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March 4, 2010

Abstract

A generalization of the robust network design problem with oblivious routing is
investigated in [6], where the (uncertain) demands are served through two alternative
routing templates. As indicated in [6], it is an open issue as to whether the proposed
problem, called (2 − RND), is polynomially solvable or is NP-Hard. In this note we
solve the issue by proving that (2 − RND), as well as some generalizations, are NP-
Hard. The hardness result holds true also when some routing templates are given as
input data. This strengthens the results in [6], where special (2 − RND) cases are
devised which are tractable from a computational perspective.
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Introduction

Let G = (V,E) be a directed network, with |V | = n and |E| = m. Let K be a set of k
origin-destination pairs, and cij denote the non-negative cost of installing a unit of capacity
along (i, j), ∀(i, j) ∈ E. Let D be a bounded non empty polyhedron which describes the
uncertain, non simultaneous, demands between the given origin-destination pairs.

The robust network design problem on G (RND) consists of determining a capacity allo-
cation for the arcs of G, and choosing a routing for the origin-destination pairs, in such a
way as to satisfy each demand in D at a minimum allocation cost. In the case of oblivious
routing (RND) is polynomially solvable [1],[3]. The routing is said to be oblivious when the
same routing template is used for each traffic demand in D. More precisely, the routing
specifies a unit flow for each origin-destination pair (s, t): if the demand dst needs to be
routed, then it is routed by simply scaling up the unit flow by dst. Formally, let y denote a
vector of routing variables, and yst

ij be the fraction of the demand of (s, t) to be routed along
the arc (i, j). Then y: E ×K → [0, 1] is a routing template if it satisfies the following flow
conservation constraints ∀ i ∈ V, (s, t) ∈ K:

∑
(j,i)∈BS(i)

yst
ji −

∑
(i,j)∈FS(i)

yst
ij = φst

i =


−1 if i = s,

1 if i = t,
0 otherwise.
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Equivalently, we can state Hyst = φst,∀(s, t) ∈ K, where H is the node-arc incidence matrix
of G and φst is the vector whose components are φst

i .
Let x be a vector of design variables such that xij denotes the amount of capacity to

be allocated to the arc (i, j). The robust network design problem with oblivious routing
can then be formulated according to the following semi-infinite mathematical programming
model:

min
∑

(i,j)∈E

cijxij

Hyst = φst (s, t) ∈ K∑
(s,t)∈K

dsty
st
ij ≤ xij (i, j) ∈ E, d ∈ D

xij ≥ 0 (i, j) ∈ E
0 ≤ yst

ij ≤ 1 (i, j) ∈ E, (s, t) ∈ K

The above formulation is equivalent to:

min
∑

(i,j)∈E

cijxij

Hyst = φst (s, t) ∈ K

max{
∑

(s,t)∈K

dsty
st
ij : d ∈ D} ≤ xij (i, j) ∈ E

xij ≥ 0 (i, j) ∈ E
0 ≤ yst

ij ≤ 1 (i, j) ∈ E, (s, t) ∈ K

By interpreting the {yst
ij} as constant values, by strong duality, it is thus possible to substitute

each inner Linear Programming (LP) problem with its dual, thus obtaining a compact LP
formulation for the robust network design problem with oblivious routing [1]. See [3] and
[4] for special cases studied in the literature, which are based on special classes of demand
polyhedra.

While the assumption of oblivious routing leads to a tractable robust counterpart, ac-
cording to the compact LP formulation above, the problem of determining the minimum
cost capacity installation for G when each demand d ∈ D can be served by a different rout-
ing template, i.e., the so-called robust network design problem with dynamic routing, is also
coNP-Hard in the special case of the single-source Hose model [2].

Intermediate scenarios have been studied in [6], where the following generalization of the
robust network design problem with oblivious routing has been addressed: given G, K and
D, determine the minimum cost capacity installation for G in the case where the demands
in D can be served by two (alternative) routing templates. Precisely, find a minimum cost
capacity installation x, and find two routing templates, say y1 and y2, in such a way that
each demand d ∈ D can be served either by y1 or by y2 (or possibly by both) by respecting
the capacity constraints defined by x. This problem, referred to as the robust network design
problem with two routing templates, or for short (2 − RND), can be generalized to the
case where a constant (or a polynomial) number of alternative routing templates can be
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used to satisfy the demands in D. Thus, a hierarchy of robust network design problems
is defined, with the oblivious routing case (polynomially solvable) at the bottom, and the
dynamic routing case (coNP-Hard) at the top. Special (2−RND) cases have been devised
in [6], which are tractable from a computational perspective, and whose routing solutions
can be less expensive (in terms of the cost of the required capacity allocation) than the
optimal oblivious routing solution. However, it is outlined that it is an open issue as to
whether problem (2−RND), as well as its generalizations, are polynomially solvable or are
NP-Hard. Time complexity issues concerning these problems are the subject of this paper.
We prove in fact that (2 − RND) and its generalizations are NP-Hard. This is true also
when some routing templates are given as input data, and when only a subset of D has
to be routed. The obtained results thus strengthen the outcomes in [6], concerning special
(2−RND) cases which are tractable from a computational perspective.

