

Università di Pisa


Dipartimento di Informatica


Technical Report: TR-10-04


Experiments with robust


asset allocation strategies:


classical versus relaxed


robustness


Raffaella Recchia


recchia@di.unipi.it


Maria Grazia Scutellà
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Abstract: Many optimization problems involve parameters which are not
known in advance, but can only be forecast or estimated. This is true, for exam-
ple, in portfolio asset allocation. Such problems fit perfectly into the framework
of Robust Optimization that, given optimization problems with uncertain pa-
rameters, looks for solutions that will achieve good objective function values for
the realization of these parameters in given uncertainty sets.


Aim of this paper is to compare alternative forms of robustness in the context
of portfolio asset allocation. Starting with the concept of convex risk measures, a
new family of models, called norm-portfolio models, is firstly proposed where not
only the values of the uncertainty parameters, but also their degree of feasibility
are specified. This relaxed form of robustness is obtained by exploiting the link
between convex risk measures and classical robustness.


Then, we test some norm-portfolio models, as well as various robust strate-
gies from the literature, with real market data on three different data sets. The
objective of the computational study is to compare alternative forms of relaxed
robustness - the relaxed robustness characterizing the norm-portfolio models,
the so-called soft robustness and the CVaR robustness. In addition, the models
above are compared to a more classical robust model from the literature, in or-
der to experiment similarities and dissimilarities between robust models based
on convex risk measures and more traditional robust approaches. To the best
of our knowledge, this is the first attempt at comparing robust strategies of
different kinds in the framework of portfolio asset allocation.


Keywords: portfolio optimization, robustness, convex risk measures, math-
ematical models, computational experimentation.


∗Corresponding author: Dipartimento di Informatica, Università di Pisa, Italy; e-mail:
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1 Introduction


The first pioneering contribution in the field of allocation of financial assets
was made by Markowitz in 1952. The so-called mean-variance models by him
proposed consist in allocating capital over a number of available assets in order
to maximize the return on the investment (measured by the expected value)
while minimizing a certain measure of risk (quantified by the variance of the
portfolio).


Despite the strong theoretical support provided by mean-variance models,
their elegance and the availability of efficient computer codes for solving them,
these models present various practical pitfalls: optimal portfolios are not well
diversified, in fact they tend to concentrate on a small subset of available securi-
ties and, above all, they are often very sensitive to changes in input parameters.


Several methodologies have then been proposed to reduce the sensitivity
of Markowitz’s models, such as Robust Optimization. This framework entails
modeling optimization problems with uncertain parameters to obtain a solution
that is guaranteed to be ‘good’ for all possible realizations of the parameters
in given uncertainty sets. Uncertainty in the parameters is in fact modelled
using uncertainty sets, which contain possible realizations for the uncertain
parameters.


Robust models and related algorithmic approaches have been recently pro-
posed in the literature to address uncertainty in portfolio asset allocation prob-
lems. Some of these models and methods are described in Fabozzi et al. (2007).
More recent robust models are presented in Recchia and Scutellà (2009).


This paper is organized as follows. After a quick review of various classical
robust models in Section 2.2, in Section 3 we describe some more flexible robust
models that, by exploiting the theoretical link between convex risk measures
and classical robustness, furnish an innovative approach to robustness. In Sec-
tion 4, based on the more flexible concept of robustness mentioned above, in
which not only the values of the uncertainty parameters, but also their degree
of feasibility are specified, we propose a new family of models that we call the
norm-portfolio models, that include as special cases linear programming models
(LP) and second order cone programming models (SOCP), i.e., computation-
ally tractable models. Specifically, we focus on the notion of penalty function in
convex risk measures in order to propose models where these penalty functions
are defined in terms of general norms. We then study a variant where the risk
measure used is also coherent (a subcase of the convex one), and we conclude
the section with considerations about some parameters of the models, that de-
scribe an interesting link between this coherent variant of the norm-portfolio
models and one of the well-known coherent risk measures in the literature, i.e.
the Conditional Value at Risk (CVaR).


In Section 5 we report the results of a computational experimentation per-
formed with real market data on three different data sets. The objective of the
computational study was to compare alternative forms of relaxed robustness
- the relaxed robustness characterizing the norm-portfolio models, the soft ro-
bustness characterizing the entropic model (Ben-Tal et al. 2009), and the CVaR
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robustness - in order to assess how ”simple” penalty functions such as the ones
incorporated by the norm-portfolio models compare in practice to more sophis-
ticated convex risk measure approaches. In addition, the models above have
been compared to (a slight variant of) Tütüncü-Koenig model (Tütüncü and
Koenig 2004), in order to compare robust models based on convex risk measures
to more traditional robust approaches. To the best of our knowledge, this is
the first attempt at comparing robust strategies of different kinds (i.e. standard
robust models based on uncertainty sets versus relaxed robust models based
on convex risk measures) in the framework of portfolio asset allocation. In the
previous experiments, in fact, the objective was to contrast the performance
of some classical portfolio selection strategies (usually the mean-variance and
the minimum-variance approaches) with some specific robust selection strate-
gies. In a few cases, different robust methods were also compared (DeMiguel
and Nogales 2009, Ben Tal et al. 2009). In those cases, however, the methods
compared are of the same kind (methods based on robust estimators in the first
case, and based on convex risk measures in the second case).


Section 6 concludes the paper, by providing some final comments and direc-
tions for future research, while some proofs are reported in the Appendix.


2 Robust asset allocation


2.1 The classical models


Portfolio asset allocation problems can be formulated mathematically as quadratic
programming (QP) problems (Markowitz 1952; Tütüncü and Koenig 2004).
Some of them can be formulated as convex QP, that refers to minimizing a
quadratic function subject to linear constraints.


Let n be the number of the available assets, and X be the non-empty and
bounded set of the feasible portfolios. For example


X =


{


x ∈ R
n|


n
∑


i=1


xi = 1, xi ≥ 0, i = 1, ..n


}


(1)


formulates the case where short-sales are not allowed. Furthermore, let µ be
the estimated expected return vector of the given assets, while matrix Q be the
covariance matrix of these returns.


The classical mean-variance optimization (MVO) models of Markowitz can
then be formulated as follows:


1) maximize the expected return subject to an upper limit on the variance:


max µTx


s.t. xTQx ≤ σ (2)


x ∈ X ;
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2) minimize the variance subject to a lower limit on the expected return:


min xTQx


s.t. µTx ≥ R (3)


x ∈ X ;


3) maximize the risk-adjusted expected return:


max µTx− λxTQx (4)


s.t. x ∈ X


where λ ∈ R denotes a risk-aversion parameter.
These three models are parametrized by the variance limit, the expected


return limit and the risk-aversion parameter, respectively. Since the variance
constraint is a nonlinear constraint, the first formulation can not be classified
as a convex QP formulation, while the latter two are convex QP formulations
solvable in polynomial time.


Mean-variance portfolios generated using the sample expected return and
covariance matrix of the asset returns perform poorly out of sample due to es-
timation errors (Michaud 1989; Black and Litterman 1992; Chopra and Ziemba
1993; Broadie 1993). Moreover, it is commonly accepted that estimation errors
in the sample expected return are much larger than in the sample covariance
matrix (Chan et. al. 1999; Jagannathan and Ma 2003). For this reason, re-
searchers have recently focused on the so-called minimum-variance optimization
models :


min xTQx


s.t. x ∈ X,


which rely only on estimates of the covariance matrix, and therefore usually
perform better out of sample.


However, these portfolios are also quite sensitive to estimation errors and
have unstable weights that fluctuate substantially over time. The main reason
for this is that the sample covariance matrices, on which minimum-variance port-
folios are based on, are the maximum likelihood estimators (MLE) for normally
distributed returns, and the efficiency of these estimators is highly sensitive to
deviations of the asset-return distribution from the implicitly assumed normal
distribution. This is particularly relevant for portfolio asset allocations, where
extensive evidence shows that the empirical distribution of asset returns usually
deviates from the normal distribution (DeMiguel and Nogales 2009).


For practical applications, it is therefore crucial to incorporate the uncer-
tainty regarding the accuracy of the estimates in the portfolio optimization
process. One methodology addressing uncertainty in minimum-variance models
is Robust Statistics. This methodology studies the problem of making estimates
that are insensitive to small changes in the assumptions of the models used.
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Methods have been proposed which generate robust estimators of the portfolio
return characteristics, which enable portfolios with better stability properties
to be generated. A different way to achieve robustness is Robust Optimiza-
tion. This framework entails modeling optimization problems with uncertain
parameters to obtain a solution that is guaranteed to be “good”for all possi-
ble realizations of the parameters in given uncertainty sets. Uncertainty in the
parameters is in fact modelled using uncertainty sets, which contain possible
realizations for the uncertain parameters. Robust mean-variance models have
been proposed which define suitable uncertainty sets for µ and Q, and which
select the optimal portfolio with respect to the worst data realization within
the chosen uncertainty sets. For a survey of models based on robust estimators
see Fabozzi et al. (2007) and Recchia and Scutellà (2009). Some robust models
and methods belonging to the framework of robust optimization are reviewed
in Section 2.2, with an emphasis on those approaches addressed in the compu-
tational experiments (see Section 5). For more details and proofs see Fabozzi
et al. (2007) and Recchia and Scutellà (2009).


2.2 Robust mean-variance models


Let us assume that the uncertain expected return vector µ and the uncertain
covariance matrix Q of the asset returns belong to uncertainty sets with the
following form of intervals:


Uµ =
{


µ : µL ≤ µ ≤ µU
}


and UQ =
{


Q : Q � 0, QL ≤ Q ≤ QU
}


,


where the relation ≤ is intended to hold true componentwise (considering
both vectors and matrices), while the restriction Q � 0 indicates that Q must
be a positive semidefinite matrix, since it denotes a covariance matrix.


