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Abstract. The operational semantics of interactive systems is usually
described by labeled transition systems. Abstract semantics is defined
in terms of bisimilarity that, in the finite case, can be computed via the
well-known partition refinement algorithm. However, the behaviour of in-
teractive systems is in many cases infinite and thus checking bisimilarity
in this way is unfeasible. Symbolic semantics allows to define smaller,
possibly finite, transition systems, by employing symbolic actions and
avoiding some sources of infiniteness. Unfortunately, the standard par-
tition refinement algorithm does not work with symbolic bisimilarity. In
a previous paper, we have introduced an abstract theory of symbolic se-
mantics. In this paper, we introduce a partition refinement algorithm for
symbolic bisimilarity.

1 Introduction

The operational semantics of interactive system is usually specified by labeled
transition systems (ltss). Behavioural equivalence is often defined as bisimi-
larity, namely the largest bisimulation. Many efficient algorithms and tools for
bisimulation checking in the finite case have been developed [26, 8, 9]. Among
these, the partition refinement algorithm [12, 20] is the best known: first it gen-
erates the state space of the lts (i.e., the set of reachable states); then, it creates
a partition equating all the states and then, iteratively, refines this partitions by
splitting non equivalent states. At the end, the resulting partition equates all
and only the bisimilar states.

Most importantly, the same algorithm can be used to construct the minimal
automaton, that is the smallest (in terms of states and transitions) lts amongst
all those bisimilar. Construction of minimal automata allows to model check
efficiently for several properties by eliminating redundant states once and for
all. In fact most model checking logics are adequate w.r.t. bisimilarity, namely a
formula holds in the given system iff it holds in its minimal representative.

In practical cases, compositionality is also very relevant, since it is the key
to master complexity. Then a fundamental property is that bisimilarity be a
congruence. When this is not the case, behavioural equivalence is defined ei-
ther as the largest congruence contained into bisimilarity [15] or as the largest
bisimulation that is also a congruence [19]. In this paper we focus on the largest
bisimulation congruence and we call it saturated bisimilarity. Indeed it coincides



with ordinary bisimilarity on the saturated transition system, that is obtained by
the original lts by adding the transition p

c,a−→ q, for every context c, whenever
c(p) a−→ q.

Many interesting abstract semantics are defined in this way. For example,
since late and early bisimilarity of π-calculus [16] are not preserved under substi-
tution (and thus under input prefixes), in [24] Sangiorgi introduces open bisim-
ilarity as the largest bisimulation on π-calculus agents which is closed under
substitutions. Other noteworthy examples are asynchronous π-calculus [1, 11],
mobile ambients calculus [6, 14] and (explicit [27]) fusion calculus [21].

The definition of saturated bisimilarity as ordinary bisimulation on the sat-
urated lts, while in principle operational, often makes infinite state the portion
of lts reachable by any nontrivial agent, and in any case (e.g. for the open π-
calculus) is very inefficient, since it introduces a large number of additional states
and transitions. Inspired by Hennessy and Lin [10], who introduced a symbolic
semantics of value passing calculi, Sangiorgi defines in [24] a symbolic transition
system and symbolic bisimilarity that efficiently characterizes open bisimilarity.
After this, many formalisms have been equipped with a symbolic semantics.

In [5], we have introduced a general model that describes at an abstract
level both saturated and symbolic semantics. In this abstract setting, a symbolic
transition p

c,α−→β p′ means that c(p) α−→ p′ and c is a smallest context that allows
p to performs such transition. Moreover, a certain derivation relation ` amongst
the transitions of a systems is defined: p

c1,α1−−→ p1 ` p
c2,α2−−→ p2 means that the

latter transition is a logical consequence of the former. In this way, if all and
only the saturated transitions are logical consequences of symbolic transitions,
then saturated bisimilarity can be retrievied via the symbolic lts.

However, the ordinary bisimilarity over the symbolic transition system does
not coincide with saturated bisimilarity. Symbolic bisimilarity is thus defined
with an asymmetric shape. In the bisimulation game, when a player proposes
a transition, the opponent can answer with a move with a different label. For

example in the open π-calculus, a transition p
[a=b],τ−−−→ p′ can be matched by

q
τ−→ q′. Moreover, the bisimulation game does not restart from p′ and q′, but

from p′ and q′{b/a}.
For this reason, algorithms and tools developed for bisimilarity cannot be

reused for symbolic bisimilarity. Inspired by [22, 17] who developed ad hoc parti-
tion refinement algorithm for open and asynchronous bisimilarity, in this paper
we introduce a generical symbolic partition refinement algorithm, relying on the
theoretical framework presented in [5]. The algorithm is based on the notion of
redundant symbolic transitions. Intuitively, a symbolic transition p

c2,α2−−→β q is
redundant if there exists another symbolic transition p

c1,α1−−→β p1 that logically
implies it, that is p

c1,α1−−→β p1 ` p
c2,α2−−→ p2 and q is bisimilar to p2. Now, if we

consider the lts having only not-redundant transitions, the ordinary notion of
bisimilarity coincides with saturated bisimilarity. Thus, in principle, we could
remove all the redundant transitions and then check bisimilarity with the stan-



dard partition refinement algorithm. But, how can we decide which transitions
are redundant, if redundancy itself depends on bisimilarity?

Our solution consists in computing bisimilarity and redundancy at the same
time. In the first step, the algorithm considers all the states bisimilar and all
the transitions (that are potentially redundant) as redundant. At any iteration,
states are distinguished according to (the current estimation of) not-redundant
transitions and then not-redundant transitions are updated according to the new
computed partition.

The main peculiarity of the algorithm is that in the initial partition, we have
to insert not only the reachable states, but also those that are needed to check
redundancy. This is clearly formalized in our general algorithm, but it is even
more evident when considering the coalgebras [23] underlying this algorithm. 1

During the whole paper we will use as running examples open Petri nets [13,
2]. In [5], we have shown that also asynchronous and open π calculus are instances
of our general theory, and thus our algorithm works also in these cases. However,
in these calculi, the symbolic transition system is infinite whenever a processes
can create infinitely many names. Thus in order to apply our algorithm in these
cases, we need to extend our approach to HD-Automata [18]. This is left as
future work.

The background of the paper consists in Section 2 and Section 3. In the for-
mer we show the partition refinement algorithm in the case of CCS, while in
the latter we recall the theoretical framework for symbolic bisimilarity of [5].
In Section 4, we show that both saturated and symbolic bisimilarity cannot be
checked through ordinary partition refinement. In Section 5, we introduce redun-
dant transitions that will be fundamental for the symbolic partition refinement
algorithm shown in Section 6.

2 Partition Refinement and Minimal Automaton

In CCS [15], bisimilarity (∼) is defined as the largest bisimulation relation, i.e.,
the largest relation R such that R ⊆ F(R) where F is a function such that for
each relation R, pF(R) q iff

– if p
a−→ p′ then q

a−→ q′ and p′Rq′,
– if q

a−→ q′ then p
a−→ p′ and p′Rq′.

Since F is monotonic for set inclusion, ∼ =
⋃{R | R ⊆ F(R)} follows from

standard results on fixed point theory. Moreover, ∼ is itself a fix point of F,
i.e., ∼= F(∼). Alternatively, bisimilarity can be characterized as the limit of
a decreasing chains of relations (none of them is a bisimulation) starting with
the universal relation. Hereafter, we use κ to denote ordinals numbers, κ + 1 for
1 [4] introduced a class of categorical models for symbolic bisimilarity that are struc-

tured coalgebras [7] instead of the more ordinary bialgebras [25]. In the latter, we
can characterize bisimilarity abstracting away from the algebraic structure, while in
the former we cannot. This is the reason why our algorithm relies on the algebraic
structure, i.e., on the states that are not reachable but that are needed to check
redundancy.



successor of κ, λ for limits ordinals and O for the class of all ordinals. Formally,
the terminal sequence is defined for each ordinal κ as follow,

∼0= {P × P} ∼κ+1= F(∼κ) ∼λ=
⋂

κ<λ

∼κ

where P is the set of all CCS processes. Bisimilarity coincides with the limit of
the terminal sequence.

Proposition 1. ∼=
⋂

κ∈O ∼κ

Given a set S, a partition of S is a set of blocks, i.e. subsets of S, that are
all disjoint and whose union is S. A partition on S represents an equivalence
relation, where equivalent elements belong to the same block. In the following,
given a function G on equivalence relations, we denote by G the corresponding
function on partitions.

