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Abstract

We introduce and address the problem of concurrent autonomic man-
agement of different non-functional concerns in parallel applications build
as a hierarchical composition of behavioural skeletons. We first define the
problems arising when multiple concerns are dealt with by independent
managers, then we propose a methodology supporting coordinated man-
agement, and finally we discuss how autonomic management of multiple
concerns may be implemented in a typical use case. The paper concludes
with an outline of the challenges involved in realizing the proposed method-
ology on distributed target architectures such as clusters and grids. Be-
ing based on the behavioural skeleton concept proposed in the CoreGRID
GCM, it is anticipated that the methodology will be readily integrated into
the current reference implementation of GCM based on Java ProActive and
running on top of major grid middleware systems.

Keywords: Behavioural skeletons, autonomic computing, multi-concern auto-
nomic management.

0This research has been partially carried out under the FP6 Network of Excel-
lence CoreGRID and the FP6 GridCOMP project funded by the European Com-
mission (Contract IST-2002-004265 and FP6-034442) and it is currently being
carried out under the CoreGRID ERCIM Working Group (“Advanced program-
ming models” topic).
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1 Introduction

Efficient implementation of parallel/distributed applications requires solving sev-
eral problems related to the handling of different non-functional concerns. A
non-functional concern is a concern not related to what is computed by the ap-
plication, but rather to how the results of the application are computed 1 [10].
Typical examples of non-functional concerns include performance tuning, fault
tolerance, security and power efficiency.

Effective handling of non-functional concerns requires substantial program-
ming effort. Moreover, the kind of knowledge required to handle non-functional
concerns differs completely from the (core) knowledge of application program-
mers. Typically, concrete target architecture knowledge is required, together with
deep knowledge of the particular techniques used to handle the non-functional
concerns.

In [2] we discussed a framework based on the concept of behavioural skeleton,
aimed at supporting the programming of parallel/distributed applications. A
behavioural skeleton is a co-designed and optimized implementation of a paral-
lel algorithmic skeleton modelling a well-known parallelism exploitation pattern,
together with an autonomic manager taking care of one of the non-functional
concerns related to the execution of that algorithmic skeleton. The complete be-
havioural skeleton framework has been experimented within the GCM context2

[8]. Simple managers, taking care of some non-functional concern in a single
behavioural skeleton have been designed and implemented [2], as well as hierar-
chies of autonomic managers, each taking care of a single non-functional concern
relative to a single skeleton in a hierarchy of skeletons [3, 5]. In both cases,
experimental results demonstrated the feasibility of the behavioural skeleton ap-
proach and the efficiency of the GCM implementation of behavioural skeleton in
its application to real use cases.

However, the autonomic management of multiple non-functional concerns has
not yet been considered in this framework, although it is clear that it would be
a very useful and powerful tool to tackle non-functional concerns3.

When dealing with autonomic management of multiple non-functional con-
cerns, several distinct issues arise, in addition to those for a single non-functional
concern. In particular, coordination of the autonomic managers taking care of the
different concerns is needed, to avoid conflicting decisions being taken that even-
tually impair the whole autonomic management framework. This coordination
represents a significant challenge.

1Wikipedia gives a slightly different definition of this: In general, functional requirements
define what a system is supposed to do whereas non-functional requirements define how a system
is supposed to be. (http://en.wikipedia.org/wiki/Non-functional requirement)

2http://gridcomp.ercim.org/content/view/26/34/
3quoting [13]: In larger systems with a hierarchical architecture, managers must be able to

interact with each other.
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In this paper we consider autonomic management of several different non-
functional concerns in a distributed system. We address the problem in a struc-
tured programming framework (Sec. 2), we consider the issues related to coordi-
nation of autonomic managers each dealing with a different concern (Sec. 3), and
we discuss the methodology proposed in Sec. 3.1 applied to a typical use case
(Sec. 4). Finally, related work and conclusions and future work sections conclude
the paper.

2 Parallel framework

We assume here that parallel applications are programmed according to struc-
tured parallel programming principles [7]. In particular, we assume a parallel
application is build of the composition of behavioural skeletons [1] and sequential
portions of code modelling pure functions. A behavioural skeleton (BS) models a
well-know parallelism exploitation pattern. We assume here the existence of a set
of BS including: pipeline modelling computations in stages processing streams
of tasks; task farm modelling embarrassingly parallel computations processing
streams of tasks; data parallel modelling different kinds of data parallel patterns
(embarrassingly parallel, with stencil, with shared read only data structures, etc.);
and sequential wrapping pure functional sequential code in such a way that it can
be used within other BS. Each BS implements a known parallelism exploitation
pattern and an autonomic manager taking care of some non-functional concern.
A parallel application is thus build out of a composition of BS. The user provides
the sequential portions of code wrapped in the sequential BS, the input data and
a QoS contract. The BS run time executes the application in such a way that
the (hierarchy of) application manager(s) takes care of ensuring the QoS contract
provided by the user.