Based on the uncertainty sets above, Tütüncü and Koenig (2004) formu-
lated robust counterparts of problems (4) and (3) by exploiting formulations
previously introduced by Goldfarb and Iyengar (2003) and by Halldórsson and
Tütüncü (2003). The first robust model looks for a feasible portfolio x such
that its minimum risk-adjusted expected return, when both parameters vary in
the given uncertainty sets, is the maximum among the feasible portfolios. In
contrast, the latter robust model looks for a feasible portfolio x which guaran-
tees the lower limit R on the expected return also in the worst case, and which
minimizes the variance in the worst realization of parameter Q in UQ. The
resulting robust counterparts are therefore:


max
x∈X


{


min
µ∈Uµ,Q∈UQ


µTx− λxTQx


}


(5)
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and


min max
Q∈UQ


xTQx


s.t. min
µ∈Uµ


µTx ≥ R, (6)


x ∈ X


Under certain simplifying assumptions, i.e. when QU is a positive semidefi-
nite matrix, these robust problems can be reduced to pure MVO problems. In
such a special case, the best asset allocation can in fact be determined by first
fixing the worst-case input data in the considered uncertainty sets, i.e. µL for
the uncertain expected return vector µ and QU for the uncertain covariance
matrix Q, and then solving the resulting QP problems (Tütüncü and Koenig
2004). Without these assumptions, it is not possible to solve the robust asset
allocation problems as standard QPs. In the general case, the robust counter-
parts (5) and (6) can be solved using a nonlinear saddle-point formulation that
involves semidefinite constraints (Halldórsson and Tütüncü 2003).


From a computational point of view, Tütüncü and Koenig generated the
so-called robust efficient frontier using two market data sets, and compared the
robust efficient frontier with the classical efficient frontier, generated solving
model (3). The first data set is composed of five asset classes, from January
1979 to July 2002, for a total of 283 months. The second data set addresses
eight asset classes from July 1983 to July 2002, for a total of 229 months.
The computational analysis demonstrates that the portfolios generated using
the proposed robust techniques have a significantly better worst-case behaviour
than the classical MVO portfolios, i.e., the robust approaches guarantee a risk
reduction for worst-case scenarios. Moreover, the generated robust portfolios
show more stability over time, i.e. they remain relatively unchanged over long
periods of time.


An alternative method for modeling the uncertainty was proposed by Gold-
farb and Iyengar (2003) using the factor model. Under the hypothesis of nor-
mality of the random return, and considering suitably defined uncertainty sets
for the parameters of the factor model, Goldfarb and Iyengar presented robust
optimization models that can be reduced to second order cone programming
problems (SOCP). Additional asset allocation problems, called the Sharpe Ra-
tio problems, have been studied in the literature, which incorporate assets con-
sidered essentially riskless. For a survey of these problems and their robust
counterparts we refer to Goldfarb and Iyengar (2003) and Tütüncü and Koenig
(2004). See also Recchia and Scutellà (2009).
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3 Robustness and risk measures


3.1 Risk measures and related models


In recent years, there has been an increasing interest in defining quantitative
methods to assess the risk of financial positions. Basically there are two types
of risk measures: dispersion and downside measures (Fabozzi et al. 2007).
Dispersion measures consider both positive and negative deviations from the
expected return, and treat these deviations as being equally risky. A well-known
dispersion measure is portfolio standard deviation (and portfolio variance), used
in the previously reviewed minimum-variance and mean-variance optimization
models. On the other hand, downside risk measures traditionally address the
probability that the portfolio return is above a minimal acceptable level.


Let us introduce some advanced concepts of downside risk measures, to-
gether with related minimum risk optimization models. Let Y be a real-valued
function on a set Ω of possible scenarios that represents the return from an
investment portfolio over a fixed period of time. A negative value for Y indi-
cates loss. A quantitative measure of risk can then be modelled as a mapping
ρ from the space of these return functions into the real line. This is the clas-
sical definition of the measure of risk as provided by Artzner et al. (1999) in
their seminal contribution, where they systematically analysed the concept of
risk measures, by formulating certain axioms that should be satisfied by any
reasonable measure of risk.


Here the emphasis is on the definitions of monetary risk measures, convex
and coherent risk measures, as stated in (Föllmer and Schied 2004). The reason
being, from these definitions, Föllmer and Schied (2004) have provided some risk
measure characterizations that have been used, quite recently, to model interest-
ing robust optimization models in the framework of asset allocation problems.


Let us denote by Φ the set of all bounded measurable functions on the set of
scenarios Ω, and P the set of all probability measures on Ω. For any Y, Z ∈ Φ,
the shorthand notation Y ≤ Z denotes Y (ω) ≤ Z(ω) ∀ω ∈ Ω. We define the
following (Föllmer and Schied 2004):


Definition 1 A mapping ρ : Φ → R is called a monetary measure of risk if it
satisfies the following conditions for all Y, Z ∈ Φ:


Monotonicity : if Y ≤ Z, then ρ(Y ) ≥ ρ(Z).


Cash Invariance: if m ∈ R, then ρ(Y +m) = ρ(Y ) −m.


The financial meaning of monotonicity is that the downside risk of a position is
reduced if the payoff profile is increased. Cash invariance, also called translation
invariance, is motivated by the interpretation of ρ(Y ) as a capital requirement.
Thus, if the amount m is added to the position and invested in a risk-free
manner, the capital requirement is reduced by the same amount.


Definition 2 A monetary measure of risk ρ : Φ → R is called a convex measure
of risk if it satisfies
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Convexity: ρ (λY + (1 − λ)Z) ≤ λρ (Y ) + (1 − λ) ρ (Z)∀0 ≤ λ ≤ 1,
∀Y, Z ∈ Φ.


The axiom of convexity states that diversification should not increase the risk.


Definition 3 A convex measure of risk ρ is called a coherent risk measure if it
satisfies 1


Positive homogeneity: if λ ≥ 0, then ρ (λY ) = λρ (Y ) .


If a measure of risk ρ is positively homogeneous, then it is normalized, i.e.,
ρ(0) = 0.


Artzner et al. (1999) provided the following characterization of coherent risk
measures (also cited in Föllmer and Schied (2004)):


Theorem 4 A functional ρ : Φ → R is a coherent measure of risk if and only
if there exists a subset Q⊆ P such that


ρ (Y ) = sup
q∈Q


Eq [−Y ] , Y ∈ Φ, (7)


where Eq [−Y ] denotes the mean value of −Y (i.e., the expected loss) with
respect to the probability q. Such a characterization can be generalized to
convex measures of risk (Föllmer and Schied 2002):


Theorem 5 Suppose that Ω is a finite set 2. Then ρ : Φ → R is a convex
measure of risk if and only if a penalty function ψ : P→ R ∪ (−∞,+∞] exists
such that


ρ(Y ) = sup
q∈P


(Eq [−Y ] − ψ (q)) . (8)


The function ψ satisfies ψ(q) ≥ −ρ(0) for any q ∈ P, and it can be taken to be
convex and lower semicontinuous on P.


In the above characterization, function ψ assigns a possibly different weight
to the probabilities in P , by penalizing some of them. By choosing ψ (q) = 0
for all q ∈ Q, and +∞ otherwise, the characterization of coherent measures of
risk stated by Theorem 4 can be derived as a special case. The characterization
expressed by Theorem 5 has been exploited to propose more flexible robust
models for asset allocation problems, which will be reviewed in Section 3.2.
Next we will briefly review some well-known measures of risk together with the
related minimum risk optimization models.


In the literature, a well-known measure of risk is Value at Risk (VaR), devel-
oped by engineers at J.P. Morgan. VaR represents the predicted maximum loss


1In Artzner et al. (1999), a mapping ρ : Φ → R is called a coherent measure of risk if
it satisfies the four axioms of translation invariance, positive homogeneity, monotonicity and
subadditivity, where subadditivity states that, ∀Y, Z ∈ Φ, ρ(Y + Z) ≤ ρ(Y )+ ρ(Z); convexity
is a consequence of these axioms.


2A generalization of this theorem also exists in the case where Ω is an infinite set.
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with a specified probability level over a certain period of time. Let fx(ω) denote
the loss function of a portfolio x ∈ X when ω is the realization of some random
events (so, fx(ω) = −Y according to our previous notation). The α-VaR risk
measure of x is then defined as follows:


V aRα(x) = min {γ : Prob (fx(ω) ≥ γ) ≤ 1 − α} ,


where α is a given probability level, and Prob denotes the probability with
respect to a given reference probability on the set of scenarios Ω, say p ∈ P . In
other words, VaR is defined as the minimum level γ such that the probability
that the portfolio loss exceeds γ is less than or equal to 1 − α.