The characterization of bisimilarity through the terminal sequence suggests
a procedure for checking bisimilarity of a set of initial states IS. First of all,
we compute IS?, i.e., the set of all states that are reachable from IS. Then we
create the partition P 0 where all the elements of IS? belongs to the same block.
After the initialization, we iteratively refine the partitions by using the function
F (i.e., the function equivalent to F on partitions): two states p and q belong to
the same block in Pn+1, if and only if whenever p

a−→ p′ then q
a−→ q′ with p′ and

q′ in the same block of Pn and viceversa.

Algorithm 1 Partition-Refinement(IS)
Initialization

1. IS? is the set of all processes reachable from IS,
2. P 0 := {IS?},

Iteration P n+1 := F(P n),
Termination If P n = P n+1 then return P n.

The algorithm terminates whenever two consecutive partitions are equivalent.
In such partition two states belong to the same block if and only if they are
bisimilar.
Notice that since F is monotonic, any iteration splits blocks and never fuse
them. For this reason if IS? is finite, the algorithm terminates in at most |IS?|
iterations.

Proposition 2. If IS? is finite, then the algorithm terminates and the resulting
partition equates all and only the bisimilar state.

The partition refinement algorithm allows not only to check bisimilarity of a set
of states, but also to build the minimal automaton of a certain state p. Intuitively,
the minimal automaton is a labeled transition systems where all the bisimilar



states are identified. Hereafter, given a set A and an equivalence relation R, we
write A|R to denote the set of equivalence classes of A w.r.t. R. Moreover, given
p ∈ A, [p]R denotes the equivalence class of p w.r.t. R.

Definition 1 (Minimal Automaton). Let {p}? be the set of states reachable
from the state p. The minimal automaton of p (denoted by MA(p)) is a triple
〈i,M, trM 〉:
– the initial state i is equal to [p]∼,
– M = {p}?

|∼ is the set of equivalence classes of ∼,
– trM is the transition relation defined according to the following rule.

q
a−→ r

[q]∼
a−→M [r]∼

Proposition 3. p ∼ q if and only if MA(p) is isomorphic to MA(q).

If the set of states reachable from p is finite, we can employ the partition
refinement algorithm to build the minimal automaton of p. We have just to
quotient the set of reachable states {p}? with the partition returned by the
Partition-Refinement({p}).

3 Saturated and Symbolic Semantics

In this section we recall the general framework for symbolic bisimilarity that
we have introduced in [5]. As running example, we will use open Petri nets [13,
2]. However, our theory has as special cases the abstract semantics of several
formalisms such as open [24] and asynchronous [1] π-calculus and explicit fusion
calculus [27].

3.1 Saturated Semantics

A closed many-sorted unary signature (S, Σ) consists of a set of sorts S, and an
S × S sorted family Σ = {Σs,t | s, t ∈ S} of sets of operation symbols which are
closed under composition, that is if f ∈ Σs,t and g ∈ Σt,u, then g ◦ f ∈ Σs,u.
Given f ∈ Σu,v, g ∈ Σt,u, h ∈ Σs,t, f ◦ (g ◦ h) = (f ◦ g) ◦ h and moreover ∀s ∈ S,
∃ids ∈ Σs,s such that ∀f ∈ Σs,t, idt ◦ f = f and f ◦ ids = f . A (S,Σ)-algebra
A consists of an S sorted family |A| = {As | s ∈ S} of sets and a function
fA : As → At for all f ∈ Σs,t such that (g ◦ f)A = gA(fA(−)) and idsA is the
identity function on As

2. When A is clear from the context, we will write f to
mean fA, and we will write As to mean the set of sort s of the family |A|.

The first definition of the theoretical framework presented in [5] is that of con-
text interactive systems. In our theory, an interactive system is a state-machine
that can interact with the environment (contexts) through an evolving interface.
2 A closed many-sorted unary signature (S, Σ) is a category C and a (S, Σ)-algebra is

a presheaf on C. We adopt the above notation to be accessible to a wider audience.



Definition 2 (Context Interactive System). A context interactive system
I is a quadruple 〈(S, Σ),A, O, tr〉 where:

– (S,Σ) is a closed many-sorted unary signature,
– A is a (S, Σ)-algebra,
– O is a set of observations,
– tr ⊆ |A|×O×|A| is a labeled transition relation (p o−→ p′ means (p, o, p′) ∈ tr).

Roughly speaking sorts are interfaces of the system, while operators of Σ are
contexts. Every state p with interface s (i.e. p ∈ As) can be inserted into the
context c ∈ Σs,t, obtaining cA(p) that has interface t. Every state can evolve into
a new state (possibly with different interface) producing an observation o ∈ O.

The abstract semantics of interactive systems is usually defined through be-
havioural equivalences. In [5] we proposed a general notion of bisimilarity that
generalizes the abstract semantics of a large variety of formalisms. The idea is
that two states of a system are equivalent if they are indistinguishable from an
external observer that, in any moment of their execution, can insert them into
some environment and then observe some transitions.

Definition 3 (Saturated Bisimilarity). Let I = 〈(S, Σ),A, O, tr〉 be a con-
text interactive system. Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family
of symmetric relations. R is a saturated bisimulation iff, ∀s, t ∈ S, ∀c ∈ Σs,t,
whenever pRsq:

– cA(p)R cA(q),
– if p

o−→ p′, then q
o−→ q′ and p′Rq′.

We write p ∼S
s q iff there is a saturated bisimulation R such that pRsq.

An alternative but equivalent definition can be given by defining the saturated
transition system (satts) as follows: p

c,o−→S q if and only if c(p) o−→ q. Trivially
the ordinary bisimilarity over satts coincides with ∼S .

Proposition 4. ∼S is the coarsest bisimulation congruence.

3.2 Running example: open Petri nets

Differently from process calculi, Petri nets have not a widely known interactive
behaviour. Indeed they model concurrent systems that are closed, in the sense
that they do not interact with the environment. Open nets [13, 2] are P/T Petri
nets that can interact by exchanging tokens on input and output places.

Given a set X, we write X⊕ for the free commutative monoid over X. A
multiset m ∈ X⊕ is a function from X to ω (the set of natural numbers) that
associates a multiplicity to every element of X. Given two multisets m1 and m2,
m1 ⊕m2 is defined as ∀x ∈ X, m1 ⊕m2(x) = m1(x) + m2(x), while m1 ∩m2

as ∀x ∈ X, m1 ∩m2(x) = min{m1(x),m2(x)}. We write ∅ to denote both the
empty set and the empty multiset, while we write abn to denote the multiset
that associates multiplicity 1 to a and multiplicity n to b.
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Fig. 1. The open nets N1, N2, N3, N4 and N5.(A)Part of the infinite transition sys-
tem of 〈N1, a〉. (B)Part of the infinite saturated transition system of 〈N1, a〉.(C)The
symbolic transition systems of 〈N1, a〉,〈N2, c〉,〈N3, e〉,〈N4, l〉 and 〈N5, r〉.

Definition 4 (Open net). An open net is a tuple N = (S, T, pre, post, l, I, O)
where S and T are the sets of places and transitions (S∩T = ∅); pre, post : T →
S⊕ are functions mapping each transition to its pre- and post-set; l : T → Λ is
a labeling function (Λ is a set of labels) and I,O ⊆ S are the sets of input and
output places. A marked open net is a pair 〈N, m〉 where N is an open net and
m ∈ S⊕ is a marking.

Fig.1 shows five open nets where, as usual, circles represents places and rectangles
transitions (labeled with α, β). Arrows from places to transitions represent pre,
while arrows from transitions to places represent post. Input places are denoted
by ingoing edges, thus the only input place of N1 is $. To make examples easier,
hereafter we only consider open input nets, i.e., open nets without output places3.

The operational semantics of marked open nets is expressed by the rules on
Table 1 where, in order to make lighter the notation, we use •t and t• to denote
pre(t) and post(t) and we avoid to put brackets around the marked net 〈N, m〉.
The rule (tr) is the standard rule of P/T nets (seen as multisets rewriting). The
rule (in) states that in any moment a token can be inserted inside an input place
and, for this reason, the lts has always an infinite number of states. Fig.1(A)
shows part of the infinite transition system of 〈N1, a〉.
3 The extension to nets with output places is trivial as shown in [5].



(tr)
t ∈ T l(t) = λ m = •t⊕ c

N, m
λ−→ N, t• ⊕ c

(in)
i ∈ IN

N, m
+i−→ N, m⊕ i

Table 1. Operational Semantics of marked open nets

The abstract semantics (denoted by ∼N ) is defined in [3] as the ordinary
bisimilarity over such an lts. It is worth noting that ∼N can be seen as an
instance of saturated semantics, where multisets over open places are contexts
and transitions are only those generated by the rule (tr).