As an example, in [3] we discuss an application which is a pipeline whose
first and third stages are sequential, whose second stage is parallel (a task farm
with sequential workers) and whose autonomic manager deals with performance
tuning. The structure of the resulting application is depicted in Fig. 1.

Restriction of the parallelism patterns the programmer can exploit by the use
of behavioural skeletons makes it possible to achieve better performance and effi-
ciency while implementing the application, and allows effective autonomic man-
agement to be programmed in the autonomic managers4 while preserving the
possibility to model all (most) of the commonly used patterns in parallel and
distributed computing.

4as the parallel structure of the application is completely known
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Figure 1: Sample parallel application with behavioural skeletons: logic view (a),
process view (sample, (b)) and autonomic manager view (c)

3 Autonomic management of multiple concerns

in structured parallel computations

When dealing with multiple non-functional concerns, we have to consider that,
in the most general cases, distinct autonomic management strategies may exist
for each of the non-functional concerns under consideration. More precisely, we
may assume that a collection of (possibly hierarchical) autonomic managers exist
AM1, . . . ,AMm that can independently and autonomically take care of non-
functional concerns C1, . . . , Cm. For example, the managers AMpipe, AMseq (two
instances) and AMfarm of Fig. 1 constitute a single, hierarchically structured
collection of autonomic managers. If more concerns are to be considered, we will
assume more managers will be associated with the single behavioural skeleton.
Fig. 2 shows how these managers will be organized when two non-functional
concerns are involved: CP (performance tuning) and CS (security).

Hereafter, we will use the term AMi to refer to the top level manager of
a hierarchy of managers handling non-functional concern Ci, if not otherwise
specified.

Our approach to handling multiple non-functional concerns is based on a
five-pronged attack: identifying an overall strategy for coordinating the man-
agers’ activities; finding a common currency by which managers may interact;
finding means of reaching consensus on decisions; determining how the manage-
ment activity can be initialized; and devising a means to implement autonomic
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Figure 2: Multiple manager hierarchies (S=security managers, P=performance
tuning managers) in behavioural skeletons

management. We now consider each of these in turn.

3.1 Centralized vs. distributed autonomic management
of multiple concerns

When considering autonomic management of multiple non-functional concerns,
we must identify a general strategy to coordinate the autonomic management
activities performed by the different managers (or manager hierarchies). In gen-
eral, it may be the case that manager AMi takes a decision affecting the global
application that is in contrast with the strategies of manager AMj. For ex-
ample, AMP (a manager taking care of ensuring performance contracts) may
clearly take decisions that are in contrast with the policies ensured by AMW

(the manager taking care of ensuring power management contracts).
To resolve these conflicts, a means must exist by which managers may reach

mutually acceptable positions. Two strategies can be identified for this purpose:

SM a Super Manager AM0 can be introduced, positioned hierarchically above
managers AM1 to AMm, coordinating the decisions taken locally by these
autonomic managers and relating to different, possibly interfering concerns;
or

CM the managers AM1 to AMm can be modified in such a way that before
actuating any decision taken, they reach agreement with the others.

Both solutions share a common concept, which is the idea of building a con-
sensus on the decisions taken. In the former case (SM) the consensus has to
be sought by AM0, upon communication from one of the AMi of a proposed
decision. Upon consensus, AM0 may give the green light to AMi in such a way
that the decision is actuated. If consensus is not reached, eventually AM0 will
communicate to the AMi that the decision is to be aborted. In the latter case
(CM), the AMi that proposes to take a decision should contact all the other
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Figure 3: Alternative strategies to implement global multi-concern management

managers and behave as the SM in the former case to build a consensus on this
decision. So, the two strategies considered differ only in the way they will build
the manager network, but thereafter most of the coordination algorithms and
strategies should be the same, or very similar.

As a matter of fact, in solution CM the coordination among managers may
happen at any level of the autonomic manager hierarchy. Fig. 3 exemplifies the
two extreme cases. Fig. 2 shows how managers dealing with different concerns
within the same behavioural skeleton can be naturally paired in such a way they
can coordinate locally taken decisions.