Some practical and computational issues related to VaR are discussed by
Gaivoronski and Pflug (2005). Several other approaches to VaR optimization
are used in practice, which show that, in some contexts, VaR can be a suitable
measure of risk (Natarajan et al. 2008). However, VaR also has several unde-
sirable properties as a risk measure. Firstly, if studied within the framework of
coherent risk measures, it lacks subadditivity (and therefore convexity) (Artzner
et al. 1999). An additional difficulty with VaR may be in its computation and
optimization. In fact, when VaR is calculated from generated scenarios, it turns
out to be a nonsmooth and nonconvex function of the positions in the invest-
ment portfolio. Moreover, VaR does not take into account the magnitude of
losses beyond the VaR value. This and other undesirable features of VaR led
to the development of alternative risk measures. One well-known modification
of VaR is the Conditional Value at Risk (CVaR), which measures the expected
loss exceeding VaR. Given a probability level α, the α-CVaR associated with a
portfolio x is defined as follows:


CV aRα (x) =
1


1 − α


∫


fx(ω)≥V aRα(x)


fx(ω)p (ω) dω


where, as before, fx(ω) denotes the loss function when the portfolio x is chosen
from the set X of feasible portfolios and ω is the realization of random events,
while p (ω) denotes the reference probability of ω.


Rockafellar and Uryasev (2000) showed that minimizing CVaR can be achieved
by minimizing a more tractable auxiliary function without first predetermining
the corresponding VaR. They introduced the following simpler auxiliary func-
tion


Fα(x, γ) = γ +
1


1 − α


∫


fx(ω)≥γ


fx (ω)p (ω) dω. (9)


This formulation can be written in the following equivalent way:


Fα(x, γ) = γ +
1


1 − α


∫


(fx(ω) − γ)+p (ω)dω (10)


where a+ = max {a, 0}. Rockafellar and Uryasev showed that Fα(x, γ) ver-
ifies some interesting properties such that minimizing CVaR is equivalent to
minimizing the auxiliary function Fα(x, γ), i.e., :


min
x∈X


CV aRα(x) = min
x∈X,γ


Fα(x, γ).
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Moreover, if fx (ω) is a convex (linear) function of the portfolio variables x,
then Fα(x, γ) is also a convex (linear) function of x. In this case, provided
the feasible portfolio set X is also convex, the above optimization problem is
a smooth convex optimization problem that can be solved using well-known
optimization techniques. In particular, the authors formulated the problem in
the discrete case, obtaining a tractable formulation. Assume that the set of
scenarios Ω comprises N scenarios ω1, . . . , ωN , and that all scenarios have the
same probability (so, p (ω) = 1


N
∀ω). In this case the auxiliary function Fα(x, γ)


can be approximated by the following function:


F̃α(x, γ) = γ +
1


(1 − α)N


N
∑


k=1


(fx (ωk) − γ)
+
. (11)


Hence, the problem min
x∈X


CV aRα(x) can be approximated by replacing Fα(x, γ)


with F̃α(x, γ), obtaining the following formulation:


min
x,z,γ


γ +
1


(1 − α)N


N
∑


k=1


zk


s.t. zk ≥ 0, k = 1, . . .N


zk ≥ fx(ωk) − γ, k = 1, . . .N (12)


x ∈ X,


where zk are artificial variables that are used to model (fx(ωk) − γ)
+
, k =


1, . . .N .
This formulation of CVaR usually results in convex programs and even linear


programs (when fx(ω) is a linear loss function). Thus, Rockafellar and Uryasev’s
study opened the door to applying CVaR to financial optimization and risk
management in practice.


Several robust models based on VaR and CVaR have been proposed in the
literature to address portfolio asset allocation problems. We mention here the
robust counterpart of the α-VaR optimization problem, proposed in Goldfarb
and Iyengar (2003), where the asset returns are assumed to be normally dis-
tributed, and the alternative formulation described by El Ghaoui et al. (2003),
where the authors introduce the notion of Worst-case VaR. Such a notion is gen-
eralized by Zhu and Fukushima (2006), who define the concept of Worst-case
CVaR. We mention also two non standard robust models discussed in Bienstock
(2007), which achieve an enhanced risk modeling flexibility by incorporating
probability distribution and risk measure elements into the models. For more
details see Recchia and Scutellà (2009).


3.2 The soft robust approach


In a recent study, Ben-Tal et al. (2009) proposed another framework for robust
optimization which relaxes the classical notion of robustness. They focus on a
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relaxed approach in which not only the values of the uncertain parameters, but
also their degree of feasibility are specified.


Let us formally introduce such an idea of relaxed robustness in the context
of loss functions. Given n assets, let r̃ denote the corresponding random return
vector. Then, given a feasible portfolio x ∈ X , define its associated loss function
as fx(ω) = −r̃Tx (so, the random events ω in the general expression fx(ω) are
modelled here in terms of random returns). Consider the following probabilistic
constraint related to the loss of x:


−r̃Tx ≤ b, (13)


stating that the random loss of portfolio x must not exceed a threshold b, where
b is a generic linear expression. According to the classical notion of robustness,
the standard robust counterpart of constraint (13) should take the form:


−rTx ≤ b ∀r ∈ U (14)


where U denotes a given uncertainty set for the random return vector. Observe
that, if R indicates the set of all possible return vectors, then constraint (14)
could be equivalently rewritten as:


−rTx ≤ b+ β(r) ∀r ∈ R (15)


where β(r) = 0 if r ∈ U and β(r) = +∞ otherwise.
The above introduced function β represents a particularly extreme penalty


function (an indicator function of U). The main observation of Ben-Tal et al.
(2009) is that milder penalty functions could be used in constraints like (15).
Alternative penalty functions would enable not only to control where there is
feasibility, but would also indicate how feasible a particular realization of r̃ is.
See also D. Brown’s Ph.D. dissertation (2006), where the emphasis is put on
the concept of penalty functions.


The use of milder penalty functions, to which correspond different decison-
maker’s risk preferences, is strictly related to the concept of convex risk mea-
sures, reviewed in Section 3.1, based on the following observation. Assume that
R is the convex hull of a set of return vectors r1, . . . rN , and so any return


vector r can be expressed as r =
N
∑


k=1


rkqk,
N
∑


k=1


qk = 1, qk ≥ 0, k = 1, . . . , N . In


addition, let P denote the set of all probability measures on the discrete set of
scenarios Ω = {r1, ...rN}, according to the notation introduced in Section 3.1.
Then:


Theorem 6 Let ρ be a convex risk measure, ψ(q) be the penalty function asso-
ciated with ρ according to Theorem 5 and r̃ be the random return vector. Then
the following relations are equivalent:


(A) ρ(r̃T x) ≤ b


(B) −rTx ≤ b+ β(r) ∀r ∈ R
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where


β(r) = inf


{


ψ(q)|q ∈ P , r =


N
∑


r=1


riqi


}


Proof. Let P(r) =


{


q ∈ P|r =
N
∑


r=1
riqi


}


.


ρ(r̃Tx) ≤ b⇔ sup
q∈P


{


Eq
(


−r̃Tx
)


− ψ (q)
}


≤ b (from Theorem 5)


⇔ Eq
(


−r̃Tx
)


− ψ (q) ≤ b, ∀q ∈ P


⇔ −
N


∑


i=1


rTi xqi − ψ (q) ≤ b, ∀q ∈ P


⇔ −rTx− ψ(q) ≤ b, ∀q ∈ P(r), ∀r ∈ R


⇔ −rTx ≤ b+ ψ(q), ∀q ∈ P(r), ∀r ∈ R


⇔ −rTx ≤ b+ inf
q∈P(r)


ψ (q) , ∀r ∈ R


⇔ −rTx ≤ b+ β(r), ∀r ∈ R.


Theorem 6 thus states that the relaxed notion of robustness introduced above
corresponds to defining constraints, of probabilistic type, based on convex risk
measures. Ben-Tal et al. (2009) analysed several penalty functions in such con-
vex risk measure constraints, thus deriving several types of relaxed robustness.
Among the others, they focused on the following constraints, where δ ≥ 0 is
given:


sup
{q:ψ(q)≤δ}


(Eq(−r̃
Tx) − ψ(q)) ≤ b. (16)


They proved that the left hand side of (16) is equivalent to:


min
c≥0


{


cδ + sup
q∈P


(Eq(−r̃
Tx) − (c+ 1)ψ(q))


}


=


= min
c≥0


{


cδ + (c+ 1) ρ


(


r̃Tx


c+ 1


)}


(17)


where ρ denotes the convex risk measure induced by the penalty function ψ.
Moreover, if b = 0 then for each δ > 0 any feasible portfolio x satisfying


min
c≥0


{


cδ + (c+ 1) ρ


(


r̃Tx


c+ 1


)}


≤ 0 (18)


belongs to the subset XS
δ defined below, called the soft robust set :


XS
δ =


{


x ∈ X : inf
q∈P(ε)


Eq
[


r̃T x
]


≥ −ε ∀ε ∈ [0, δ]


}


, (19)
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where P(ε) ⊂ P define a sequence of convex sets of probability measures nonde-
creasing on ε ≥ 0, such that P(ε) = {q ∈ P : ψ(q) ≤ ε} and P(0) is nonempty,
and ρ is required to be a normalized convex risk measure. For details and formal
proofs see (Ben-Tal et al. 2009).


Ben Tal et al. suggested various forms of soft robustness. In particular, they
defined the so-called φ-divergence penalty function:


ψ(q) =











N
∑


i=1


piφ
(


qi


pi


)


if
N
∑


i=1


piφ
(


qi


pi


)


≤ δ


+∞ otherwise


(20)


where δ ≥ 0, while φ : R → R∪{+∞} is a closed and convex function such that


φ(0) = 1 and dom φ ⊆ R
+. The term


N
∑


i=1


piφ
(


qi


pi


)


is called the φ-divergence


of q with respect to the reference probability p, and it represents a distance-
like measure from q to p. The authors considered the φ-divergence function
φ : φ(t) = t log(t) − t + 1 and, scaling the corresponding penalty function by
a positive factor γ, they studied the relative entropy from q to p scaled by γ,


i.e. ψ(q) = 1
γ


N
∑


i=1


log qi


pi
, by showing that the convex risk measure induced by the


relative entropy is ργ(r̃
Tx) = 1


γ
log(


N
∑


i=1


pie
−γrT


i x), also known as the entropic


risk measure at level γ.
By choosing the entropic risk measure at level γ, then the equivalence


x ∈ XS
δ ⇔ min


c≥0


{


cδ + (c+ 1)ργ


(


r̃Tx


c+ 1


)}


≤ 0 (21)


stated before, becomes:


x ∈ XS
δ ⇔ min


c≥0


{


cδ + (c+ 1)
1


γ
log Ep


(


e
−γr̃T x


c+1


)}


≤ 0 (22)


where cδ + (c+ 1) 1
γ
log Ep


(


e
−γr̃T x


c+1


)


is jointly convex in (c, x).