In the following we formally define N = 〈(SN , ΣN ),N, Λ, trN 〉 that is the
context interactive system of all open nets (labeled over the set of labels Λ).

The many-sorted signature (SN , ΣN ) is formally defined as:

– SN = {I | I is a set of places},
– ∀I ∈ SN , ΣN

I,I = I⊕, idI = ∅ and i1 ◦ i2 = i1 ⊕ i2.

Intuitively sorts of the signature are sets of input places I, while operators of
ΣN are multisets of tokens on the input places. We say that a marked open
net 〈N,m〉 has interface I if the set of input places of N is I. For example the
marked open nets 〈N1, a〉 has interface {$}. Let us define the (SN , ΣN )-algebra
N. For any sort I, the carrier set NI contains all the marked open nets with
interface I. Any operator i ∈ ΣI,I is defined as the function that maps 〈N,m〉
into 〈N,m⊕ i〉.

The transition structure trN (denoted by −→N ) associates to a state 〈N,m〉
the transitions obtained by using the rule (tr) of Table 1.

In [5], it is proved that saturated bisimilarity for N coincides with ∼N .
In the remainder of the paper we will use as running example the open nets

in Fig.1. Since all the places have different names (with the exception of $),
in order to make lighter the notation, we write only the marking to mean the
corresponding marked net, e.g. b2$ means the marked net 〈N1, b

2$〉.
The marked net a (i.e., 〈N1, a〉) represents a system that provides a service

β. After the activation α, it provides β whenever the client pay one $ (i.e.,
the environment insert a token into $). The marked net c instead requires five
$ during the activation, but then provides the service β for free. The marked
net e, requires three $ during the activation. For three times, the service β is
performed for free and then it costs one $. It is easy to see that all these marked
nets are not bisimilar. Indeed, a client that has only one $ can have the service
β only with a, while a client with five $ can have the service β for six times only
with c. The marked net r represents a system that offers the behaviour of both
a and c, i.e. either the activation α is for free and then the service β costs one,
or the activation costs five and then the service is for free. Also this marked net
is different from all the others.

Now consider the marked net l. It offers the behaviour of both a and e, but
it is equivalent to a, i.e. l ∼N a. Roughly, the behaviour of e is absorbed by the



behaviour of a. This is analogous to what happens in asynchronous π-calculus
[1] where it holds that a(x).(ax | p)+ τ.p ∼ τ.p. Appendix A proves that l ∼N a.

3.3 Symbolic Semantics

Saturated bisimulation is a good notion of equivalence but it is hard to check,
since it involves a quantification over all contexts. In [5], we have introduced a
general notion of symbolic bisimilarity that coincides with saturated bisimilarity,
but it avoids to consider all contexts. The idea is to define a symbolic transition
system where transitions are labeled both with the usual observation and also
with the minimal context that allows the transition.

Definition 5 (Symbolic Context Transition System). A symbolic context
transition system (scts for short) for a system I = 〈(S,Σ),A, O, tr〉 is a tran-
sition system β ⊆ |A| ×Σ ×O × |A|.

In [5], we have introduced a scts for open nets. Intuitively the symbolic

transition N, m
i,λ−→η N,m′ is possible if and only if N, m ⊕ i

λ−→N N,m′ and i
is the smallest multiset (on input places) allowing such transition. This scts is
formally defined by the following rule.

t ∈ T l(t) = λ m = (m ∩ •t)⊕ n i ⊆ I⊕ •t = (m ∩ •t)⊕ i

N, m
i,λ−→η N, t• ⊕ n

The marking m∩ •t contains all the tokens of m that are needed to perform the
transition t. The marking n contains all the tokens of m that are not useful for
performing t, while the marking i contains all the tokens that m needs to reach
•t. Note that i is exactly the smallest multiset that is needed to perform the
transition t. Indeed if we take i1 strictly included into i, m ⊕ i1 cannot match
•t. As an example consider the net N2 in Fig.1 with marking cd$2 and let t be
the only transition labeled with α. We have that cd$2 ∩ •t = c$2, n = d and

i = $3. Thus N2, cd$2 $3,α−→η N2, dd. Fig.1(C) shows symbolic transition systems
of marked open nets discussed in the previous subsection.

Definition 6 (Inference System). An inference system R for a context in-
teractive system I = 〈(S,Σ),A, O, tr〉 is a set of rules of the following format,
where s, t ∈ S, o, o′ ∈ O, c ∈ Σs,s′ and d ∈ Σt,t′ .

ps
o−→ qt

c(ps)
o′−→ d(qt)

The above rule states that all processes with sort s that perform a transition with
observation o going into a state qt with sort t, when inserted into the context c
can perform a transition with the observation o′ going into d(qt).

In the following, we write c
o

o′
d to mean a rule like the above. The rules

c
o

o′
c′ and d

o′

o′′
d′ derive the rule d◦c o

o′′
d′◦c′ if d◦c and d′◦c′ are



defined. Given an inference system R, Φ(R) is the set of all the rules derivable
from R together with the identities rules (∀o ∈ O and ∀s, t ∈ S, ids

o

o
idt).

Definition 7 (Derivations, soundness and completeness). Let I be a con-
text interactive system, β an scts and R an inference system.

We say that p
c1,o1−−→ p1 derives p

c2,o2−−→ p2 in R (written p
c1,o1−−→ p1 `R p

c2,o2−−→ p2)

if there exist d, e ∈ Σ such that d
o1

o2
e ∈ Φ(R), d ◦ c1 = c2 and eA(p1) = p2.

We say that β and R are sound and complete w.r.t. I if

p
c,o−→S q iff p

c′,o′−→β q′ and p
c′,o′−→β q′ `R p

c,o−→S q.

A sound and complete scts could be considerably smaller than the saturated
transition system, but still containing all the information needed to recover ∼S .
Note that the ordinary bisimilarity over scts (hereafter called syntactical bisim-
ilarity and denoted by ∼W ) is usually stricter than ∼S . As an example con-
sider the marked open nets a and l. These are not syntactically bisimilar, since

l
$3,α−→η m while a cannot (Fig.1(C)). However, they are saturated bisimilar, as

discussed in the previous subsection. In order to recover ∼S through the symbolic
transition system we need a more elaborated definition of bisimulation.

Definition 8 (Symbolic Bisimilarity). Let I = 〈(S, Σ),A, O, tr〉 be an in-
teractive system, R be a set of rules and β be a symbolic transition system. Let
R = {Rs ⊆ As ×As | s ∈ S} be an S sorted family of symmetric relations. R is
a symbolic bisimulation iff ∀s ∈ S, whenever pRsq:

– if p
c,o−→β p′, then q

c1,o1−−→β q′1 and q
c1,o1−−→β q′1 `R q

c,o−→ q′ and p′Rq′.

We write p ∼SY M
s q iff there exists a symbolic bisimulation R such that pRsq.

Theorem 1. Let I be a context interactive system, β an scts and R an infer-
ence system. If β and R are sound and complete w.r.t. I, then ∼SY M=∼S.

In the remainder of this section we focus on open Petri nets. The inference system
RN is defined by the following parametric rule.

N, m
λ−→N N, m′

N, m⊕ i
λ−→N N, m′ ⊕ i

The intuitive meaning of this rule is that for all possible observations λ and
multiset i on input places, if a marked net performs a transition with observation
λ, then the addition of i preserves this transition.

Now, consider derivations between transitions of open nets. It is easy to see
that N,m

i1,λ1−−→ N,m1 `RN N,m
i2,λ2−−→ N,m2 if and only if λ2 = λ1 and there

exists a multiset x on input places such that i2 = i1⊕x and m2 = m1⊕x. For all
the nets Ni of our example, this just means that for all observations λ and for all

multisets m, n, we have that 〈Ni,m〉 $i,λ−→η 〈Ni, n〉 `RN 〈Ni, m〉 $i+j ,λ−−−→ 〈Ni, n$j〉.
From the above characterization of `RN and from Def.8, the definition of

symbolic bisimulation for open nets follows.



Definition 9 (Symbolic bisimulation for marked open nets). A symmet-
ric relations R is a symbolic bisimulation for nets iff, whenever 〈N1,m1〉R〈N2,m2〉
– N1 and N2 have the same sets of input places,
– if 〈N1,m1〉 i,λ−→η 〈N1, m

′
1〉 then ∃i1, x ∈ I⊕ such that:

i = i1 ⊕ x, 〈N2,m2〉 i1,λ−→η 〈N2,m
′
2〉 and 〈N1,m

′
1〉R〈N2, m

′
2 ⊕ x〉.

In [5] we have shown that RN and η are sound and complete w.r.t. N . For this
reason, we can prove that two marked nets are bisimilar, by showing a symbolic
bisimulation that relates them. An example is in Appendix A.