3.2 Shared knowledge among different autonomic man-
agers

The second area to be addressed when reasoning about multi-concern manage-
ment is the common knowledge necessary across different concern managers to
make possible agreement on global application management. Different manager
hierarchies should agree on a common view of the parallel/distributed applica-
tion at hand in order to be able to share decisions and, where appropriate, obtain
consensus on local decisions before actuating them.

The main common concept across the different managers is the application
graph whose nodes represent the parallel/distributed activities and whose arcs
represent communications/synchronizations among these activities. Each node
and arc can be labelled with suitable metadata. For example, the node meta-
data could represent mapping information (which processing element(s) host the
parallel activity, what are its features in terms of CPU, memory, disk, network
bandwidth, etc.); the arc metadata may represent features of the corresponding
communication channel (kind of protocol used, bandwidth and latency, whether
it can be regarded as a secure channel or not, etc.).

We do not address here general parallel/distributed applications. Rather, we
target only those applications build by composing behavioural skeletons5. There-
fore the application graph we will deal with is the graph representing a well

5actually, of the algorithmic skeletons modelled by the behavioural skeletons
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formed composition of parallel/distributed patterns modelled by the behavioural
skeleton library at hand. Fig. 4 shows the application graph (with sample asso-
ciated metadata) corresponding to our sample application: a three stage pipeline
with parallel second stage (task farm with 4 workers).

The application graph represents the minimal information that can be shared
among the different managers to implement multi-concern autonomic manage-
ment.

Consider a typical example, involving autonomic management of performance,
security and power saving options in an application such as that of Fig. 4. A typ-
ical decision taken by the AMP consists in varying the number of workers in the
farm representing the second stage of the pipeline. For example, the number of
workers can be increased to increase the throughput of the second stage and thus
guarantee the user supplied performance contract. In this case, the decision of
the AMP will eventually lead to a different application graph. The new worker
allocated will be labelled with some metadata representing, among other informa-
tion, the resource where it will be mapped or the set of resources where the actual
resource to host the worker will be taken from. The agreement with the other
managers must be obtained in this case before committing the decision. AMW

may provide some priorities among the potential target resources for allocation
of the new worker, in such a way that low consumption options are preferred.
On the other hand, AMS (the autonomic manager taking care of security con-
cerns) may provide a binary mapping of the resources distinguishing those that
are secure (i.e. those that can be reached using only private and trusted network
segments) from those that are not. Eventually, AMP may decide to allocate
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the new worker on a low consuming, secure resource (with no additional effort),
on a low consuming, non-secure resource (with provision for encryption of com-
munications) or on a high consuming, non-secure resource (again, providing for
encryption). In all cases, the common level of agreement with the other managers
will be on the final application graph. Even where no consensus can be reached
among the different managers (e.g. no secure resources found, user contract ask-
ing for completely secure computations, impossibility to use alternative secure
protocols) the eventual agreement will be on retaining the original graph, thus
representing the fact that the decision by AMP has been aborted.

3.3 Impact of local decisions on global application man-
agement

Having stated that a consensus has to be reached on the resulting application
graph (with metadata) before committing any decision, we now consider how
such consensus may be built. In particular, we discuss how the consensus process
can be established and implemented; and the possible results of the consensus
process.

3.3.1 Consensus building

Consensus building must be implemented as a two-phase process. In the first
phase, the autonomic manager whose control cycle has identified that a decision
has to be implemented as a consequence of some triggering event (here we assume
it will be AM1) must initiate the consensus building, either by interacting with
AM0 (SM case) or with all the other managers (AM2 to AMm, CM case). In
the second phase, AM1 should await for the consensus results and, depending
on their nature, either commit the decision (i.e. execute the actions in the plan
associated with the decision) or abort it.

The intent of the two-phase protocol for consensus building is clear: no deci-
sion may be taken locally if the management of other concerns may be affected
by the results of the decision. This in turn has two consequences:

1. decisions can be assigned to one of two classes: independent decisions, i.e.
those not affecting the behaviour of other autonomic managers handling
different concerns, and interfering decisions, i.e. those (potentially) having
an impact on contract maintenance by other concern managers. For exam-
ple, a decision to change the implementation of a parallel activity already
mapped on a given processing resource from single to multi-threaded will
most likely be an independent decision. On the other hand, a decision to
migrate an already mapped parallel activity or to start a new parallel ac-
tivity will be interfering decisions. In this case, new processing resources
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have to be recruited and that will typically affect contract maintenance by
managers concerned with security, power management, etc.