Ben Tal et al. (2009) experimented some asset allocation problems related to
the above notion of soft robustness. The formulation used for the computational
analysis consists of maximizing the expected return of a portfolio x by imposing
that the convex risk measure induced by a φ-divergence function is not greater
than zero (or equivalently, according to (22), that x belongs to a specified soft
robust set), i.e. :


max µTx


s.t. ρ(r̃Tx) ≤ 0 (23)


x ∈ X.


or, equivalently:
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max µTx


s.t. x ∈ XS
δ .


The authors considered the entropic risk measure and solved problem (23)
by using monthly historical data related to 11 publicly traded asset classes, from
April 1981 to February 2006. They compared the portfolios generated via the
soft robust approach to the portfolios obtained by a variant of the soft approach,
called the “comprehensive soft robust approach” and to portfolios generated by
imposing that CVaR is less than or equal to zero. The main result is that,
on the dataset considered, relaxing the standard robustness constraints to soft
robustness constraints, such as the one expressed by the entropic risk measure
constraint, guarantees a higher out-of-sample performance. This is expressed in
terms of the realized return, for not too high a price in the increased downside
risk, expressed in terms of realized CVaR.


4 A new family of models


Starting with the relationship between a relaxed form of robustness and convex
risk measures, expressed by Theorem 6, we propose a new family of robust
asset allocation models by defining penalty functions which are based on general
norms. The aim is to define relaxed robust models that can be computed in a
very efficient way. The proposed family includes in fact, as special cases, linear
programming models and second order cone programming problems (SOCP).
We also study a variant of the models for the coherent subcase, i.e. the case
where the considered risk measures are also coherent.


Some of the proposed models have been tested with real market data, and
compared to classical robust approaches from the literature as well as to the soft
robust approach in Ben Tal et al. (2009). This will be the subject of Section 5.


4.1 The norm-portfolio models


Let us consider an environment with n risky financial securities. As in previous
sections, let x ∈ R


n represent a portfolio of n securities, and xj be the amount
invested in security j. In addition, let µ denote the expected return vector,
while r̃ be the vector of the random returns (so, r̃Tx is the random return of
portfolio x). Let us consider the following portfolio selection problem, where ρ
denotes a convex measure of risk:


inf ρ
(


r̃Tx
)


s.t. µTx ≥ R (24)


x ∈ X.
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Let us reformulate problem (24) by introducing an auxiliary variable ζ:


inf ζ


s.t. ρ
(


r̃Tx
)


≤ ζ


µTx ≥ R


x ∈ X.


(25)


We can then exploit the relationship between the probabilistic constraint
ρ


(


r̃Tx
)


≤ ζ and convex risk measures, expressed by Theorem 6. Assume to
know a set {r1, . . . , rN} of return vectors, and P denote the set of all probability
measures on this finite set of scenarios. This assumption captures a prevailing
situation in many practical applications, when one has at his/her disposal N
samples of the uncertain vector r̃, usually obtained from historical data. From
Theorem 6, problem (25) is then equivalent to:


inf ζ (26)


s.t. sup
q∈P


{


−


N
∑


i=1


qir
T
i x− ψ (q)


}


≤ ζ (27)


µTx ≥ R (28)


x ∈ X. (29)


Formulation (26)-(29) describes the family of robust models that we address,
where ψ denotes the penalty function inducing the convex risk measure ρ. Note
that, according to the observations in Section 3.2, constraint (27) captures a
relaxed notion of robustness. This constraint states that the weight of the prob-
ability q depends on a suitably defined penalty function ψ(q), which, in turn,
can be interpreted as a kind of distance between q and a reference probability,
say p ∈ P .


Mathematically, the notion of distance is often tied to the concept of norm.
Based on this, we will study the special case of (26)-(29) where the penalty
function ψ(q) is defined in terms of an arbitrary norm || · ||. This will lead
to the investigation of special convex risk measures in formulation (26)-(29).
Since ψ(q) is defined in terms of a norm, the particular convex risk measures
under investigation will be called norm-risk measures, while the related models
will be referred to as norm-portfolio models. The more general formulation of
norm-portfolio models studied in this paper is the following:


inf ζ


s.t. sup
q∈P


{


−


N
∑


i=1


qir
T
i x− λ ‖q, p‖


}


≤ ζ


µTx ≥ R


x ∈ X


(30)
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where ‖q, p‖ denotes an arbitrary norm, defining a distance measure between the
generic probability q and the reference probability p. The non-negative scalar
λ is used to gauge this distance measure, as better explained below.


In this study, the following norms are addressed: the || · ||∞ norm, the
|| · ||1 norm, the D-norm (Bertsimas et al. 2004) and the Euclidean norm.
In the first three cases, the norm-portfolio models can be formulated as linear
programming problems (LP); in the last case, i.e. when the penalty function
is defined in terms of the Euclidean norm, the norm-portfolio models can be
reduced to second order cone programming problems (SOCP).


4.1.1 The || · ||∞ norm case


Let p ∈ R
N and q ∈ R


N denote the reference probability and a generic probabil-
ity, respectively. Let pi = 1


N
for i = 1, ....N . Consider the vector (p− q) ∈ R


N


and its infinity norm (also denoted by || · ||∞):


||p− q||∞ = max
i


|pi − qi| . (31)


The first family of norm-portfolio models we study is obtained by defining
the penalty function ψ(q) as follows:


ψ(q) = λ||p− q||∞ = λmax
i


|pi − qi| (32)


where, as indicated before, the parameter λ is a non-negative scalar used to
gauge the distance between the probabilities. In other words, we use λ to assign
a different weight to the probability q on the basis of its ‘distance’ from the
reference probability p. Let us replace ψ(q) in (26)-(29) by (32), obtaining the
following formulation:


inf ζ


s.t. sup


r=
N
∑


i=1


riqi


N
∑


i=1


qi=1


qi≥0,i=1,...,N


{


−rTx− λmax
i


|pi − qi|
}


≤ ζ


µTx ≥ R, x ∈ X.


(33)


If we analyse the role of parameter λ in problem (33), then it is easy to
observe that λ = 0 is the case where the investor gives the same weight (i.e.
zero) to all probability measures q without considering their distance from the
reference probability p; on the other hand, by increasing the value of λ the
investor gives a smaller weight to those probabilities that are far from the ref-
erence probability. The extreme case λ → ∞ is the case where the investor
considers only the reference probability, i.e. q = p. In terms of robustness, the
case λ = 0 describes a model more conservative and hence more robust. By
increasing the value of parameter λ, the models become less conservative and
hence theoretically less robust.
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Problem (33) is not a linear programming model. However, it is well-known
that the norm || · ||∞ can be linearized. Therefore:


Theorem 7 Under the norm ||·||∞, the norm-risk measure leads to a LP model.


4.1.2 The || · ||1 norm case


Let us now consider the L1 norm (also denoted by ‖·‖1):


||p− q||1 =


N
∑


i=1


|pi − qi|. (34)


The second family of norm-portfolio models we study is obtained by defining
the penalty function ψ(q) as follows:


ψ(q) = λ||p− q||1 = λ


N
∑


i=1


|pi − qi| (35)


where, as before, the parameter λ is a non-negative scalar used to gauge the
distance between the probabilities. Let us replace ψ(q) in (26)-(29) by (35).
Since also the ‖·‖1 can be linearized, the following theorem holds true:


Theorem 8 Under the L1 norm, the norm-risk measure leads to a LP problem.


4.1.3 The D-norm case


Here we address a particular norm, called the D-norm, which has been intro-
duced by Bertsimas et al. (2004). We show that also under this scenario the
norm-portfolio model can be reduced to a LP problem. We introduce the fol-
lowing definition of D-norm:


Definition 9 Given a non-negative integer m (m ≤ N), the D-norm of vector
(p− q) ∈ R


N is 3:


‖p− q‖m = max
S⊆{1,...,N}
|S|≤m


{


∑


i∈S


|pi − qi|


}


.


In other words, the D-norm of p− q is the sum of the m largest absolute values
of the entries of p− q. Therefore, setting m = 1 the D-norm coincides with the
L∞ norm. On the other hand, setting m = N then the D-norm coincides with
the L1 norm, i.e. the L1 and the L∞ norms are special cases of the D-norm.


Let us consider (26)-(29), and set


ψ(q) = λ||p− q||m, λ ≥ 0 (36)


within the model, for a suitable m. The analogous of Theorems 7 and 8 is:


Theorem 10 Under the D-norm, the norm-risk measure leads to a LP model.


Proof. See the appendix.


3In their study, Bertsimas et al. address the general case where m is a non-negative real
value.
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4.1.4 The Euclidean norm case


Let us now consider the case where the penalty function ψ(q) is described in
terms of the Euclidean norm. In such a case, the norm-portfolio model can be
formulated as a Second Order Cone Programming problem (SOCP).