4 Saturated and Symbolic Terminal Sequences

In this section we introduce the terminal sequence for saturated and symbolic
bisimilarity. They are almost straightforward adaptation of the terminal se-
quence for ordinary bisimilarity presented in Section 2. Hereafter we always
implicitly refer to a context interactive system I = 〈(S,Σ),A, O, tr〉, a symbolic
transition system β and an inference system R, such that β and R are sound
and complete w.r.t. I.

The saturated terminal sequence is defined as follows,

∼0
S= {As ×As | s ∈ S} ∼κ+1

S = SAT(∼κ
S) ∼λ

S=
⋂

κ<λ

∼κ
S

where SAT is a function on S indexed families of relations such that, for all
R = {Rs ⊆ As ×As | s ∈ S}, pSAT(R)q iff

– if p
c,o−→S p′, then q

c,o−→S q′ and p′Rq′,
– if q

c,o−→S q′, then p
c,o−→S p′ and p′Rq′.

The only difference w.r.t. the terminal sequence of ordinary bisimilarity is in the
fact that we consider S indexed families of relations (recall that S is the set of
sorts, and As is carrier set of sort s of the algebra A).

It is easy to see that SAT is monotonic w.r.t. (indexed) set inclusion. From
classical results of fixed point theory (analogously to ordinary bisimilarity), we
have that saturated bisimilarity is the limit of the saturated terminal sequence.

Proposition 5. ∼S=
⋂

κ∈O ∼κ
S

The following lemma will be fundamental to prove the correctness of our algo-
rithm. Its proof can be found in the appendix.

Lemma 1. ∀κ ∈ O, ∼κ
S is a congruence.

In Section 2, we have shown that the terminal sequence for ordinary bisimilarity
provides an effective procedure for computing bisimilarity. We would like to apply
the same intuition to the saturated terminal sequence but, unfortunately, the
saturated transition system is usually infinite since it considers all the possible



contexts. Instead of using the saturated transition system, we work with the
symbolic transition system.

The symbolic terminal sequence is defined as follows,

∼0
SY M= {As ×As | s ∈ S} ∼κ+1

SY M= SYM(∼κ
SY M ) ∼λ

SY M=
⋂

κ<λ

∼κ
SY M

where SYM is a function on S indexed families of relations such that, for all
R = {Rs ⊆ As ×As | s ∈ S}, pSYM(R)q iff

– if p
c,o−→β p′, then q

c1,o1−−→β q′1 and q
c1,o1−−→β q′1 `R q

c,o−→ q′ and p′Rq′,
– if q

c,o−→β q′, then p
c1,o1−−→β p′1 and p

c1,o1−−→β p′1 `R q
c,o−→ q′ and p′Rq′.

The only difference w.r.t. saturated terminal sequence is in the inductive case,
where we use SYM instead of SAT. We could prove that the two terminal se-
quences coincide, but this is useless for our aims. In fact, imagine to adapt the
partition refinement algorithm (Section 2) to the symbolic terminal sequence,
by replacing the function F with SYM. Suppose to apply this imaginary al-
gorithm to the set of initial states IS = {a, r} (Fig.1(C)). The set of states
reachable through the symbolic transition system is IS? = {a, b, r, s, t}. The ini-
tial partition would be P 0 = {a, b, r, s, t}. At the first iteration, when computing

SYM(P 0), we should decide about splitting a and r. Since r
$5,α−→η s and a

∅,α−→η b

and a
∅,α−→η b `RN a

$5,α−→ b$5, we should check if b$5 and s belong to the same
block in P 0. Unfortunately b$5 is not reachable from IS = {a, r}, and thus it
has not been inserted into the initial partition. One could conjecture that we
could add all those states as the above b$5. However, this immediately brings to
add infinitely many states.

5 Redundant Transitions

In Section 3, we have shown that syntactical bisimilarity (∼W ), i.e. the ordinary
bisimilarity on the symbolic transition system, does not coincide with ∼S . Here
we show that this is due to the presence of redundant transitions. In order to
better explain this phenomenon, we have to show an important property of `R.

Lemma 2. ∀p, q, if p
c1,d1−−→ p1 `R p

c2,d2−−→ eA(p1), then q
c1,d1−−→ q1 `R q

c2,d2−−→ eA(q1).

Now, consider a process p that performs only the symbolic transitions p
c1,o1−−→β p1

and p
c2,o2−−→β p2 such that p

c1,o1−−→β p1 `R p
c2,o2−−→ eA(p1) and p2 ∼S eA(p1). The

transition p
c2,o2−−→β p2 is redundant and it makes ∼W different from ∼S . Indeed,

take a process q that performs only q
c1,o1−−→β q1 such that p1 ∼S q1. Clearly p and

q are not syntactically bisimilar, because p
c2,o2−−→β p2 while q cannot. However,

p ∼S q, because q
c2,o2−−→S eA(q1) (assuming that β and R are sound and complete

and by Lemma 2) and, p2 ∼S eA(p1) ∼S eA(q1) (since ∼S is a congruence).



As an example consider the symbolic transition system of l (Fig.1). l
∅,α−→η q

and l
$3,α−→η m. Moreover, l

∅,α−→η q `RN l
$3,α−→ q$3 and q$3 ∼S m. Now consider a.

a
∅,α−→η b. Clearly l 6∼W a but they are saturated bisimilar (as shown in Section

3). Redundant transitions appears in many other formalisms. In Appendix B,
we shows some of them in the case of open and asynchronous π calculus.

Definition 10 (Redundant Transition). Let I = 〈(S, Σ),A, O, tr〉 be a con-
text interactive system, R be an inference system and X be an S sorted family of
relations. Let p

c1,o1−−→ p1 and p
c2,o2−−→ p2 be two different transitions. We say that the

former dominates the latter in X (written p
c1,o1−−→ p1 ≺X p

c2,o2−−→ p2) if and only
if p

c1,o1−−→ p1 `R p
c2,o2−−→ eA(p1) and p2 X eA(p1). A transition is redundant w.r.t.

X if it is dominated in X by another transition. Otherwise, it is irredundant.

In the remainder of this section, we introduce another characterization of satu-
rated bisimilarity that only checks irredundant symbolic transitions. The mini-
mization algorithm that we will present in Section 6 relies on this notion.

Definition 11 (Irredundant Bisimilarity). Let I = 〈(S, Σ),A, O, tr〉 be an
interactive system, R be a set of rules and β be a symbolic transition system.
Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family of symmetric relations.
R is an irredundant bisimulation iff ∀s ∈ S, whenever pRsq:

– if p
c,o−→β p′ is irredundant in R, then q

c,o−→β q′ and p′Rq′.

We write p ∼NR
s q iff an irredundant bisimulation R such that pRsq exists.

Theorem 2 states that ∼NR=∼S . However, in order to have such correspondence,
we have to add a constraint to our theory. Indeed, according to the actual defi-
nition of context interactive systems, there could exist infinite descending chains
like: · · · ≺R p

c2,o2−−→ p2 ≺R p
c1,o1−−→ p1. In this chain, all the transitions are redun-

dant and thus none of them is considered when checking irredundant bisimilarity.

Definition 12. A context interactive system is well-founded w.r.t. R if and
only if for all relations R there are no infinite descending chains of ≺R.

All the examples that we have shown in [5] are well-founded. In particular N is

well founded w.r.t. RN . Indeed, for all relations R, m
i1,λ1−−→ m1 ≺R m

i2,λ2−−→ m2

only if there exists a multiset x 6= ∅ such that x ◦ i1 = i2. This means that
the multiset i1 is strictly included in the multiset i2, and since all multisets are
finite, there exist only finite descending chains of ≺R.

Theorem 2. Let I be a context interactive system, β an scts and R an infer-
ence system. If β and R are sound and complete w.r.t. I and I is well founded
w.r.t. R, then ∼NR=∼SY M .



6 A Minimization Algorithm for Symbolic Bisimilarity

In this section we first introduce the terminal sequence for irredundant bisimi-
larity (Subsection 6.1) then, relying on this, we introduce the symbolic partition
refinement algorithm that checks saturated bisimilarity (Subsection 6.2). Finally,
we prove the existence of minimal symbolic automata and we provide a proce-
dure to compute them (Subsection 6.3). All the proofs are in Appendix C.

6.1 Irredundant Terminal Sequence

Relying on the notions introduced in the previous section, we show here the
terminal sequence for irredundant bisimilarity and we prove that it coincides
with saturated terminal sequence. In the remainder of the paper we always refer
to a context interactive system I, a symbolic transition system β and an inference
system R, such that β and R are sound and complete w.r.t. I and I is well-
founded w.r.t. R.