2. decisions taken by AM1 could have several alternative equivalent imple-
mentations (i.e. plans and sequences of actions implementing the decision
at AMi) including

• plain implementation of the decision, i.e. no modification is made with
respect to the implementation plan prepared byAM1 as a consequence
of the answers provided by the other managers, and

• “adjusted implementation” of the decision, i.e. an implementation
whose actions have been modified according to the requirements gath-
ered from the AMj (j 6= i) in order to ensure maintenance of the
whole set of contracts provided to the different managers rather than
taking into account only concern C1.

Typically, independent decisions will lead to the execution of unmodified
implementation plans, whereas interfering decisions will lead to adjusted
implementations.

Clearly, the necessity to provide “adjusted” implementation plans at manager
AMi raises a compositionality issue: if AMi only had to take care of concern
Ci, no adjustment would be needed to its implementation plans. Adjustments
are only needed when other concerns (Cj, j 6= i) are taken into account. It is
therefore clear that adjustments will depend on the nature of the Cj. Thus AMi

will be no longer independent of the other managers/concerns.
In order to solve this issue, we propose the following methodology:

• A decision Dj taken by a manager AMi is implemented with an ordered list
of actions aj1, . . . , ajkj

. This ordered list of actions is the implementation
plan of decision Dj.

• The granularity of the actions is the finest possible preserving the indepen-
dence of each of the actions themselves.

• Actions are labelled as independent or interfering in the sense described
above6.

• Taking into account the overall set of concerns Cj, j 6= i considered in
addition to Ci, for each interfering action ak

7 one or more substitute plans
ak1, . . . , akik are prepared that have the same effect as ak with respect to the
concern Ci but also accomplish some property required by other managers
AMj, j 6= i.

6a decision is interfering if and only if it is implemented with a plan including at least one
interfering action

7or for each sequence of actions ak−m, . . . , ak+n containing at least one interfering action ak
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• Finally, the consensus building phase will be modified as follows: the man-
agers informed of decision Dk by manager AMi will eventually report back
to AMi either an ACK message or a needProperty(propNamej) message,
where propNamej is one of the “other concern” properties AMi is able to
deal with8. If no suitable propName is available at AMi to deal with what
is required by the other manager, a NACK message will be returned that
will serve to block the execution of Dk by AMi.

3.3.2 Consensus results

The consensus building process outlined in the previous section has already in-
cluded mention of the various outcomes that can result from this phase.

The smoothest outcome is the one where AMi, seeking consensus on decision
Dk, gets from other managers (CM case) or from AM0 (SM case) only ACK
messages. This will be the result both in the case of an independent Dk, and
of an interfering Dk which at the moment does not cause any conflict with the
policies implemented by the other managers.

The second case is in a sense the opposite of the first: AMi gets at least one
NACK message back from one of the other managers. In this case the decision
Dk will be aborted and manager AMi must attempt to determine some other
strategy (if any) to address the situation that triggered decision Dk.

The last, and most interesting (and challenging) case, is that where AMi

gets all ACK or needProperty messages back from the other managers. Here we
should distinguish two further sub-cases:

• There is a single needProperty(propNamei) message. In this case, AMi

should simply implement the substitute plans for the interfering actions in
the original Dk plan corresponding to propNamei

9.

• There are multiple needProperty messages from the other managers. In this
case AMi should first determine which substitute implementation plans
should be used and then consider whether the simultaneous usage of all of
these substitute plans is still consistent. If it is consistent, the resulting
new implementation plan will be executed. If not, Dk will be aborted.

Once the final plan implementing Dk has been determined (consensus having
been achieved), the execution of the plan (i.e. the execution of the sequence of
actions a1, . . . , an in the plan) involves a modification of the application graph
(the structure of the graph and/or the associated metadata). This modification

8these extra properties can be investigated by any AMi′ (i′ 6= i) using introspection facilities
on manager AMi

9these alternative plans should exist, otherwise AMi should not have exposed propNamei

through its introspection facilities and therefore the involved manager should have sent back a
NACK message instead
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has to be notified to all the other managers so that they can maintain a consis-
tent view of the system. Moreover, the execution of the plan a1, . . . , an has to
be implemented as an atomic procedure. This means that any further decision
taken by other managers should be processed only after finishing action an and
releasing the atomic action lock. In turn, all of this process obviously requires a
distributed coordination mechanism. To avoid running a complicated and costly
distributed coordination protocol, we can consider here to have the application
graph controlled by AM0 in a SM implementation of the multiple concern man-
agement, and to have the single AMi communicating the actions in the agreed
plan to AM0 in such a way that these actions can be executed directly by AM0.