Theorem 11 Under the Euclidean norm, the norm-risk measure leads to a
SOCP model.


Proof. See the appendix.


4.2 Coherent variant of the norm-portfolio models


In this section we study the variant of the norm-portfolio models where the
considered risk measure is also coherent. As reviewed in Section 3.1, a coherent
risk measure arises from a family Q of probability measures by computing the
worst expected loss when q varies in Q, that is to say:


ρ (Y ) = sup
q∈Q


Eq [−Y ] , Y ∈ Φ. (37)


By exploiting this characterization, the coherent version of the norm-portfolio
family (30) can therefore be defined as follows:


inf ζ


s.t. sup


r=
N
∑


i=1


riqi


N
∑


i=1


qi=1


qi≥0, i=1,...,N
||p−q||≤π,


−rTx ≤ ζ


µTx ≥ R, x ∈ X


(38)


where || · || denotes a generic norm and π is a parametric upper bound on the
distance between the generic probability q and the reference probability p. Let
us now specialize (38) by means of the infinity norm (in an analogous way we
can specialize the family via the L1 norm, the D-norm and the Euclidean norm):


inf ζ


s.t. sup


r=
N
∑


i=1


riqi


N
∑


i=1


qi=1


qi≥0, i=1,...,N
||p−q||∞≤π,


−rTx ≤ ζ


µTx ≥ R, x ∈ X.


(39)
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As indicated before, π is an upper bound on the distance between the proba-
bility q and the reference probability p. Consequently, π belongs to the interval
[0, 1]. The extreme values describe the case where the distance between the
probabilities is null, i.e. only q = p is taken into consideration (case π = 0),
and the case where the entire set of probabilities is addressed (case π = 1). In
terms of robustness, the case π = 0 is therefore the less conservative, and hence
the less robust.


Observe that, as for the general convex case, (39) can be reduced to a Linear
Programming Problem. Further observe that also the coherent variant imple-
ments a relaxed form of robustness, by choosing ψ (q) = 0 for all q ∈ Q (i.e. q
such that ||p− q||∞ ≤ π), and +∞ otherwise.


4.2.1 Some considerations about the bound π


Consider parameter π in model (39). There exists one value of π that enables to
establish an interesting relation between the coherent risk measure introduced
in Section 4.2, based on the norm || · ||∞, and the well-known CVaR (which is
also coherent).


As before, let N denote the number of the samples. In addition, let α be the
confidence level chosen in the definition of the CV aRα risk measure. Assume
α ≥ 1/2 (so (1−α) ≤ 1/2), as usual in practical applications, and (1−α) ≥ 1


N
.


Let η and τ be, respectively, the quotient of (1 − α) : 1
N


and its rest. Then
introduce the following value:


p∗α =
pi


1 − α
+


τ


η(1 − α)
=


1


N(1 − α)
+


τ


η(1 − α)
. (40)


By assuming η < N , define


π∗
α =


∣


∣


∣


∣


1


N
− p∗α


∣


∣


∣


∣


. (41)


Let us consider the case where the loss function of a feasible portfolio x
is −r̃Tx where, as previously introduced, r̃ denotes the vector of the random
returns. Then:


Proposition 12 If there are N scenarios, and all scenarios have the same
probability, then setting π = π∗


α the coherent model (39) is equivalent to the
CV aRα model (in terms of optimal portfolio value).


Proof. Let us recall the definition of V aRα:


V aRα(x) = min
{


γ : Prob(−r̃Tx ≥ γ) ≤ 1 − α
}


. (42)


Let r1, . . . , rN be the samples related to r̃, and pi = 1
N


denote the probability
of the sample i, i = 1, . . . , N . Under these assumptions, CV aRα(x) can be
calculated as follows (Cornuejols and Tütüncü 2007):


CV aRα(x) =
1


1 − α


∑


i:−rT
i x≥V aRα(x)


1


N
(−rTi x). (43)
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Let us distinguish two cases:


Case τ = 0


Let us assign the probability p̃i = p∗α = 1
N(1−α) to the η scenarios with


greatest loss, and p̃i = 0 otherwise (remember that η < N by assumption).
Now, if we choose a bound π ≥ π∗


α within model (39), then the probability
above is feasible for the coherent model; in fact the following constraints
are satisfied:


1) p̃i ≥ 0 for i = 1, . . . , N


2)
N
∑


i=1


p̃i = 1 ⇔


⇔


N−η
∑


i=1


p̃i +


N
∑


i=N−η+1


p̃i = 1


⇔ 0 + (η)
1


N(1 − α)
= 1


⇔ N(1 − α)
1


N(1 − α)
= 1 (44)


3) max
i


|pi − p̃i| ≤ π∗
α


To prove the condition above, observe that, since (1−α) ≤ 1/2, then
π∗
α ≥ 1


N
. Let us distinguish the following two subcases:


a) p̃i = 0:


max
i


|pi − 0| ≤ π∗
α ⇔


1


N
≤ π∗


α


that is satisfied due to the observation above;


b) p̃i 6= 0:


max
i


|pi − p̃i| ≤ π∗
α ⇔


⇔


∣


∣


∣


∣


1


N
−


1


N(1 − α)


∣


∣


∣


∣


≤


∣


∣


∣


∣


1


N
−


1


N(1 − α)


∣


∣


∣


∣


that is clearly satisfied.


Further observe that, by setting π = π∗
α, then {p̃i} is the probability that


maximizes the objective function of the inner problem of model (39). In
fact, the maximum possible increment of the probability (with respect to
the reference probability pi = 1


N
for each scenario i) is given to the scenar-


ios with the highest loss. But this is exactly the probability addressed in
(43). Hence, we can state that an optimal portfolio for model (39), under
the choice π = π∗


α, is optimal also for the CV aRα model.
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Case τ 6= 0


The proof is the same of the case τ = 0. In this case, assign the prob-
ability p̃i = p∗α = 1


N(1−α) + τ
η(1−α) to the η scenarios with the highest


loss, and p̃i = 0 otherwise. Also in this case, by setting π = π∗
α then


{p̃i} is the probability that maximizes the objective function of the inner
problem of (39). In fact, the maximum possible increment of the proba-
bility (with respect to the reference probability pi = 1


N
for each scenario


i) is given to the scenarios with the highest loss. Since the η scenarios
with the highest losses are exactly the scenarios addressed by the CV aRα
model, an optimal portfolio for (39) is also optimal for the CV aRα model.
Note, however, that the optimum objective function value of (39) does not
necessarily coincide with the one returned by the CV aRα model.


The following relationships can then be established between the coherent
variant of the || · ||∞-portfolio models and the CV aRα model:


Corollary 13 Given α, the coherent variant of the || · ||∞-portfolio model gen-
eralizes the CV aRα model; in addition, for π ≥ π∗


α the coherent variant is more
robust than CV aRα, in the sense that the considered probability set includes the
one (implicitely) addressed by the CV aRα model.


5 The computational analysis


The computational analysis is composed of two parts. In the first part we
analysed the behavior of the norm-portfolio models and their coherent variant
when the main parameters of these models (i.e. λ and π) vary. As a result of
the performed in-sample analysis, the ‖ ‖∞-models have been selected for the
successive phase, together with a pool of values for the parameters λ and π.


On the other hand, the objective of the second part was to contrast the per-
formance of the selected norm-portfolio models with alternative robust selection
strategies based on convex risk measures. The CVaR optimization model and
the entropic model of Ben Tal et al. (2009) have been chosen as benchmark
models in such a phase. Specifically, the objective of the computational study
was to compare alternative forms of relaxed robustness - the relaxed robust-
ness characterizing the norm-portfolio models and their coherent variant, the
soft robustness characterizing the entropic model, and the more classical CVaR
robustness - in order to assess how ”simple” penalty functions such as the ones
incorporated by the norm-portfolio models compare in practice to alternative
penalty functions, and in particular to more sophisticated penalty functions
such as the divergence based functions incorporated by the entropic model.


In addition, the models above have been compared to (a slight variant of)
Tütüncü-Koenig model (Tütüncü and Koenig 2004), in order to compare robust
models based on convex risk measures to more classical robust approaches. To
the best of our knowledge, this is the first attempt at comparing robust portfolio
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selection strategies of different kinds (i.e. classical robust models based on
uncertainty sets versus relaxed robust models based on convex risk measures).


Three real market data sets have been used to compare the robust models:
two data sets provided by Tütüncü (Tütüncü and Koenig 2004), and one data set
provided by Byrne (Byrne and Lee 2004). An out-of-sample analysis has been
performed for each data set. The scenario information based on past history
has been used to compare the values of the portfolios generated through the
robust selection strategies under investigation, and to analyse their fluctuation
over time. The details of the performed investigation will be illustrated next.


5.1 Plan of the experiments


5.1.1 The in-sample analysis


The aim of this analysis is to select suitable norm-portfolio models and suitable
values for the parameters of these models. Concerning the values of parameter
λ, we solved the norm-portfolio models for all integer values belonging to the
interval [0, 120] on the three data sets (the end value 120 has been selected
on empirical ground). We considered also a further value in order to describe
the performance of the models at infinity (i.e. λ = 107). By then observing
the composition of the portfolios, their risk and their return when λ varies, we
selected the following values of λ for the out-of-sample experiments: λ = 0,
λ = 5, λ = 10, λ = 15, λ = 20, λ = 25, λ = 30, λ = 35 and λ = 107.