The irredundant terminal sequence is defined as follows,

∼0
IR= {As ×As | s ∈ S} ∼κ+1

IR = IR(∼κ
IR) ∼λ

IR=
⋂

κ<λ

∼κ
IR

where IR is a function on S indexed families of relations such that, for all
R = {Rs ⊆ As ×As | s ∈ S}, pIR(R)q iff

– if p
c,o−→β p′ is irredundant in R, then q

c,o−→β q′ and p′Rq′,
– if q

c,o−→β q′ is irredundant in R, then p
c,o−→β p′ and p′Rq′.

The only difference w.r.t. saturated terminal sequence is in the inductive case.
The function IR is clearly different from SAT, but they are equivalent when
restricting to congruences.

Proposition 6. Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family of
symmetric relations. If R is a congruence, then SAT(R) = IR(R).

Theorem 3. ∀κ ∈ O, ∼κ
S=∼κ

IR.

Thus, saturated and irredundant terminal sequences are the same. However, the
latter characterization allows us to define an effective procedure for checking
saturated bisimilarity. This is the symbolic partition refinement algorithm that
we will present in the next subsection.

6.2 Symbolic Partition Refinement

In Section 2 we have shown how the terminal sequence can be employed in order
to have an effective procedure to compute bisimilarity. In this section we apply
the same intuition to the irredundant terminal sequence. At the iteration n,
instead of computing F(Pn), we compute IR(Pn): two processes p and q belong



(is)
p ∈ IS p ∈ As

p ∈ IS?
s

(rs)
p ∈ IS? p

c,o−→β q q ∈ As

q ∈ IS?
s

(rd)
p ∈ IS? p

c1,o1−−→β q1 p
c2,o2−−→β q2 p

c1,o1−−→β q1 `R p
c2,o2−−→ eA(q1) eA(q1) ∈ As

eA(q1) ∈ IS?
s

Table 2. Closure rules

to the same block in Pn+1, if and only if whenever p
c,o−→β p′ is not redundant in

Pn then q
c,o−→β q′ with p′ and q′ in the same block of Pn.

It is worth noting that in the computation of IR(Pn) are involved also states
that could be not reachable from the initial states IS. As an example consider
the symbolic transition system of a and r (Fig.1(C)). The set of reachable states

is IS? = {a, b, r, s, t}. Recall that r
∅,α−→η t `RN r

$5,α−→η t$5. Thus, at the generic

iteration n + 1, we need to check if the transition j
$5,α−→η s is redundant. In

order to do that we have to check if t$5 and s belong to the same block in Pn.
However, the state t$5 is not reachable from IS = {a, r}.

For this reason, we have also to change the initialization step of our algorithm,
by including in the set IS? all the states that are needed to check redundancy.
This is done, by using the closure rules in Table 2.The rule (rd) adds all the states
that are needed to check redundancy. Indeed, if p can perform p

c1,o1−−→β q1 and
p

c2,o2−−→β q2 such that p
c1,o1−−→β q1 `R p

c2,o2−−→ eA(q1), the latter could be redundant
whenever q2 ∼S eA(q1). Thus also the state eA(q1) is needed. As an example,
the closure of IS = {a, r} is IS? = {a, b, r, s, t, t$1, t$2, t$3, t$4, t$5} (Fig.2(B)).
Usually, IS? is not just a set, but an S indexed family of sets of states and for
this reason the closure rules in Table 2 insert states in IS? according to their
sorts.

Algorithm 2 Symbolic-Partition-Refinement(IS)
Initialization

1. Compute IS? with the rules in Table 2,
2. P 0 := {IS?

s |s ∈ S},
Iteration P n+1 := IR(P n),
Termination if P n = P n+1 then return P n.

Notice that in the initial partition P 0 there is one block for each sort s ∈ S.
Thus P 0 equates all and the only the elements of IS? with the same interface.
Fig.2(A) shows the sequence of partitions computed by the algorithm taking
as initial state IS = {a, r}. It is important to note now that in the symbolic
transition system of IS? (Fig.2(B)) the only possibly redundant transition is

r
$5,α−→η s (because r

∅,α−→η t `RN r
$5,α−→ t$5). Thus, in order to check redundancy,



P 0 = {a, b, r, s, t, t$1, t$2, t$3, t$4, t$5}
P 1 = {a, r}{b, t}{t$1, t$2, t$3, t$4, t$5, s}
P 2 = {a, r}{b, t}{t$1}, {t$2, t$3, t$4, t$5, s}
P 3 = {a, r}{b, t}{t$1}, {t$2}{t$3, t$4, t$5, s}
P 4 = {a, r}{b, t}{t$1}, {t$2}{t$3}{t$4, t$5, s}
P 5 = {a, r}{b, t}{t$1}, {t$2}{t$3}{t$4}{t$5, s}
P 6 = {a, r}{b, t}{t$1}, {t$2}{t$3}{t$4}{t$5}{s}
P 7 = {a}{r}{b, t}{t$1}{t$2}{t$3}{t$4}{t$5}{s}
P 8 = {a}{r}{b, t}{t$1}{t$2}{t$3}{t$4}{t$5}{s}

r
$5,α //

∅,α $$HHHH s

∅,β

°°
a

∅,α // b

$,β

°°

t

$,β

QQ t$1
∅,βoo t$5

∅,β
²²

t$2

∅,β

OO

t$3
∅,βoo t$4

∅,βoo

(A) (B)

Fig. 2. (A)The partitions computed by Symbolic-Partition-Refinement({a, r}).(B)The
symbolic transition systems of {a, r}?.

at any iteration we have only to check if t$5 and s belong to the same block.
In the initial partition all the states are equivalent since they all have the same
interface (recall that all the marked nets presented in Section 3 have interface $).
In P 1 there are three blocks. The states a and r are in the same block because
the transition r

$5,α−→η s is redundant since s and t$5 belong to the same block in
P 0. In the second iteration, the state t$1 is separated from {t$2, t$3, t$4, t$5, s}
because the former can perform

∅,β−→η {r, b} while all the others cannot. Note
that a and r are still in the same block because s and t$5 belong to the same
block in P 1. In each of the following iteration, a state t$i is separated from s.
In P 6, the state t$5 is separated from s and thus in P 7 the state a and r are

divided because the transition r
$5,α−→η s is not redundant anymore. Then P 8 is

equivalent to P 7 and the algorithm returns such partition.

In order to prove the soundness of our algorithm we define the irredundant
terminal sequence for the set of initial states IS,

∼0
IS=∼0

β» IS? ∼κ+1
IS = IR(∼κ

IS) ∼λ
IS=

⋂

κ<λ

∼κ
IS

where R » A denotes the restriction of the relation R to the set A, IS? is the
closure of IS w.r.t. rules in Table 2.

The only difference with respect to the irredundant terminal sequence is in
the first element. Here instead of taking the whole state space of I, we restrict
to IS?. The following theorem guarantees that this is enough in order to char-
acterize the restriction of the irredundant terminal sequence to IS?. This is not
trivial and it strongly relies on the fact that we close IS w.r.t. the rule (rd) in
Table 2. Indeed whenever we remove such rule, it does not hold anymore.

Theorem 4. ∀κ ∈ O, ∼κ
ND» IS? =∼κ

IS.

Theorem 5. If ∼κ
IS=∼κ+1

IS , then ∀k′ ≥ k + 1, ∼κ
IS=∼κ′

IS.

Corollary 1. If IS? is finite, then the algorithm terminates and the resulting
partition equates all and only saturated bisimilar states.



l
$3,α//

∅,α !!CC
CC m

∅,β// n$2
∅,β // o$

∅,β // p
$,β

°°

q

$,β

QQ q$1
∅,βoo q$2

∅,βoo q$3
∅,βoo

P 0 = {l, p, q, q$1, o$, q$2, n, q$3, m}
P 1 = {l}{p, q}{q$1, o$, q$2, n, q$3, m}
P 2 = {l}{p, q}{q$1, o$}{q$2, n, q$3, m}
P 3 = {l}{p, q}{q$1, o$}{q$2, n}{q$3, m}
P 4 = {l}{p, q}{q$1, o$}{q$2, n}{q$3, m}

Fig. 3. The partions computed by Symbolic-Partition-Refinement({l})

Since the algorithm applies to a lot of different formalisms, it is hard to provide a
meaningful complexity analysis. However, we want to remark that the operation
of checking redundancy is not expensive, since all the possible redundancies can
be computed during the initialization (when using the rule (rd) of Table 2)
and at any iteration, only those redundancies must be checked. Instead, the
closure IS? can be much larger than the set of reachable states (that is used by
the ordinary partition refinement). Even worst, in our general theory, nothing
guarantees that if the set of reachable states (through the symbolic transition
system) is finite then also the closure IS? is finite. However, we conjecture that
this holds for many formalisms. The following proposition states that this holds
in our running example.

