direct segment does not exist, else the same procedure
has to be repeated replacing ¢ with j.

On the worst and very improbable case, it is necessary to repeat this proce-
dure for a maximum [— 1 times in order to find, if it exists, the searched direct
and partially (in this extremized case, almost totally) overlapping segment.

In order to find a complemented reversed segment of S, starting from ¢y, the
same procedure has to be used, but using G in place of G’ and vice versa.

After that, three distinct situations can occur :

1 - If only a segment is found, direct or complemented reverse, starting from
co, then it will be added to the coverage and the character immediately after
such a segment has to be processed by following the procedure described on case
2.

2 - If both the direct and the complemented reverse segments are found,
then the longer one of them will be added to the coverage and the character
immediately after such a segment has to be processed by following the procedure
described on case 2.

3 - If neither the direct nor the complemented reverse segments are found,
then ¢y can not be covered by neither direct nor complemented reverse segments
and c¢; has to be processed by following the procedure described on case 1.

3.1.3 Using only segments repeated in S at least minRep times

For the sake of clearness the BpMatch algorithm was described in the simpler
case in wich minRep = 1, that is the default value when covering to estimate a
mutation distance measure (section 2.1).

The complete algorithm can be obtained trivially excluding from the path
finding in the suffix tree all the edges that connect to a node with the annoted
value less than minRep.

3.1.4 An example

Figure 1 graphically shows an execution of the maximum coverage calculation
algorithm BpMatch. The alphabet used is A C G T, A = T and C = G,
I =4, minRep = 1, S=“TCCATCCCCA”, T=“AGTCCTGAATCCCATCG”,
the arrows over the segments represent a segment recognition executed using
the specified suffix tree, the cross on the arrows stands for the character the
recognition of which has failed.

Figure 2 shows the two suffix trees used by the BpMatch algorithm.

3.2 Selfcovering algorithm

The application of BpMatch algorithm using as a target the same sequence
S used as a source is called sel fcovering. The selfcovering analysis approach
consists of executing selfcovering varying ! and minRep parameters until all
the (I, minRep) pairs of interest are used. To obtain this the suffix trees are
generated once, then BpMatch is executed for each (I, minRep).

4 Results and Discussion

4.1 Sequences segmentation: an application example

To give a segment-based description of a gene family it is enough to concatenate
all the gene sequences into a single string, then to explore the selfcovering of it.
For instance, the wnt gene family in human has been written as a single string.
The main BpMatch output is an ASCII file, scrutured as a table, where, for each
segment found, is declared which is the segment and where it appears on the
sequence. To have a visual report of the content of the file, one can elaborate
BpMatch’s output to have a graphic display of the occurrences of a selected
segment: an example is shown in Fig. 3, where it is possible to notice that
direct and complemented inverted occurrences are shown using different colors.

4.2 Complexity analysis

Let n = |S], and let d be the alphabet cardinality: the generation cost for both
the two suffix trees from S and reverse complement S is O(n); the required space
is O(n) as well. The cost for a match with a sequence long m is O(mlog(d)),
or even O(m), when the alphabet is supposed to be constant (Apostolico 1985;
Stephen 1994; Grossi and Vitter 2005).

By adding, to the suffix tree nodes, the suitable annotations to make a fast
occurrences counting for every recognized segment, the increase in the data
structure space is linear with the suffix-tree dimension. Also the increase in its
building time is linear, as a simple depth-first inspection allows us to calculate
all the nodes annotations.

The calculation of T’s maximum coverage requires to process u = |T'| char-
acter, switching from case 1 to case 2 and wvice versa. Both the time required
to examine a case and the number of character we can move forward depend on
the case number.

On case 1:

e on failure : the time to match a segment of length m (m < I), moving
forward [— m + 1 characters.

e on success : the time to match a segment of length [and then one other
of length m (m > 1), moving forward m — 1 characters.