Concerning the coherent variant, we tested the models for values of param-
eter π ∈ [0, 1], by then selecting suitable values of π on the basis of portfolio
composition, risk and return. We selected the following values: π = 0 and π = 1
as extreme values, and π = 0.25, π = 0.5 and π = π∗


α as intermediate values.
Remember that π∗


α is the value of parameter π that enables to establish an
interesting relation between the coherent variant of the norm-portfolio models
and the CV aRα model (see 4.2.1).


5.1.2 The out-of-sample analysis


We compared the || · ||∞-model and its coherent variant to the entropic model,
the CV aRα model (by setting the confidence level α = 0.9) and Tütüncü-Koenig
model. Concerning Tütüncü-Koenig model, we studied the variant of model (6)
where the uncertainty involves only the covariance matrix, and QU is assumed
to be a positive semidefinite matrix. This leads to the following formulation:


min xTQUx


s.t. µTx ≥ R


x ∈ X.


(45)


The lower bound R in constraint µTx ≥ R has been calculated as the mean
value of vector µ. In addition, since parameter R is the minimum return that
the investor would be willing to receive, in order to model a realistic behaviour


22







we always chose a non-negative value for R. This setting of R is common to all
implemented models.


The upper bound matrix QU has been generated through a method based on
quantiles like in (Tütüncü and Koenig 2004), by considering moving windows of
four years and computing the covariance matrix in each such window. Starting
with the generated covariance matrices we then computed the 95 percentile of
each element, and defined the matrix Q̃ that contains all such 95 percentiles.
By construction, Q̃ is an upper bound of Q (Q corresponds in fact to the 50
percentile). However, nothing assures that Q̃ is a positive semidefinite (and
hence a covariance) matrix. When this property does not hold, we thus solved
the following subproblem that allows us to compute a covariance matrix “near”
Q̃, which bounds Q̃ from above. Given the n× n matrix Q̃, the formulation of
the subproblem is the following:


min
n


∑


i=1


n
∑


j=1


qUij


s.t. QU � 0 (46)


qUij ≥ q̃ij i = 1, . . . , n j = 1, . . . , n.


Problem (46) is a semidefinite programming problem that has been implemented
in a MatLab 7.7 environment (R2008b) and solved under the Yalmip toolbox.


Concerning the soft robust approach, we studied the model that minimizes
the entropic risk measure subject to the lower limit R on the expected return.
The considered penalty function is thus the φ-divergence at level γ = 1 4, i.e.:


ψ(q) = logEp


[


φ


(


dq


dp


)]


,


where p denotes the reference probability. The loss function we used to define
the entropic risk measure is −r̃Tx (r̃ denotes the random return vector), the
same we used in the norm-portfolio models and in the CVaR optimization model.
Based on the equivalence (17), the investigated entropic model is therefore:


min
c,x


c δ + (c+ 1)log


[


Ep


(


e
−r̃T x
c+1


)]


s.t. µTx ≥ R (47)


x ∈ X


c ≥ 0


where δ = log
(


1
α


)


(Ben Tal et al. 2009). (47) is a convex programming problem
whose variables are c and x. As suggested in Ben Tal et al. (2009), we solved
it by performing a binary search on c, by using the MatLab system cvx 6.1 for


4The choice of γ reflects the degree of the investor’s risk-aversion. As observed in Ben-Tal
et al. (2009), γ could be interpreted as the reciprocal of the risk tolerance for a CARA utility.
A low value of γ thus corresponds to a high risk aversion.
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convex optimization at each step of the binary search. As a result we determined
an approximated value of c that minimizes the entropic objective function, then
recovering the optimum portfolio x.


We performed the so-called out-of-sample analysis to compare the alterna-
tive robust strategies. For each data set, we divided the entire data sequence
into 1-year investment periods via a moving window procedure and, for each
investment period, we computed the optimum portfolios via the CVaR model,
Tütüncü-Koenig model and the entropic model, as well as via the || · ||∞-model
and its coherent variant (by using the values of the parameters chosen during
the in-sample analysis). We then computed the “realized” return and variance
of the portfolios generated in period t with the sample data available at t + 1.
As an example, by considering the first data set, we took the 12 monthly re-
turns from January 1979 to December 1979 as the initial historical data for
generating the first pool of portfolios (according to the robust strategies un-
der investigation). We then calculated return and variance of those portfolios
by observing the historical returns of the following month, i.e. January 1980.
We then moved forth a month and considered the second investment period,
from February 1979 to January 1980. We observed the historical returns corre-
sponding to February 1980 and calculated return and variance of the portfolios
generated, by repeating the procedure until the end of the data set is reached.


At the end of this process we thus generated N−T portfolios for each inves-
tigated robust strategy, where N denotes the total numbers of monthly samples
in the considered data set, while T = 12 is the length of each investment period
(expressed in months). We then evaluated the out-of-sample performance of
each model according to the following statistics: mean-realized return, variance
and Sharpe Ratio, and portfolio turnover. More formally, let xt denote the port-
folio generated at period t (according to a certain robust strategy). Then its
realized return at time t + 1 is r̂t+1 = xTt rt+1, where rt+1 denotes the histor-
ical returns at time t + 1. After collecting the N − T realized returns r̂t, we
evaluated the out-of-sample mean µ̂, the out-of-sample variance σ̂2, the out-of-
sample Sharpe Ratio ŜR and the portfolio turnover, according to the following
definitions (DeMiguel and Nogales 2009):


µ̂ =
1


N − T


N−1
∑


t=T


xTt rt+1


(σ̂)2 =
1


N − T − 1


N−1
∑


t=T


(xtrt+1 − µ̂)2


ŜR =
µ̂


σ̂


Turnover =
1


N − T − 1


N−1
∑


t=T


n
∑


j=1


|xj,t+1 − xj,t|


where xj,t+1 and xj,t indicate the portfolio weight of asset j at time t + 1 and
time t, respectively.
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The out-of-sample mean is the mean of the realized returns in the consid-
ered investment periods, while the out-of-sample variance is a measure of the
variation of the realized returns with respect to the out-of-sample mean. The
out-of-sample Sharpe Ratio thus estimates the mean realized return per unit
of risk. Finally, the portfolio turnover is a measure of the portfolio fluctuation
over time. Therefore, it can indirectly estimate the magnitude of the transaction
costs associated with the investigated robust strategies.


Before presenting the results of the out-of-sample analysis in detail, we spec-
ify that all tested Linear Programming models, i.e. the ||·||∞-model, its coherent
variants and the CVaR model (12), have been implemented using Tomlab/Cplex
v11.2 within MatLab 7.7 (R2008b).


5.2 The first computational test


In the first experiment we used the universe of 5 asset classes in (Tütüncü
and Koenig 2004): large and small cap growth stocks, large and small cap
value stocks and fixed income securities. Each class is represented through the
monthly log-return time series (in percentages) of corresponding market indices
(Russel 1000 growth, Russell 1000 value, Russell 2000 growth, Russell 2000 value
and Lehman Brothers U.S. Governement/Credit Bond) from January 1979 to
July 2002, i.e. a total of N = 283 months.


Firstly we applied the in-sample analysis to the norm-portfolio models. Con-
cerning the || · ||∞-model we observed that, when λ increases, there is a slight
increase of the realized return, but also severe drops in some cases. Concern-
ing the coherent variant, in some cases there were more fluctuations when π
increases, in contrast to the theoretical behaviour of this kind of models. These
observations are confirmed by the statistics reported below.


|| · ||∞-model Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover


λ = 0 0.8951 6.8783 0.3413 0.3649
λ = 5 0.9582 5.8995 0.3945 0.3440
λ = 20 1.0501 10.4485 0.3249 0.3854
λ = 107 1.2134 29.6181 0.2230 0.4831


Table 1: Out-of-sample mean, variance, Sharpe Ratio and portfolio turnover.


Table 1 reports the out-of-sample mean, variance and Sharpe Ratio and the
portfolio turnover related to the || · ||∞-model. Observe that the out-of-sample
variance degrades significantly when λ increases. On the other hand, the out-
of-sample mean increases, but in a less significant way. As a consequence, the
Sharpe Ratio tends to decrease when λ increases. Concerning the turnover, it
tends to increase when λ increases. This trend is in accordance to the theoretical
results. The best results are obtained for small values of λ (i.e. for more robust
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scenarios). For example, the case λ = 5 is the best one in terms of both out-
of-sample Sharpe Ratio and portfolio turnover. λ = 5 is thus the choice which
produced the highest mean realized return per unit of risk, and which is the
least expensive in terms of magnitude of the (indirectly addressed) transaction
costs.


Coherent variant Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover


π = 0.25 0.9835 6.1545 0.3964 0.3207
π = 0.5 0.9240 6.2106 0.3708 0.3384
π∗
α = 0.92 0.8951 6.8783 0.3413 0.3649
π = 1 0.8951 6.8783 0.3413 0.3649


Table 2: Out-of-sample mean, variance, Sharpe Ratio and portfolio turnover.


Concerning the coherent variant, the values of the statistics changed in a
less significant way with respect to the || · ||∞-model. In addition, in contrast
to the || · ||∞-strategy, the empirical behaviour of the coherent variant does not
seem to confirm the theoretical expectation in terms of robustness. Table 2
shows in fact that the best behaviour is achieved for π = 0.25 both in terms
of out-of-sample Sharpe Ratio and portfolio turnover. That is to say, the less
robust scenario produced the best out-of-sample results. Observe also that the
cases π = π∗ and π = 1 show an identical behaviour.