Proposition 7. Let N , η and RN be the context interactive system, the sym-
bolic transition system and the inference system for open nets that we have intro-
duced in Section 3. Let 〈N,m〉 be a marked open net. If the symbolic transition
system of 〈N,m〉 is finite, then also the closure w.r.t. rules in Table 2 is finite.

6.3 Minimal Symbolic Automaton

In this section we introduce minimal symbolic automata, i.e. minimal automata
having only irredundant symbolic transitions. We show that they are canonical
representatives for equivalence classes of saturated bisimilar states. Moreover,
we provide an algorithm to compute them. Hereafter, given an S sorted family
of sets X = {Xs | s ∈ S} and an S sorted family of equivalence relations
R = {Rs ⊆ Xs × Xs | s ∈ S}, we write Xs |R to mean the set of equivalence
classes of Xs w.r.t. Rs and for each p ∈ X, [p]R to mean the equivalence class
of p w.r.t. R.

Definition 13 (Minimal Symbolic Automaton). Let I = 〈(S,Σ),A, O, tr〉
be a context interactive system, β a symbolic transition system and R an infer-
ence system. Let p be a state of I and {p}? = {{p}?

s | s ∈ S} be the S sorted
family of sets of states obtained by closing {p} with the rules in Table 2. The
minimal symbolic automaton of p (denoted by MSA(p)) is a triple 〈i, M, trM 〉:
– the initial state i is equal to [p]∼S ,
– M = {Ms ⊆ {p}?

s |∼S | s ∈ S} is an S indexed family of set of equivalence
classes of ∼S,

– trM ⊆ M ×Σ ×O ×M is a transition relation,



defined according to the following two rules.

p ∈ As

[p]∼S ∈ Ms

[q]∼S ∈ M q
c,o−→β r is irredundant in ∼S r ∈ As

[q]∼S
c,o−→M [r]∼S [r]∼S

∈ Ms

The leftmost rule states that the equivalence class of the initial state p belongs
to the states of the minimal automaton. The other rule adds all the equivalence
classes that are reachable from p trough symbolic irredundant transitions. Notice
that in the minimal automaton for standard bisimilarity (Def.1) the set of states
consisted of all the equivalence classes of reachable states, and thus in order to
compute the minimal automata, we just needed to quotient the set of reachable
states. For minimal symbolic automata we have also to remove all those states
that are not reachable through irredundant symbolic transitions. As an example

Algorithm 3 Symbolic-Minimization(p)

1. P :=Symbolic-Partition-Refinement({p}),
2. Quotient {p}? w.r.t. P ,
3. Remove the redundant transitions,
4. Remove the states that are not reachable.

consider the symbolic transition system of l (Fig.1(C)). Fig.3 shows the closure
{l}? and the partitions computed by Symbolic-Partition-Refinement({l}).
The minimal automata of l can be constructed as follows. First, we quotient the
states in {l}? with respect to the partition P 4 returned by the algorithm.

{l}
$3,α

**∅,α // {p, q}
$,β

SS {q$1, o$}∅,βoo {q$2, n}∅,βoo {q$3,m}∅,βoo

Then we remove the redundant transitions.

{l} ∅,α // {p, q}
$,β

SS {q$1, o$}∅,βoo {q$2, n}∅,βoo {q$3,m}∅,βoo

Finally we take the set of states reachable from l: {l} ∅,α // {p, q}
$,β®®

. This is the
minimal symbolic automaton of l. Notice that it is isomorphic to the symbolic
transition system of a (Fig.1(C)). This is an alternative proof of a ∼S l. Indeed,
for minimal symbolic automata, analogously to minimal automata, two states p
and q are saturated bisimilar if and only if their minimal symbolic automata are
isomorphic, where by isomorphism we mean a bijection on states that preserves
sorts, transitions and initial states.

Proposition 8. p ∼S q if and only if MSA(p) is isomorphic to MSA(q).



7 Conclusions and related works

Relying on the theoretical framework of [5], we have introduced the symbolic par-
tition refinement algorithm that allows to efficiently check saturated bisimilarity.
Moreover, we have provided a procedure for constructing the minimal symbolic
automata. The existence of minimal symbolic automata is another non-trivial
contribute of this work.

Our approach is absolutely general and it can be applied to a large variety of
formalisms. However, when considering nominal calculi where systems are able
to generate and communicate names, the symbolic transition system is often infi-
nite. Indeed, every time that a system generates a new name and extrudes it, the
system goes in a new state that is different from all the previous. HD-Automata
[18] are peculiar labeled transition systems that allow to garbage collect names
and avoid this other source of infiniteness. As future work, we will extend our
framework to HD-Automata, so that we will be able to handle systems that
generates infinitely many names. In particular we conjecture that this algorithm
will generalize both [22] and [17] that provide a partition refinement algorithm
for open [24] and asynchronous [1] bisimilarity.

Indeed, both our approach and [22, 17] rely on irredundant transitions. In
all these algorithms, first the closure of the set of initial states is computed
by adding, not only the reachable states, but also those states that are needed
to check redundancy. Then, at any iteration, only irredundant transitions are
considered. In [22], the closure is called saturated state graph and it is computed
analogously to our approach. Instead, in [17], the closure is computed by adding
negative transitions whenever there is a possible redundancy. Roughly, if p

aÃ q is
a negative transition, then a transition p

a−→ q′ is redundant whenever the arriving
state q and q′ are the same. A novel notion of bisimilarity is introduced for these
kind of transition systems, but it fails to be transitive. In our context interactive
systems we just rely on the algebraic structure of contexts and irredundant
bisimilarity coincides with the saturated one.

Moreover, the functions on relations Φ and ΦA, that are used during the
iteration of the algorithm in [22, 17], are not monotone and, as a consequence,
the convergency of the corresponding terminal sequences have to be proven by
hand. Instead in our approach the function IR generates exactly the same ter-
minal sequence of saturated bisimilarity and thus convergence and coincidence
with saturated bisimilarity are for free. Moreover, we have shown that the cor-
respondence between irredundant bisimilarity and saturated bisimilarity is not
by chance, but because IR and SAT behaves exactly in the same way when
restricted to congruences.
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A Saturated and Symbolic Bisimulation: Examples

In this section, we show that a ∼N l by exhibiting both a saturated bisimulation
and a symbolic bisimulation relating them.

The following SN sorted relation R is a saturated bisimulation.

– RI = ∅ for all I ∈ SN different from {$}
– R{$} = the symmetric closure of {(a$x, l$x), (b$x, q$x), (b$x+3,m$x),

(b$x+2, n$x), (b$x+1, o$x), (b$x, p$x) | x ∈ ω}
Another way (substantially equivalent) of proving bisimilarity is that of con-

structing a bisimulation over the saturated transition system. An example of
saturated transition system is shown in Fig.1(B).

Instead, constructing symbolic bisimulation is usually more convenient. The
following SN sorted relation R is a symbolic bisimulation.

– RI = ∅ for all I ∈ SN different from {$}
– R{$} = the symmetric closure of {(a, l), (b, q), (b$3,m), (b$2, n), (b$1, o), (b, p)}

B Redundant Transitions: Examples

In Section 5, we have shown one example of redundant transition in the case
of open Petri nets. In this appendix, we show also redundant transitions in the
case of asynchronous [1] and open [24] π-calculus4.

Consider the open π processes p = [a = b]τ.r and q = p + [a = b][d = c]τ.r′

with r ∼ r′. In the symbolic transition system defined in [24],

q
[a=b],τ−−−→ r q

[a=b][c=d],τ−−−−−−→ r′

with q
[a=b],τ−−−→ r `R q

[a=b][c=d],τ−−−−−−→ [c = d]r and [c = d]r ∼ [c = d]r′ (where,
roughly, [c = d]p′ denotes the process p′ where all the occurrences of name c are
substituted by d). Now take the symbolic transition system of p.

p
[a=b],τ−−−→ r

Clearly p 6∼W q, but they are open bisimilar.
For asynchronous π-calculus, consider the processes p = a(x).(ax | r′) + τ.r

and q = τ.r with r ∼ r′.

p
τ−→ r p

a(x)−→ ax | r′

We have that p
τ−→ r `R p

a(x)−→ ax | r and ax | r ∼ ax | r′. Now q can perform
only

q
τ−→ r

Clearly p 6∼W q but they are bisimilar w.r.t. asynchronous bisimilarity [1].
4 The reader is referred to [5] for a formal definition of their context interactive sys-

tems.