3.4 Initialization of the AM hierarchy

We assume that the user submits QoS contracts to the different AM s provided
with the behavioural skeleton framework. These contracts describe the user’s
(non-functional) requirements that have to be guaranteed by the behavioural
skeleton implementation of the user application.

We assume the user provides these contracts in such a way that:

• The order of the contracts establishes a priority among the managers. Thus,
if the user provides contracts QoS1, . . . , QoSk (in order), only the managers
dealing with concerns C1 to Ck will be activated and the decisions of man-
ager i will have precedence over the decisions of manager i+h. The relative
ordering among managers and, consequently, among manager decisions can
be used to solve conflicts when multiple decisions are communicated for
consensus or even to impose an ordering on the substitute plan implemen-
tations when multiple needProperty messages have been directed to the
AMi seeking consensus on Dj.

• The first contract QoS1 determines which manager is in charge of estab-
lishing the initial application implementation configuration. This is partic-
ularly important as multiple concern management needs a starting configu-
ration to initiate the autonomic management activities. Consider the case
where performance, security and power saving concerns are of relevance.
The same application will be configured to use the maximum number of
powerful nodes, if run under the sole control of AMP , on a number of
secure nodes, if run under the control of AMS, or on a number of low
consumption nodes, if run under the control of AMW . In the three cases,
the number of processing elements used may vary as well as the overall
performance of the application.
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3.5 Rule-based multi-concern autonomic manager imple-
mentation

In earlier work we demonstrated the suitability of business rule management
frameworks for implementing autonomic managers handling a single concern [2].
A business rule framework implements a system of

P (x1, . . . , xn) → a1; . . . ; ak

(pre-condition (P ) action) rules. When executed, the precondition part of all the
rules is evaluated. Those rules that have a precondition holding true are fired10;
that is, the corresponding action part is executed.

In particular, the classical control loop implemented by each manager may be
implemented in such a way that:

• the monitor phase is implemented by gathering the current values of the
variables used in the pre-condition parts of the rules;

• the analyse and plan phases correspond to evaluating which pre-conditions
are satisfied and choosing one of the corresponding rules, possibly using
some priority-based ordering;

• the execute phase is implemented by simply executing the action set (the
implementation plan) in the right hand side of the rule identified in the
previous step.

This was shown to work well when a single manager is considered. Now the
idea can be adapted to the multi-concern management as follows:

• each rule originally present in the rule set implemented by AMi in isolation
is transformed into two distinct (classes of) rules:

– a rule with the same pre-condition hosting as action part the consensus
building start-up actions;

– one or more rules with a pre-condition evaluating the responses pro-
vided by the other managers in the consensus building phase, and as
the action part the original implementation plan or one of the adjusted
plans.

• specific rules are added to deal with NACK answers. These rules may
include priority reordering within the manager rules, as well as new rules
exploiting the available accumulated knowledge to deal with the new situ-
ation11.

10possibly using some ordering based on priorities
11we assume here that some “learning” technique is used
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4 Sample case study

We consider here a case study, to illustrate the concepts and the methodology
discussed above.

Consider the application whose schema is depicted in Fig. 1, and assume two
distinct non-functional concerns are handled by two autonomic manager hierar-
chies associated with the BS used: security and performance tuning.

Let us assume that the QoS contracts provided by the user are:

1. secureData(), directed to AMS and specifying that all the data transfers
involving remote nodes must be secured, and

2. minThroughput(1 task/sec), directed to AMP and specifying that the
parallel application is expected to deliver at least one result per second.

As the first contract is directed to AMS, the autonomic manager dealing with
security will handle the initial configuration of the program, i.e. it will define the
initial application graph. Not being concerned with performance, AMS will set
up a graph using the default values for all those parameters that have not been
specified by the user. In this case, the parallelism degree of the task farm will be
set to some default value (say 4) and there will be no grouping of pipeline stages.
Thus, the application graph will be a graph G = 〈N, A〉 with:

N = {ns1, ne, nw1 , . . . , nw4 , nc, ns3}
A = {(ns1, ne), (ne, nw1), . . . , (ne, nw4), (nw1 , nc), . . . , (nw4 , nc), (nc, ns3)

AMS will try to select nodes ni that belong to trusted domains (i.e. domains
that can be reached through trusted interconnections and hosting trusted nodes).
If this is not possible, nodes from untrusted domains will be selected and metadata
will be inserted in the application graph to state that the arcs leading to the
untrusted nodes should be secured.