On case 2:

e on failure : moving forward 1 character, on the worst case [+ 1 segments
of length [need to be matched.

e on success, finding a non overlapped segment : the time to match a seg-
ment of length m (m >), moving forward m — 1 characters.

e on success, finding an overlapped segment : the situation on the worst
case can be as in the failure case.

Thus, on the worst case, assuming the alphabet dimension is a constant, the
time required to calculate the coverage is O(I?u). On the average, using [=
qlog,(n) (¢ > 2, | << u, needed in order to obtain a statistically significant
S-T comparison, as described in section 4.4), the time required to calculate the
coverage is O(u/q).

4.3 Distance Measure Symmetry

As it happens for TD, also the distance calculated by BpMatch is asymmetric.
This is an unaivoidable consequence of the common approach segment-based,
and, as recalled in the Introduction section, it is directly applicable in biological
situations which are intimately asymmetric, as, for example, the relationship
template seq./ copy seq. in a gene duplication process. BpMatch can therefore
be used for all the same applications for which TD is used, with the advantage
of a strong reduction of the complexity.

4.4 Minimum length [: meaning and quantification

In order to get a statistically significant S-T comparison, an [> log,(n) (n =
|S]) needs to be used, with d the alphabet cardinality.

The greater is [, the more reliable is the coverage. On the other hand, the
more is the coverage reliability, the less is the sensibility, this because we do not
consider all the segments of length less than [and, among these, also those who
could have the role that we are seeking. The [value needs to be chosen while
keeping in mind the reliability /sensibility ratio we want to obtain.

It is observed that, even if the case 2 sub loop of the BpMatch algorithm can
cause a great increase of the computational complexity of the algorithm, such
an increase is present only when the value of [is near to log,(n).

Some tests, using either pseudo-random generated genomic sequences and
biological genomic sequences as S and T, varying [over many different values,
experimentally confirm that, to get good reliability of the coverage, the value of
[must been bigger than the computationally critic zone log,(n).

Figures 4 and 5 show two examples of these tests, using S and T of length
1000000: the = — azis represent the different values of [(from 7 to 20 and
from 20 to 50) and the height of the column above it represents the number
of iterations of the resulting covering algorithm run. Each column is divided
in three different gray levels, the dark gray area indicates the number of casel
iterations, the light gray area the number of case2 iterations and the black area
the number of case2 sub-loop iterations. The figure on the right is the same,
rescaled.

The number of sequences of the covering, for each [value, is intuitively
represented by the light gray area; for small [all T is covered, for big [T is
covered only if there is a segment copy relationship between S and T, the case2
sub-loop, that make the algorithm complexity quadratic, appear to be influent
only for [near the critical value of log,(n).

Using [= 20 ~ 21og,(1000000) = 21log,(n) the coverage results as not empty
only comparing pieces of biological genomic sequences.

5 Conclusions

BpMatch has been proved to be an efficient algorithm that, with only one com-
putation, can address three different problems of a high interest in modern
genomics. We note that, through the selfcovering approach is also possible
to use BpMatch to discriminate between coding (usually pesudo-random) and
non-coding (usually contanining large numbers of repeats) regions in a genome.
Even though BpMatch has not be designed as a gene-finder algorithm, prelimi-
nary observations show that it can be used with this purpose, in order to have
a preliminar and fast classification of genomic tracts.

6 Aknowledgments

The Authors thank Luca Freschi for his contribution in the practical tests of
BpMatch.

This work has been partly supported by Italian MIUR grant Italy-Israel FIRB
“Pattern Discovery Algorithms in Discrete Structures, with application to Bioin-
formatics”.

7 References

Andre, C., Vincens, P., Boisvieux, J.F., and Hazout, S. 2001. MOSAIC:
segmenting multiple aligned DNA sequences, Bioinformatics 17, 196-197.