C Proofs

In this appendix, we report the proofs. The proof of Theorem 2 is not included,
since it is a direct consequence of Theorem 3.

Lemma 1. ∀κ ∈ O, ∼κ
S is a congruence.

Proof. For κ = 0, it is trivially true, since p ∼0
S q if and only if, p and q have

the same interface.
For a successor ordinal κ+1, we prove that if p ∼κ+1

S q then also cA(p) ∼κ+1
S

cA(q). Suppose that cA(p)
d,o−→S p′ then p

d◦c,o−−→S p′. Since p ∼κ+1
S q, then also

q
d◦c,o−−→S q′ and p′ ∼κ

S q′. Moreover, cA(q)
d,o−→S q′, by definition of saturated

transition system.
For a limit ordinal λ, we assume that ∼κ

S is a congruence for all ordinals
κ < λ and we prove that ∼κ

S is a congruence. Suppose that p ∼λ
S q then, by

definition of ∼S on limit ordinals, p ∼κ
S q for all κ < λ, and then, by ordinal

induction, cA(p) ∼κ
S cA(q) for all κ < λ. Now, again by definition of ∼S on limit

ordinals cA(p) ∼λ
S cA(q).

Lemma 2. ∀p, q, if p
c1,d1−−→ p1 `R p

c2,d2−−→ eA(p1), then q
c1,d1−−→ q1 `R q

c2,d2−−→ eA(q1).

Proof. It follows immediately from the definition of `R.

Lemma 3. If I is well founded w.r.t. R and if β and R are sound and complete
w.r.t. I then, for all congruences R:

1. ≺R is transitive,
2. if p

c,o−→β p′ then, exists p
cx,ox−−→β p′x irredundant in R that either dominates it

or cx = c, ox = o, p′x = p′

3. if p
c,o−→S p′, then exists p

cx,ox−−→β p′x irredundant in R that either dominates it
or cx = c, ox = o, p′x = p′.

Proof. 1. If p
c1,o1−−→ p′1 ≺R p

c1,o1−−→ p′1 ≺R p
c3,o3−−→ p′3 then there exists d1

o1

o2
e1,

d2
o2

o3
e2 ∈ Φ(R) such that d1 ◦ c1 = c2, d2 ◦ c2 = c3, e1(p1) R p2 and

e2(p2)R p3. Then it follows that d2◦d1
o1

o3
e2◦e1 ∈ Φ(R), (d2◦d1)◦c1 = c3

and that e2(e1(p1)) R p3, i.e., p
c1,o1−−→ p′1 ≺R p

c3,o3−−→ p′3 (the two transitions are
different otherwise the system is not well founded).

2. If p
c,o−→β p′ is irredundant, then cx = c, ox = o, p′x = p′. If it is redundant,

then there exists a descending chain of ≺R. Since I is well-founded, there is
a last element of this chain that we call p

cx,ox−−→β p′x. Since by the previous
point ≺R is transitive, then p

cx,ox−−→β p′x ≺R p
c,o−→β p′.

3. It follows from the completeness of β and R and from the previous point.

Proposition 6. Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family of
symmetric relations. If R is a congruence, then SAT(R) = IR(R).



Proof. We first prove that if p IR(R) q then pSAT(R) q. If p
c,o−→S p′, then by

Lemma 3.3 there exists p
cx,ox−−→β p′x irredundant in R. From this, and from

p IR(R) q follows that q
cx,ox−−→β q′x and p′x R q′x. Recall that by Lemma 3.3,

p
cx,ox−−→β p′x either dominates p

c,o−→S p′ Pn
S or cx = c, ox = o and p′x = p′.

– In the latter case q
c,o−→β q′x and then q

c,o−→S q′x and q′x R p′x = p′.

– In the former case, there exists dx, ex ∈ Σ such that dx◦cx = c, dx
ox

o
ex ∈

Φ(R) and exA(p
′
x) = p′. From this and from the fact that β and R are sound

with respect to I, q
c,o−→S exA(q

′
x) follows. Moreover, p′R (exA(p

′
x))R(exA(q

′
x)).

All this proves that if p IR(R) q then pSAT(R) q.
Now, we prove the other direction, i.e., if pSAT(R) q then p IR(R) q. For

any transition p
c,o−→β p′ that is irredundant in R, we have that p

c,o−→S p′ and since
pSAT(R) q, then there exists q′ such that p′R q′ and q

c,o−→S q′. By Lemma 3.3,
q

cx,ox−−→β q′x such that either dominates q
c,o−→S q′ in R or cx = c, ox = o, q′x = q′.

– In the latter case q
c,o−→β q′ and then p IR(R) q.

– In the former case we have an absurdum. Indeed, if q
cx,ox−−→β q′x ≺R q

c,o−→S q′

then there exists dx
ox

o
ex ∈ Φ(R) and exA(q

′
x)Pn

β q′ and dx ◦ cx = c.

Since q
cx,ox−−→β q′x then also q

cx,ox−−→S q′x and since pSAT(R) q then p
cx,ox−−→S p′x

with p′x Rq′x. By Lemma 3.3 there exists a transition p
c2,o2−−→β p′2 such that

d2
o2

ox
e2 ∈ Φ(R) and e2A(p

′
2)R p′x and d2 ◦ c2 = cx. From this we can

derive that dx ◦d2
o2

o
ex ◦ e2 ∈ Φ(R) and that dx ◦d2 ◦ c2 = c. Moreover,

exA(e2A(p
′
2)) R exA(p

′
x) R exA(q

′
x)R q′R p′. Summarizing p

c2,o2−−→β p′2 ≺R p
c,o−→β

p′, but from the previous hypothesis the latter transition is irredundant.

Summarizing ∀p, q, pSAT(R) q if and only if p IR(R) q, i.e., SAT(R) = IR(R).

Theorem 3. ∀κ ∈ O, ∼κ
S=∼κ

IR.

Proof. For κ = 0, ∼0
IR=∼0

S by definition.
For a successor ordinal κ+1, we have that∼κ+1

IR = IR(∼κ
IR). By ordinal induc-

tion ∼κ
IR=∼κ

S , and by Lemma 1 ∼κ
IR is a congruence. Thus, applying Proposition

6, we get that IR(∼κ
IR) = SAT(∼κ

IR) = SAT(∼κ
S) =∼κ+1

S .
For a limit ordinal λ, ∼λ

IR=
⋂

κ<λ ∼κ
IR by definition. By ordinal induction,

for all κ < λ, ∼κ
IR=∼κ

S and thus
⋂

κ<λ ∼κ
IR=

⋂
κ<λ ∼κ

S=∼λ
S .

Theorem 4. ∀κ ∈ O, ∼κ
IR» IS? =∼κ

IS.

Proof. For κ = 0, ∼0
IS=∼κ

IR» IS? by definition.
For a successor ordinal κ + 1, we assume that ∼κ

IR» IS? =∼κ
IS and we prove

that ∼κ+1
IR » IS? =∼κ+1

IS .
We first prove that ∀p, q ∈ IS? if p ∼κ+1

IR q then also p ∼κ+1
IS q. If p

c,o−→β p′ is
irredundant in ∼κ

IS , then q
c,o−→β q′ and p ∼κ

IS q. Now there are two cases:



– if p
c,o−→β p′is also irredundant in ∼κ

IR, then q
c,o−→β q′ and p′ ∼κ

IR q′ (because
p ∼κ+1

IR q). Since p′, q′ ∈ IS? (using the rule (tr) of Table 2), by inductive
hypothesis we have that p′ ∼κ

IS q′.
– if p

c,o−→β p′ is redundant in ∼κ
IR then there exists p

c1,o1−−→β p′1 such that
p

c1,o1−−→β p′1 `R p
c,o−→ dA(p′1) and dA(p′1) ∼κ

IR p′. Now notice that, by the rule
(rs) of Table 2 dA(p′1) ∈ IS?. Since by inductive hypothesis ∼κ

IR» IS? =∼κ
IS ,

then dA(p′1) ∼κ
IS p′. This means that p

c,o−→β p′ is redundant in ∼κ
IS , against

the previous hypothesis.

Note that in the second branch of the proof the assumption that IS? is closed
w.r.t. the rule (rs) of Table 2 is fundamental. Indeed, otherwise dA(p′1) could
not belong to IS?.

Now we can prove the other direction ∀p, q ∈ IS?, if p ∼κ+1
IS q then also

p ∼κ+1
IR q. If p

c,o−→β p′ is irredundant in ∼κ
IR, then it is also irredundant in ∼κ

IS

(by inductive hypothesis). Thus q
c,o−→β q′ and p′ ∼κ

IS q′ (because p ∼κ+1
IS q).