Once the initial application graph has been produced by AMS, it will be
mapped onto the target architecture and the application will be started. After
application start, metadata will be added to the application graph modelling
node placement (e.g. location(ni, ip addressj)), resource characterization (e.g.
nodeProp(ni, opSys(Linux), procType(dualcore), ...)), etc. This metadata will be
used to derive variables and values used in the pre-conditions as well as in the
action part of the manager rules. Metadata also represent de facto the actual
mapping of the abstract application graph to real resources.

Both AMS and AMP will start their control loops. AMS, being solely
responsible for the initial allocation, will have no rules triggered and therefore
will not execute any action affecting the system. On the other hand, AMP will
immediately evaluate the performance achieved by the program and this, in turn,
will make some rules fireable if the performance is not the expected one12. Sample

12according to the user-supplied QoS contract

13



rules used in a hypothetical stand-alone AMP should include the following rules
for farms:

Name Rule
Farminc priority(x),

instanceof(farm) & Tarr > QoS & Throughput < QoS
→ findNewResource, allocateNewWorker,

connectNewWorker
Farmdec priority(x),

instanceof(farm) & Throughput >> QoS
→ removeWorker

(priority(x) denoting the fact that the rule has priority x, Tarr being the inter-
arrival time of tasks to the farm and QoS being the throughput contract issued by
the user). These two rules will be different in an AMP that is aware of the fact
that it is managing performance while some other manager (AMS) is managing
another concern. In this case, according to what we stated in Sec. 3 they should
be of the form:

Name Rule
FarmincPH1 priority(x),

instanceof(farm) & Tarr > QoS & Throughput < QoS
→ findNewResource, askConsensus(G′, R′)

FarmincPH2 priority(x),
ackFromAll → allocateNewWorker, connectWorker

FarmincPH2 priority(x),
ackFromAll&needProperty(security)
→ allocateNewWorker, connectSSLWorker

FarmincPH2 priority(x),
nackConsensus → lowerPriority(Farminc)

Farmdec priority(x),
instanceof(farm) & Throughput >> QoS
→ removeWorker

(where G′ is the new application graph resulting from the decision taken in the
rule, R′ is the newly recruited resource).

In this case we assume the use of priorities to smooth the effect of aborted
rules. Consider the example above. For the sake of simplicity, we omit other rules
relating to autonomic management of performance in the task farm behavioural
skeleton. However, it would be most likely the case that other rules exist that
also happen to be fireable when rule FarmincPH1 is fireable, i.e. when we have
sufficient tasks to compute but still do not succeed in meeting the QoS contract.
For example, a rule whose effect is to move a farm worker from a slow resource
to a faster resource may exist, or a rule changing the kind of task-to-worker
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scheduling adopted in the farm to speed up computation. Now, if a rule has been
selected and eventually aborted (as in FarmincPH2 third item), by lowering the
priority of the rule aborted we make fireable (at the next control loop iteration)
an alternative rule firing on the same pre-condition but previously ignored due
to its lower priority. This is a mechanism ensuring fairness in rule selection in
the presence on NACKs during the consensus building phase.

In classifying actions as being independent/interfering (Sec. 3.3) we consider
actions such as findNewResource, askConsensus, allocateNewWorker as in-
dependent while actions such as connectWorker are regarded as being inter-
fering. In fact, the way we connect a worker (e.g. the way we implement
the connections hosting communications between ne and nwnew and between
nwnew and nc impacts the security (confidentiality and integrity) of the com-
municated data or code. Indeed, if AMW (power management) is also included,
the allocateNewWorker action must be considered interfering : the choice of a
resource from those available will lead to a particular power consumption that in
turn will eventually affect the power management concern managed by AMW .
It is worth pointing out that allocateNewWorker actions could have been con-
sidered to be interfering actions when taking into account only the existence of
AMS. However, the choice of a non-secure node in place of a secure one can
be tolerated provided the actions and plans used by AMP can be “adjusted” as
outlined in Sec. 3.3. This is actually what happens in the rules above where the
plan findNewResource, allocateNewWorker, connectWorker is substituted (af-
ter consensus) with the plan findNewResource, allocateNewWorker, connect−
SSLWorker.

In the general case, the decision to label an action as interfering depends
on the set of concerns Cj (i 6= j) involved in addition to the concern Ci of the
manager where the actions will be executed. Also, it is worth pointing out that
metadata associated with the element of the application graph may influence
handling of interfering actions. If the metadata associated with the application
graph allows AMS to conclude that the node added by AMP is a secure node,
no “adjustment” will be necessary to the interfering action connectWorker, for
example.