Apostolico, A. 1985. The myriad virtues of subwords trees, 85-95. In A.
Apostolico and Z. Galil eds.,Combinatorial Algorithms on Words. Nato
Asi Series, Advanced Science Institutes Series, Series F, Computer and
Systems Sciences, Vol 12, Springer Verlag, New York.

Azad, R.K., Bernaola-Galvan, P., Ramaswamy, R., and Rao, J.S. 2002.
Segmentation of genomic DNA through entropic divergence: Power laws
and scaling, Phys. Rev. E 6505, 1909-1909.

Grossi, R., and Vitter, J.S. 2005. Compressed suffix arrays and suffix trees
with applications to text indexing and string matching, SIAM Journal on
Computing 35(2), 378-407.

Kedzierska, A., and Husmeier, D. 2006. A heuristic bayesian method
for segmenting DNA sequence alignments and detecting evidence for re-
combination and gene conversion. Statistical Application in Genetics and
Molecular Biology 5, 65-97.

10

Keith, J. M. 2006. Segmenting eukaryotic genomes with the generalized
Gibbs sampler, J. Comp. Biol. 13, 1369-1383.

Komura, D., Shen. F., Ishikawa, S., et al. 2006. Genome-wide detection
of human copy number variations using high-density DNA oligonucleotide
arrays, Genome Res. 16, 1575-1584.

Lewin, B. 2003. Genes (VIII ed.), Prentice Hall, New York.

Li, W. T. 2001. New stopping criteria for segmenting DNA sequences,
Phys. Rev. Lett. 86, 5815-5818.

Liu, B. H. 1998. Statistical Genomics, CRC Press, Boca Raton, (FL,
USA).

McCreight,E.M. 1976. A space-economical suffix-tree construction algo-
rithm, Journal of the ACM 23(2), 262-272.

Pisanti, N., Marangoni, R., Ferragina, P., Frangioni, A., Savona, A.,
Pisanelli, C., and Luccio, F. 2003. PaTre: A Method for Paralogy Trees
Construction, J. Comp. Biol. 10, 791-802.

Redon. R., Ishikawa, S., and Fitch, K.R., et al. 2006. Global variation in
copy number in the human genome, Nature 444, 444-454.

Sharp. A.J., Locke, D.P., and McGrath, S.D., et al. 2006. Segmental
duplications and copy-number variation in the human genome, Am. J.
Hum. Genet. 77, 78-88.

Stephen,G.A. 1994. String searching algorithms, World Scientific Press,
New York.

Stranger, B.E., Forrest, M.S., and Dunning, M. et al. 2007. Relative
impact of nucleotide and copy number variation on gene expression phe-
notypes, Science 315, 848-853.

Varré, J.S., Delahaye, J.P., and Rivals, E. 1999. Transformation distances:
a family of dissimilarity measures based on movements of segments, Bioin-
formatics 15, 194-202.

Weiner, P. 1973. Linear pattern matching algorithm, 14th Annual IEEE
Symposium on Switching and Automata Theory, 1-11.

Zhang, J., Feuk, L., Duggan, G.E., Khaja, R., and Scherer, S.W. 2006.
Development of bioinformatics resources for display and analysis of copy
number and other structural variants in the human genome, Cytogenet
Genome Res. 115, 205-214.

11

TCC c A TGG c A
(6) (2) (6) 2)
CCA$ nchccn$ TCCCCAS$ 2 GGATGGAS$
A C $ A% A G $ TGGAS
@ L @ 1) @ € @ L @ 4 @ @
TCCCCA$ % A C TGGAS$ % A G
@ ® @ (2) € ® @ (2)
TCCCCAS% $ A$ CAS% TGGAS% $ GATGGAS%

ATGGAS%

O OO O O OO O

case 1

case 1 case 1 case 1

case 1

case 1

case 2

A GTZQOC

C A G

compl.rev.

direct

compl.rev.

direct

compl.rev.

direct

compl.rev.

direct

compl.rev.