We then compared the best norm-portfolio models, (i.e. the scenarios λ = 5
and π = 0.25) to the other robust selection strategies. Table 3 provides the
out-of-sample results for all considered models. It also provides the average
computational time (in seconds) required to compute the optimum portfolio
according to each strategy. The robust strategies based on convex risk measures


Models Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover Time


|| · ||∞-model (λ = 5) 0.9582 5.8995 0.3945 0.3440 0.0235
coherent variant
(π = 0.25)


0.9835 6.1545 0.3964 0.3207 0.0626


CVaR 0.8797 6.7174 0.3394 0.3415 0.1953
Tütüncü-Koenig 0.9358 7.8912 0.3331 0.3116 0.1328
entropic 1.7223 1.2034 1.5700 0.4495 91.1330


Table 3: Out-of-sample mean, variance, Sharpe Ratio, portfolio turnover and
computational time for all models chosen.


outperformed the more classical robustness incorporated by Tütüncü-Koenig
model in terms of out-of-sample Sharpe Ratio. On the other hand, Tütüncü-
Koenig model produced a sligthly less portfolio turnover. The main result for the
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first data set is thus that, by relaxing the robustness constraints in a flexible way
via convex risk measures, one can potentially gain out-of-sample performance
for not too high of a price in terms of portfolio variability.


More in detail, the entropic model proved to be the best model in terms of
both out-of-sample mean and variance and, as a consequence, in terms of out-of-
sample Sharpe Ratio. However, it was the most expensive in terms of turnover
and hence, indirectly, in terms of transaction costs. Also the computational time
required by this strategy is very high compared to the other robust strategies.


The || · ||∞-model and its coherent variant showed a quite similar behaviour,
and they outperformed the CVaR model. It is interesting to observe that these
models classified as ”average” models for all the addressed statistics (by exclud-
ing the computational time, where they dominated), by showing that ”simple”
penalty functions such as the ones incorporated by the norm-portfolio models
may improve the empirical Sharpe Ratio of classical robust approaches such as
Tütüncü-Koenig’s one and the one of CVaR, sometimes at a sligthly larger cost
(expressed in terms of turnover). However, on the first data set, they proved
to be not strong enough in terms of out-of-sample performance when compared
to models based on more sophisticated penalty functions, such as the entropic
model, although they are significantly less costly.


5.3 The second computational test


In the second experiment we used the wider set of market indices in Tütüncü
and Koenig (2004): growth and value stocks in large-cap, mid and small-cap
categories, intermediate term fixed-income securities, international stocks, real
estate securities and high-yield corporate bonds. Each category is represented
by Wilshire Target indices, Lehman Brothers Intermediate Government/Credit
index, MSCI EAFE (Europe, Australasia, Far East) index, Wilshire Real Estate
Securities index and Lehman Brothers High-Yield Bond index, from July 1983
to July 2002, i.e. a total of N = 229 months.


Tables 4 and 5 report the out-of-sample statistics for the || · ||∞-model and
of its coherent variant.


|| · ||∞-model Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover


λ = 0 0.9250 4.6469 0.4291 0.4028
λ = 5 1.0492 6.6965 0.4054 0.4351
λ = 20 1.2324 12.0267 0.3554 0.5136
λ = 107 1.5798 25.3376 0.3138 0.4815


Table 4: Out-of-sample mean, variance, Sharpe Ratio and portfolio turnover.


Also in this experiment the out-of-sample variance degrades significantly
when λ increases, whereas the out-of-sample mean increases. The out-of-sample


27







Sharpe Ratio strictly decreases. The scenario λ = 0 thus shows the best perfor-
mance in terms of mean realized return per unit of risk, at the lowest cost when
expressed in terms of portfolio turnover.


Coherent variant Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover


π = 0.25 0.9745 5.5252 0.4146 0.4632
π = 0.5 0.8910 4.4600 0.4219 0.4360
π = π∗


α = 0.92 0.9250 4.6469 0.4291 0.4328
π = 1 0.9250 4.6469 0.4291 0.4328


Table 5: Out-of-sample mean, variance, Sharpe Ratio and portfolio turnover.


As before, the out-of-sample statistics of the coherent variant do not change
in a significant way when π increases. However, in contrast to the first compu-
tational test, in this case the theoretical expectation in terms of robustness is
confirmed by the empirical results. In fact, when π increases the model appears
to be more robust as expressed by non decreasing Sharpe Ratios. In addition,
when π increases the model appears to be less expensive in terms of portfolio
turnover and hence in terms of transaction costs.


Now let us compare the alternative robust selection strategies in Table 6 (the
scenarios λ = 0 and π = π∗ are reported for the norm-portfolio models). Also in
this experiment the entropic model showed the best out-of-sample Sharpe Ratio
but the highest cost in terms of portfolio turnover and computational time. In
addition, Tütüncü-Koenig model proved to be better than the || · ||∞-model, its
coherent variant and CVaR in terms of both out-of-sample Sharpe Ratio and
turnover. Again, the || · ||∞-model and its coherent variant outperformed the
CVaR model, and proved to be very efficient in terms of computational time.


Models Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover Time


|| · ||∞-model (λ =
0)


0.9250 4.6469 0.4291 0.4028 0.0469


coherent variant
(π∗
α = 0.92)


0.9250 4.6469 0.4291 0.4328 0.0156


CVaR 0.9085 4.6196 0.4227 0.4621 0.0156
Tütüncü-Koenig 0.9317 2.5412 0.5844 0.3924 0.1875
entropic 1.9583 1.6420 1.5282 0.4827 106.9952


Table 6: Out-of-sample mean, variance, Sharpe Ratio, portfolio turnover and
computational time.


In conclusion, in the second data set the classical robustness incorporated by
Tütüncü-Koenig model showed a better performance than the relaxed one in-
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corporated by the ||·||∞-model and its coherent variant. These models, however,
behaved better than CVaR. Also in this experiment the entropic model showed
the best out-of-sample performance but, as before, this has been achieved at the
highest empirical cost, expressed in terms of portfolio turnover, and at the high-
est computational cost, expressed in terms of average time required to compute
a robust portfolio.


5.4 The third computational test


The data of the last experiment are used in Byrne (2004). They represent
the total monthly returns of nine market segment indices: Standard Retail
Southeast (SRSE), Standard Retail Rest of UK (SRRUK), Shopping Centres
(SHC), Retail Warehouse (RW), Offices in the City of London (OCITY), Offices
in the West End (OWE), Offices Rest of Southeast (ORSE), Offices Rest of UK
(ORUK) and Industrials Southern and Eastern (ISE), from December 1987 to
January 2002, i.e. a total of N = 181 monthly returns.


The computational results related to the ||·||∞-model and its coherent variant
are reported in Tables 7 and 8, respectively.


|| · ||∞-model Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover


λ = 0 17.4711 103.1393 1.7203 0.1482
λ = 5 17.7795 108.2132 1.7091 0.1364
λ = 10 17.7975 110.275 1.6948 0.1443
λ = 25 17.972 116.1047 1.6679 0.1424
λ = 107 17.8479 126.9886 1.5838 0.1190


Table 7: Out-of-sample mean, variance, Sharpe Ratio and portfolio turnover.


In this experiment the values of the statistics did not vary in a significant
way when λ (for the first model) and π (for the latter one) increases, even if the
scenarios λ = 0 and π = π∗


α = 0.92 slightly outperformed. Both models thus
showed a greater stability with respect to their parameter variations. Table
9 summarizes the comparison among the investigated robust strategies in the
third data set.


Coherent vari-
ant


Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover


π = 0.25 17.6732 108.5106 1.6997 0.1332
π = 0.5 17.5536 106.6609 1.5193 0.1518
π = π∗


α = 0.92 17.4706 103.1427 1.7202 0.1482
π = 1 17.4708 103.1414 1.7203 0.1489


Table 8: Out-of-sample mean, variance, Sharpe Ratio and portfolio turnover.
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Models Mean
(µ̂)


Variance
(σ̂2)


Sharpe
Ratio
(ŜR)


Turnover Time


|| · ||∞-model (λ = 0) 17.4711 103.1393 1.7203 0.1482 0.025
coherent variant
(π∗
α = 0.92)


17.4706 103.1427 1.7202 0.1482 0.0258


CVaR 17.5269 104.3457 1.7158 0.1590 0.0257
Tütüncü-Koenig 11.1195 61.0785 1.4228 0.4472 0.1915
entropic 19.8666 124.1378 1.7831 0.1191 617.1563


Table 9: Out-of-sample mean, variance, Sharpe Ratio, portfolio turnover and
computational time.


In this experiment Tütüncü-Koenig model showed the worst performance in
terms of almost all criteria (with the exception of the out-of-sample variance).
Again, the || · ||∞-model and its coherent variant outperformed CVaR for almost
all statistics. In addition, also in this experiment the entropic model showed a
better behaviour in terms of out-of-sample mean, Sharpe Ratio and turnover,
and this was achieved at a very large computational cost. However, in this
setting the norm-models and the entropic model showed a more similar behavior
(at a very short computational time by considering the norm-portfolio models).
In order to better understand similarities and dissimilarities of these two classes
of relaxed models, we then plotted the historical trajectories of the generated
optimum portfolio values in Figure 1.


According to the statistics in Table 9, the classical robust strategy incorpo-
rated by Tütüncü-Koenig model appears to be clearly inferior than the other
robust strategies. Moreover, the curves of the || · ||∞-model, its coherent variant
and CVaR are quite close; in most cases, in fact, the three trajectories overlap.