On the other hand, AMS should have rules such as:

Name Rule
Nodenew priority(y),

consensusAsked(G′) & diff(Gcurrent, G
′) = N &

nonSecure(N)
→ answer(needProperty(security))

Nodenew priority(y),
consensusAsked(G′) & diff(Gcurrent, G

′) = N & secure(N)
→ answer(ACK)

Within this minimal scenario, let us consider what will happen if FarmincPH1
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becomes fireable. This is a local decision taken by AMP . As a consequence,
AMS will be informed of the decision as it will receive a proposal for a new appli-
cation graph with the extra node nw5 and the related new arcs (ne, nw5), (nw5 , nc).
The node will have associated some metadata stating where it will be placed13.
Two cases arise: either the metadata already includes the kind of node (secure,
non-secure), or the AMS will be able to determine such information from the
metadata and from the other information it already has (or it can derive by mon-
itoring). If AMS identifies that the new node is secure, eventually an ACK will
be delivered to AMP . Being the only other manager (hierarchy) in the system,
this in turn will fire rule FarmincPH2 (first item) in AMP and this would com-
mit the decision. If AMS determines that the new node is non-secure, AMS

will issue a needProperty(security) call and as a consequence the second item
of rule FarmincPH2 will be fired. This rule has an action part that represents
an “adjusted plan” in that action connectNewWorker has been replaced by
connectSSLworker. This action will have the same effect as the former one:
provide communication channels corresponding to arcs (ne, nw5), (nw5 , nc). How-
ever the connections will be set up using secure socket layer (SSL) and therefore
the plan established by AMP may be eventually actuated.

Despite the minimal “AMP /AMS” scenario outlined above, the system will
eventually converge to the steady state, i.e. to the state where a suitable number
of resources is used (to ensure the AMP QoS contract) and the resources are
either secure ones or they are connected using secure mechanisms. In a more
realistic scenario, with a much more complex set of rules in the autonomic man-
agers, convergence to the steady state may be accomplished with more effective
policies, including, for example, the possibility to use a theoretical number of
workers in a farm computed according to the task farm performance models and
to the monitoring data gathered during the manager monitoring phase.

Security and performance are not the only non-functional concerns we inves-
tigated in our case study. Power management (and in particular power consump-
tion optimization) is another concern we considered. We do not wish to enter
a detailed description of AMW rules and policies, here. But, in order to ap-
preciate the flexibility of the proposed approach, we will describe an example of
AMP /AMS interaction. Assume we are again in the situation described before,
where a task farm manager decides to increase the farm parallelism degree by
adding a new worker to the worker string. Let us suppose that the new worker is
used to support the additional load caused by a “hot spot” in the user applica-
tion. Let us also assume the resource recruitment eventually returns a markedly
non-green resource, i.e. a processing element consuming a considerable amount
of power. It is mostly likely that the AMW will conclude the consensus phase
with a NACK and this will be handled with the techniques described above in
the context of a NACK coming from AMS. However, in this case alternative

13generated by the query to the resource manager hidden in the findNewResource action
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strategies can be implemented. In fact, unlike the security concern, the power
saving concern is not a binary issue. Therefore more sophisticated agreement and
consensus algorithms can be used. For example, AMW may judge feasible the
allocation of the new worker on the power hungry resource provided a trade-off
in power usage may be found elsewhere by AMP . Such a power saving may de-
rive, for example, from the temporary suspension of some non-functional activity,
such as monitoring application behaviour in order to be able to collate execution
statistics, so that the amount of power saved may be used to fuel the hot spot.

As a final point, we must mention that in autonomic management of single
non-functional concerns (see [3]) the concept of violation has been demonstrated
useful. A violation is raised by a manager to its parent node manager when
the contract is violated and no rules are fireable. In AMP the situation arises,
for example, when the task farm manager in our sample application (the one in
Fig. 1) identifies that it is not satisfying the QoS contract due to the fact that too
few task are arriving from the previous pipeline stage in a unit of time. In this
case a violation is raised to the pipeline manager. The pipeline manager, in turn,
can send a new QoS contract to the first stage manager, stating that a higher
output rate is required. Here we do not consider the effect of violations. We are at
an early stage in handling multiple concerns. The activity required to implement
the two-phase decision (decision → consensus → actuation of the plan) is already
time consuming. If we assume a manager AMj (j 6= i) could raise exceptions
and enter a possibly long process leading to some reconfiguration of other parts of
the parallel application, we will in all likelihood have a reduction in the reactivity
of the process implemented by manager AMi and, more seriously, we must take
great care to implement violations and the corresponding corrective actions at
the parent node to avoid deadlocks.