X

.]
CT
T T
T T A
- G
TAG.G.X
e
A T C C|/CTlTA
X
Gx
AT CIG
4n' |
GTAIG
ATﬁC:

atggggctctgggogetgttgoctggotgggtttotgctacgotgotgotggogetggoocget ctgoccgoagooctggct gccaacageagt ggocgatggtggggtattg
atgaacgoococctoctoggtggaatoctggototgqgotcoctotgotottgacoctgqgotcacooooy Jaggtcaactocttocatggtggtacatgagagoctacaggtggctocctocas
SlE a2 sl acctgctegggotgotoocteggoctcoctgotcggtggcaccagggtooctogotggoctacccaatttggtggtocooctggocctgggoccagcagtacacat
:|.-|.-|-:|.-|.-|-:|I coatt -:|-:|.-|.-|I att AAg T .-|-:|-:|.-|-:|I t (Wl (N -:|-:|-:|-:|.-|I [[t -:|-:|.-|.-|-:|I [Aat -:|I il ol ot .-|.-|-:|I Lot toot .-|-:|I (o (S [o atatttttoctoctt« (v [l mlut
gotgocgeocttaccoctcecgoctogggetgetgotgotgotgotootgtgocccggogoacgteggcggactgtygtgggetgtyggcagococttggttatggacecta
yaaccggaaagcgoggogotgoctgggocacototttotcagoctgggoatggtotacctocggateoggtggcttotoctocagtggtagotctgggcgoaageoates
goacagaaactttogocaagtggattttotacgtgtttetotgotttggegtocbtgtacgtgaagoteggagocackgtecatcogt ggtggoocctyggagocaacat os
ggggaacebgbittat gotctgggoagotctgggoatatgebgbgoct goattcagtgoctct goctggtcagt gaacaatttococtgat aacaggt cocaaggoot s
gtttctttocaaagocttetgbgtacatetgtottttocacetgtytoctccaactcagoccacagetggtoggtgaacaatttoctgatgact ggtccaaaggocttacs
gctggaggagoeooo ggcegeggectcegoectegggectcgegggtctoctgttectggegttgtgoagt cgggctctaagoaatgagattctgggoctgaagttgoct g
gagggcycggcogoaggtotgogaggogotgotottogocotggogoctccagaccggogtgtgctatggocatcaagtggctggogetgtocaagacaccatcggooctyg
gttggatggocttggagtggtagocataagoatttttggaattocaact aaaaactgaaggatcottgaggacggoagtacctggoatacct acacagtocagogttocaacas
atgctggatgggtococ: getggogogotggotggocgoggocttegggotgacyctgotgotocgocgogotgogooct teggocgectacttogggotgacyggocagogag:
atgcgcccooc yoccgogotggoootggocgggotctgectgotggogot gcocgecgocgocgoctectact teggoctgacegggogggaagtcctgacgcccttoccay
atgcagctcaccacttgoctocagggagacocctottcacagyygottoctcaaaagaccteocctatyggtggttgggeattgoctecttogggygttccagagaagetggygctgog:

..... Joetogtgoctgogttogotgogoctoctogtocttogoogtocttotcagocgooyogagocaactgyebtgtacct gyoccaagetgtogtocggtggggagoat ot
atgggcagcgoccaccotocgocococtggotgoggot cogaccoc: AGCCCC: agccgoggccagogototgggtygotoctgttottoctactgctyctgyctgotgocatgooca
atgococagoctgotgotgebgttcacggotgotctgebgtoccagot gggoct cagett ot gAcaAgacgoccaact cotggtggtcattagotttgaacocoggtgoagagacoog
atggccoccactoggatacttottactoctotgoagoctgaagcaggoctctgggcagctaceogatctyggtggtogotgyetgttgggocacagtattcctooctyggot oy

SUDTYEAIFT

a)

1

SUOTYEATT

SUDTYEAIFT

a)

1

SUOTYEATT