More interesting, by comparing the performance of the || · ||∞-model and
the entropic model, we can note that, with the exception of few cases where
the models generated approximately the same portfolio value (such as at times
t = 43, t = 104, t = 153), there was not a clear superiority of one model
with respect to the other one in terms of portfolio value. For example, in the
period from t = 13 to t = 43 the entropic model produced the highest values of
the portfolio, while from t = 108 to t = 126 there was an opposite behaviour,
since the || · ||∞-model outperformed the entropic one in terms of portfolio value.
Further observe the highest final portfolio value generated by the ||·||∞-strategy
with respect to the one generated by the entropic strategy.


In concluding, the experimental results on the last data set showed that
the relaxed robustness incorporated by the || · ||∞-model, its coherent variant
and the entropic approach outperformed the classical robustness incorporated
by Tütüncü-Koenig model not only in terms of portfolio value, but also in
terms of costs. In fact, Tütüncü-Koenig model showed the worst performance
at the highest cost in terms of portfolio turnover. Concerning the performance
of the entropic model and of the || · ||∞-model, we can conclude that no clear
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Figure 1: Comparison among the chosen models
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superiority can be established for this data set; the entropic model produced in
fact a sligthly better result in terms of Out-of-sample mean, Sharpe Ratio and
turnover, but the analysis of the portfolio value trajectories revealed superiods
where the || · ||∞-model outperformed the entropic one. In addition, if we focus
on a long term investment strategy, it is interesting to note that the ||·||∞-model
produced the best final portfolio value at the very lowest computational cost.


6 Conclusions


This paper provides the first attempt at comparing robust strategies of different
kinds (i.e. standard robust models based on uncertainty sets versus relaxed
robust models based on convex risk measures) in the framework of portfolio
asset allocation. In the previous experiments, in fact, the objective was to
contrast the performance of some classical portfolio selection strategies (usually
the mean-variance and the minimum-variance approaches) with some specific
robust selection strategies. Only in a few cases different robust methods of the
same kind were compared. In addition, a new family of robust models has been
proposed, which in some experiments proved to produce good results at a very
low computational cost.


The main outcome of our experiments is that a relaxed robustness, such as
the one incorporated by the || · ||∞-model, by its coherent variant and by the
entropic approach, clearly outperforms the classical robustness incorporated by
Tütüncü-Koenig model in terms of portfolio value. Among the relaxed robust
approaches, the soft robust strategy incorporated by the entropic model always
dominated in terms of out-of-sample mean portfolio value and variance, i.e. fluc-
tuation over time. The entropic model thus classified as the most robust model
in our experiments. However, this was generally achieved at the expenses of a
greater portfolio variability, expressed in terms of turnover, and at a very large
computational cost. The norm portfolio models, which always dominated the
CVaR approach, in some cases showed an intermediate behavior, by producing
good portfolio values and showing a small portfolio variability at the lowest
computational cost.


Clearly, additional robust strategies have been proposed in the literature
which would deserve investigation, and certainly we plan to enlarge the com-
putational analysis to other strategies and other data sets. However, in our
opinion, this computational investigation has the merit to have established some
useful guidelines for further computational experiments, since it provides some
preliminary indications on the relative empirical efficiency of robust selection
strategies of different kind on different types of real market data.
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Appendix


Proof. ( Theorem 10) Let us consider the inner problem


sup−rTx− λ||p− q||m


s.t. r =


N
∑


i=1


riqi


N
∑


i=1


qi = 1


qi ≥ 0, i = 1, . . . , N.


(48)


and introduce an auxiliary variable z in order to bound the D-norm from above.
We can then state the following equivalent formulation:


sup −


N
∑


i=1


qir
T
i x− λz


s.t. ‖p− q‖m ≤ z


N
∑


i=1


qi = 1


qi ≥ 0 i = 1, . . .N.


(49)


We can replace the sup operator by the max operator since the supremum of
a linear function on a closed and bounded set is always attained. Then, by
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exploiting the definition of D-norm, we get the following formulation:


max−
N


∑


i=1


qir
T
i x− λz


s.t. max
S⊆{1,...,N}
|S|≤m


{


∑


i∈S


|pi − qi|


}


≤ z


N
∑


i=1


qi = 1


qi ≥ 0 i = 1, . . . , N.


(50)


By introducing additional auxiliary variables ϕi in order to model the absolute
values |pi − qi|, then we have:


max −
N


∑


i=1


qir
T
i x− λz


s.t. max
S⊆{1,...,N}
|S|≤m


∑


i∈S


ϕi ≤ z


pi − qi ≤ ϕi, i = 1, . . . , N


−(pi − qi) ≤ ϕi, i = 1, . . . , N


N
∑


i=1


qi = 1


qi ≥ 0 i = 1, . . . , N.


(51)


The constraint
max


S⊆{1,...,N}
|S|≤m


∑


i∈S


ϕi ≤ z (52)


includes the second inner problem of the given formulation in its left-hand side.
By interpreting {ϕi} as constant values, i = 1, . . . , N , then the second inner
problem can be formulated as the following knapsack problem:


max


N
∑


i=1


ϕiyi


s.t.
N


∑


i=1


yi ≤ m


yi ∈ {0, 1} , i = 1, . . . , N


(53)
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Let us consider the linear relaxation of problem (53):


max


N
∑


i=1


ϕiyi


s.t.


N
∑


i=1


yi ≤ m → (π) (54)


yi ≤ 1 i = 1, . . . , N → (πi)


yi ≥ 0 i = 1, . . . , N.


In such a special knapsack problem, the linear relaxation provides the op-
timum objective function value of (53). Since the feasible set of the linear
relaxation is bounded and not empty, from strong duality we can replace the
linear relaxation by its dual:


min m · π +


N
∑


i=1


πi


s.t. π + πi ≥ ϕi i = 1, . . . , N


π, πi ≥ 0 i = 1, . . . , N.


Therefore, the inner problem can be equivalently rewritten as :


max −
N


∑


i=1


qir
T
i x− λz


s.t. mπ +


N
∑


i=1


πi − z ≤ 0 → (δ)


− π − πi + ϕi ≤ 0, i = 1, . . . , N → (vi)


π ≥ 0, πi ≥ 0, i = 1, . . . , N (55)


−qi − ϕi ≤ −pi, i = 1, . . . , N → (w+
i )


qi − ϕi ≤ pi, i = 1, . . . , N → (w−
i )


N
∑


i=1


qi = 1 → (u)


qi ≥ 0, i = 1, . . . , N


where the variables are (qi, z, π, πi, ϕi).
By replacing the inner problem (55), which is not empty and whose objec-


tive function is bounded from above, by its dual, we get a linear programming
formulation.


Proof. (Theorem 11) Let us consider the inner problem where, as standard,
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variables xi are treated as constant values:


sup −


N
∑


i=1


qiri
Tx− λ ‖p− q‖2


s.t.


N
∑


i=1


qi = 1


qi ≥ 0, i = 1, . . . , N.


By introducing an auxiliary variable z, the problem is equivalent to:


sup −


N
∑


i=1


qiri
Tx− λz


s.t.


N
∑


i=1


qi = 1


qi ≥ 0, i = 1, . . . , N


‖p− q‖2 ≤ z.


Let us replace the sup operator by the max operator, and set y = p − q.
In this way, we can substitute q = p − y within the formulation. Then, since
pi = 1


N
for each i, we obtain:


max −


N
∑


i=1


(
1


N
− yi)ri


Tx− λz


s.t.
N


∑


i=1


(


1


N
− yi


)


= 1


1


N
− yi ≥ 0, i = 1, . . . , N


‖y‖2 ≤ z.


The last expression is equivalent to state (z, y) ∈ Cq where, according to the
notation in (Cornuejols and Tütüncü 2007), Cq denotes a second order cone.


By introducing additional auxiliary variables si we get:


−
1


N


N
∑


i=1


rTi x + max


N
∑


i=1


yir
T
i x− λz


s.t.


N
∑


i=1


yi = 0 → (w0)


yi + si =
1


N
i = 1, . . . , N → (wi)


‖y‖2 ≤ z (≡ (z, y) ∈ Cq)


si ≥ 0 i = 1, . . . , N (≡ s ∈ Cl non− negative orthant)
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Since the problem is feasible (y = 0, z = 0, si = 1
N


∀i is in fact a feasible
solution), from the Conic duality theorem (Ben-Tal and Nemironski 2001) the
optimum objective function value is equal to the one of its dual problem:


−
1


N


N
∑


i=1


rTi x + min
1


N


N
∑


i=1


wi


0 ≥
C∗


q


−λ


s.t. w0 + wi ≥
C∗


q


rTi x i = 1, . . . , N


wi ≥
C∗


l


0 i = 1, . . . , N,


where C∗
q and C∗


l denote the dual cones of Cq and Cl, respectively (Ben-Tal and
Nemironski 2001).


Since the dual cone of a second order cone is a second order cone, then the
first two groups of constraints (i.e. the ones related to the dual cone C∗


q ) can
be equivalently rewritten as:


∥


∥(w0 + w1 − rT1 x), . . . , (w0 + wN − rTNx)
∥


∥


2
≤ λ.


Moreover, since the dual cone of the non-negative orthant is the non-negative
orthant, constraints wi ≥


C∗


l


0, i = 1, . . . , N are equivalent to wi ≥ 0, i = 1, . . . , N .


The overall model is then equivalent to:


min ζ


s.t.−
1


N


N
∑


i=1


rTi x +
1


N


N
∑


i=1


wi ≤ ζ


∥


∥(w0 + w1 − rT1 x), . . . , (w0 + wN − rTNx)
∥


∥


2
≤ λ


wi ≥ 0 i = 1, . . . , N


µTx ≥ R, x ∈ X.


which is a SOCP model.
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