5 Related work

The IBM blueprint paper on autonomic computing has already established, in a
slightly different context, the need to orchestrate independent autonomic man-
agers [11].

In [9] strategies to handle performance and power management issues by au-
tonomic managers are discussed. However the approach is much more oriented
to the generic combination of target functions relating to the two non-functional
concerns considered, rather than to the constructive coordination of the actions
planned by the two managers.

A framework that can be used to reason on multiple concerns was introduced
in [12]. Based on the concepts of state and action (i.e., state transition) adopted
from the field of artificial intelligence, this framework maps three types of agent-
hood concepts (action, goal, utility-function) into autonomic computing policies.
Action policies may produce and consume resources, which are used by a resource
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arbiter (i.e. a super manager) to harmonize conflicting concerns. The framework,
however, does not provide any specific support to policy design and distributed
management overlay.

A similar approach was followed in [6], which also exploits the same policies
(action, goal, utility-function) defined on the (Cartesian product of) state and
configuration space of the system. These policies are extended with resource-
definition policies, which specify how the autonomic manager exposes the system
to its environment; this makes it possible to dynamically extend manager knowl-
edge with other resources/parameters, possibly coming from other managers, thus
supporting management overlay.

The architecture and functionality of the latter two autonomic systems clearly
resemble (and extend) those of intelligent multi-agent systems [14]. Our work
substantially achieves similar features (see also [2]) in the context of adaptive
parallel and distributed systems. As a distinguished feature, our work aims at
defining tools and a methodology to ease and semi-automate the design and the
generation of autonomic management and the distributed management overlay
of a system, which is outside the scope of the related work. Our aim is focussed
on the exploitation of structure by way of the co-design of functional and non-
functional features [4] through behavioural skeletons, which may be regarded as
autonomic management overlay factories.

6 Conclusions & future work

In this work we discussed a general methodology that can be used to support au-
tonomic management of multiple non-functional concerns in a behavioural skele-
ton framework. The methodology is based on coordination of decisions taken
by mostly independent autonomic managers (each taking care of a single non-
functional concern) through a two-phase consensus protocol. We also discussed
how the methodology can be applied to a typical parallel/distributed use case.

While protocols and policies may be established to coordinate the activities of
different concern managers, the main challenge lies in not being overwhelmed by
the sheer complexity of their interactions. To this end, we need to exploit to the
full the fact that the structure of the underlying skeleton is known and use this
knowledge in marshalling the activities of the overlaid autonomic management
structure. In addition to this broad challenge, there remain a number of specific
areas that require attention:

• We did not take into account autonomic manager hierarchy here. This
means the rules outlined earlier appear to be executed by “the” autonomic
manager, while they are actually fired by instances of the autonomic man-
agers associated with the hierarchy of behavioural skeletons comprising the
application. In particular, the handling of violations (raised child to par-
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ent) mentioned earlier introduces activity along an axis orthogonal to the
multi-concern one. Coordination across the two axes remains an open issue.

• We did not distinguish in detail between use of the SM or the CM co-
ordination model among managers. The details are hidden in actions
askConsensus, consensusAsked, answer, ackFromAll, etc.

• No details are given relating to extent and format of the data exchanged
among manager instances.

• No hint is given as to how managers can discover each other during appli-
cation set up, in the case where the CM cooperation model is used.

• Some additional mechanisms are needed in the rules described above to
make AMi associate the correct pre-condition to the consensus results. In
other words, we should label consensus items in such a way that replies
to askConsensus(X) do not fire rules whose pre-conditions are meant to
capture answers to a different askConsensus(Y ) request.

In order to verify “in the field” the feasibility of the approach proposed in
this work, we are currently finalizing a prototype that allows use of POJOs as
processes (i.e. as the parallel pattern part of a behavioural skeleton) and the
JBoss rule engine to associate some form of autonomic management to each of
the simplified BS in the system (i.e. to implement the autonomic part of a
behavioural skeleton). The resulting runtime system is completely based on RMI
to run remote processes and assumes the machines have all the required ports
open and a common (user) account is available to use the resources via ssh/scp.
As a result, the runtime is quite straightforward and, as a consequence, easy to
verify. This will allow us to experiment with complex cases and to validate the
multi-concern autonomic management methodology proposed.
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