Since p′, q′ ∈ IS? (using the rule (tr) of Table 2), by inductive hypothesis we
have that p′ ∼κ

IR q′.

Theorem 5. If ∼κ
IS=∼κ+1

IS , then ∀k′ ≥ k + 1, ∼κ
IS=∼κ′

IS.

Proof. For a successor ordinal κ′+1, we assume that ∼κ
IS=∼κx

IS for all κ < κx <

κ′ + 1 and we prove that ∼κ′+1
IS =∼κ′

IS . Suppose that p ∼κ′
IS q and p

c,o−→β p′ is
irredundant in ∼κ′

IS . Then it also irredundant in ∼κ
IS . Since p ∼κ+1

IS q, q
c,o−→β q′

and p′ ∼κ
IS q′. By hypothesis ∼κ

IS=∼κ′
IS , thus p′ ∼κ′

IS q′.
For a limit ordinal λ, we assume that ∼κ

IS=∼κx

IS for all κ < κx < λ and we
prove that ∼κ

IS=∼λ
IS . By definition ∼λ

IS=
⋂

κy<λ ∼κy

IS . Since ∼κ
IS⊆∼κy

IS for all
κy < λ, then

⋂
κy<λ ∼κy

IS=∼κ
IS .

Corollary 1. If IS? is finite, then the algorithm terminates and the resulting
partition equates all and only saturated bisimilar states.

Proof. First of all note that the algorithm perform at most |IS?| iteration, be-
cause at every step at least a partition must be split (and partitions are never
fused). Then note that at any iteration n, Pn coincides with ∼n

IS (in the symbolic
terminal sequence for IS). Now let Pm be the partition returned by the algo-
rithm, i.e. Pm = Pm+1. By the above observation ∼m

IS=∼m+1
IS and by Theorem 5

follows that for all ordinals κ > m, ∼m
IS=∼κ

IS . By Theorem 4 follows that for all
ordinals κ > m, ∼m

IS=∼κ
IR» IS? and by Theorem 3 follows that for all ordinals

κ > m, ∼m
IS=∼κ

S» IS?. Now by Proposition 5 follows that ∼m
IS=∼S» IS?.

Proposition 7. Let N , η and RN be the context interactive system, the sym-
bolic transition system and the inference system for open nets that we have intro-
duced in Section 3. Let 〈N,m〉 be a marked open net. If the symbolic transition
system of 〈N,m〉 is finite, then also the closure w.r.t. rules in Table 2 is finite.



Proof. First of all, notice that for each pairs of transitions m
i1,α1−−→η m1 and

m
i2,α2−−→η m2 such that the latter is possibly dominated by the former, only one

state is added to IS?. Since the symbolic transitions are finite, then only finitely
many states are added by the rule (rd). However, the symbolic transitions system
starting from each of these states could be infinite.

Suppose that we have added the state n⊕ i where n belongs to the reachable
states from m. If the symbolic transition system starting from n ⊕ i is infinite
there are two cases. Either it is infinite branching or there is an infinite path:

n⊕ i
j1,α1−−→η n1

j2,α2−−→η n2
j3,α3−−→η . . .

where ∀x, y ∈ ω, nx 6= ny 6= n⊕ i.
In the former case, there must exists infinitely many transition that can be

activated by n ⊕ i. Since all the tokens in i are on open places, these infinitely
many transition can be activated also by n and thus also the symbolic transition
system of n is infinite branching, against the initial hypothesis.

In the latter case notice that if n ⊕ i
j1,α1−−→η n1 then it is activated by some

transition t. Let k be the multiset on open places such that i = •t ⊕ k. It is

easy to see that n
j1⊕(i∩ •t),α1−−−−−−−→η n′1 where n1 = n′1 ⊕ k. We can repeat the same

argument for each transitions of the infinite path and we obtain that:

n
j′1,α1−−→η n′1

j′2,α2−−→η n′2
j′3,α3−−→η . . .

where ∀x ∈ ω there exists kx such that n′x ⊕ kx = nx. Now either the symbolic
transition system of n is infinite (against the initial hypothesis) or there is a
cycle, i.e., that for some x, y ∈ ω,

n′x = n′x+y = n′x+2y = n′x+3y = n′x+4y . . .

Notice that by definition of the symbolic transition system η, the series

kx, kx+y, kx+2y, kx+3y . . .

never grows. Now suppose that for some u, v ∈ ω, kx+uy = kx+vy, then nx+uy =
nx+vy (against the assumption of the infinite path of n ⊕ i). Thus the above
series always strictly decreases. This means that the series

nx, nx+y, nx+2y, nx+3y, nx+4y . . .

strictly decreases. But this is impossible in marked open nets.

Lemma 4. If p ∼S q then:

– if p
c,o−→β p′ and this is irredundant in ∼S, then q

c,o−→β q′ and this is irredun-
dant in ∼S and p′ ∼S q′.



Proof. If p ∼S q, then there exists a symbolic bisimulation R such that pR q.
If p

c,o−→β p′ then q
c1,o1−−→β q′1 such that q

c1,o1−−→β q′1 `R q
c,o−→ eA(q′1) and p′R eA(q′1).

Now we prove that c1 = c, o1 = o and q′1 ∼S p′. Indeed, if q
c1,o1−−→β q′1 then

also p will perform a transition p
c2,o2−−→β p′2 such that p

c2,o2−−→β p′2 `R p
c1,o1−−→

e′A(p
′
2) and e′A(p

′
2)Rq′1. Now, by Lemma 2, we have that p

c1,o1−−→ e′A(p
′
2) `R p

c,o−→β

eA(e′A(p
′
2)), and since `R is transitive, p

c2,o2−−→β p′2 `R p
c,o−→β eA(e′A(p

′
2)). Moreover,

eA(e′A(p
′
2)) ∼S eA(q′1) ∼S p′. Recall that by hypothesis p

c,o−→β p′ is not dominated
in ∼S and thus p

c2,o2−−→β p′2 and p
c,o−→β p′ must be the same transition. Now also

p
c1,o1−−→ e′A(p

′
2) must be the same, otherwise

· · · ≺∼S p
c,o−→β p′ = p

c2,o2−−→β p′2 ≺∼S p
c1,o1−−→ e′A(p

′
2) ≺∼S p

c,o−→β p′

Thus c1 = c and o1 = o. Moreover, q′1 ∼S e′A(p
′
2) = p′.

Summarizing, q
c1,o1−−→β q′1 and q′1 ∼S p′. Now we have to prove that the latter

transition is irredundant. By using similar arguments to those above, we can
prove that if q

c1,o1−−→β q′1 is dominated then also p
c,o−→β p′ is dominated, against

the initial hypothesis.

Proposition 8. p ∼S q if and only if MSA(p) is isomorphic to MSA(q).

Proof. We prove that if p ∼S q then MSA(p) is isomorphic to MSA(q). The
converse is obvious.

Assume that the symbolic terminal sequence for {p} converges at ordinal κ,
while the the symbolic terminal sequence for {q} converges at ordinal κ′. Then
∀p′ ∈ {p}? and q′ ∈ {q}? it holds that [p′]∼κ

{p} = [p′]∼S and [q′]∼κ′
{q}

= [q′]∼S .

We can construct a function f from the states of MSA(p) to the state of
MSA(q) as follows: f([p′]∼S = [q′]∼S if p′ ∼S q′. Notice that this is a function
because if p′ ∼S q1 and p′ ∼S q2 then q1 ∼S q2 and thus [q1]∼S = [q2]∼S . For
analogous reasons, f is injective.

Moreover, notice that f is total in the states of minimal automata MSA(p).
Indeed, if a state p′ belongs to MSA(p), then it is reachable from p, and since
p ∼S q, there exists a state q′ in MSA(q) such that p′ ∼S q′. Converting the
argumentation we can prove that f is surjective.

Thus f is an isomorphism between the states of MSA(p) and MSA(q).
Now we have to prove that whenever [p′]∼S

c,o−→M [p′′]∼S then f([p′]∼S )
c,o−→M

f([p′′]∼S ).
Notice that ∀q′ ∈ f([p′]∼S ) p′ ∼S q′. Now, if [p′]∼S

c,o−→M [p′′]∼S , then p′
c,o−→β

p′′ and this transition is irredundant in ∼S . By lemma ??, follows that q′
c,o−→β

q′′ and p′′ ∼S q′′ and the latter transition is not dominated in ∼S . Then, by
definition of MSA(q), [q′]∼S

c,o−→M [q′′]∼S . Since p′′ ∼S q′′, then f([p′′]∼S ) =
[q′′]∼S .