The rest of the note is organized as follows. In Section 1 we prove that (2 − RND),
in its decisional version, is NP-complete by reduction from the Partition problem. The
reduction shows that the hardness statement is also true when some components of the
routing templates y1 and y2, related to some origin-destination pairs, are given as input
data, and when only a subset of D is required to be routed. As a consequence of the
main result, also the problem generalizations where a constant (or a polynomial) number of
alternative routing templates can be used to satisfy the demands in D are NP-Hard. Section
2 presents conclusions and suggestions for future research.

1. Hardness of (2−RND)

Let us start with some preliminary observations, which shed light on the hardness of (2 −
RND) and of its generalizations.

Let Y denote the polyhedron of the routing templates related to G and K. In addition,
as stated before, let x be a vector of design variables such that xij denotes the amount of
capacity to be allocated to the arc (i, j). Given a routing template y ∈ Y and given a vector
of design variables x, we can define the subset of the demands of D which can served by y
by respecting the capacity constraints defined by x:

D(y, x) = {d ∈ D :
∑

(s,t)∈K

dsty
st
ij ≤ xij,∀(i, j) ∈ E}. (1)

Note that, for each given pair (y, x), D(y, x) is a polyhedron such that D(y, x) ⊆ D.
Based on definition (1), problem (2−RND) can be restated as follows: find a minimum

cost capacity installation x, and find two routing templates, say y1 and y2 in Y (possibly
y1 = y2), such that D(y1, x) ∪ D(y2, x) = D. Mathematically:

min
∑

(i,j)∈E

cijxij (2)

s.t. y1, y2 ∈ Y (3)

xij ≥ 0 ∀(i, j) ∈ E (4)

D(y1, x) ∪ D(y2, x) = D. (5)
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In the formulation above, the logical constraint D(y1, x)∪D(y2, x) = D is satisfied if and
only if D(y1, x) ∪ D(y2, x) is a convex set equal to D.

Now, consider the special case of (2 − RND) where y1 and y2 are given. That is,
assume that the alternative unit flows to be used to satisfy the demands of the origin-
destination pairs in K are given as an input data. It is possible to show that, also in this
special case, the set of vectors x which are feasible for (2 − RND), i.e. the set of vectors
x such that D(y1, x) ∪ D(y2, x) = D, may be not convex. This suggests that the problem
of verifying whether a certain capacity vector x is feasible for (2−RND) can be hard from
a computational perspective. As an example, consider an instance of (2 − RND) where
two alternative routing templates for an origin-destination pair (s, t) are given, which use
the arcs (i, j) and (u, v), where i, j, u and v are distinct nodes of the network. The first
routing template is such that the demand of (s, t) is evenly split between the two arcs, i.e.
y1st

ij = y1st
uv = 1/2. The latter routing template is such that y2st

ij = 1/4 while y2st
uv = 3/4.

Assume that each other origin-destination pair of the considered instance can not use either
(i, j) or (u, v) (for example, no path linking the other origin-destination pairs includes either
(i, j) or (u, v)). Let D be a polyhedron such that the only constraint involving the demand
of (s, t) is dst ≤ 4, and consider the two capacity vectors, say x1 and x2, which satisfy
x1

ij = x1
uv = 2, x2

ij = 1, x2
uv = 3, while x1

rw = x2
rw = M for each other arc (r, w) of

the given network, where M denotes a very high value. It is easy to show that both x1

and x2 are feasible capacity vectors for the considered instance of (2 − RND), that is,
D(y1, x1)∪D(y2, x1) = D and D(y1, x2)∪D(y2, x2) = D. In fact, x1 is feasible if the demand
of (s, t) is routed via the routing template y1, while x2 is feasible if the demand of (s, t)
is routed via the routing template y2. On the other hand, no proper convex combination
of x1 and x2 is a feasible capacity vector. In fact, each capacity vector x must satisfy the
disjunctive constraint (xij ≥ 2 and xuv ≥ 2) or (xij ≥ 1 and xuv ≥ 3), which is violated by
each proper convex combination.

Now we are ready to state the main result. We shall prove that (2 − RND), in its
decisional version, is NP-complete by reduction from the Partition problem [5], which can
be stated as follows: Given q positive integer coefficients ai, i = 1, . . . , q, is there a partition
of these coefficients into two subsets such that the sum of the coefficients in each subset isPq

i=1 ai

2
?

The decisional version of (2 − RND) can be formulated as follows: given a directed
network G, a set of origin-destination pairs K, a bounded non empty polyhedron D, and a
positive value C, are there a capacity installation x, and two routing templates, say y1 and
y2, such that each demand d ∈ D can be served either by y1 or by y2 (or possibly by both),
by respecting the capacity constraints defined by x, at a cost at most C? Specifically, we
shall address the special (2 − RND) case where some components of y1 and y2 are given,
and where only a subset of the demands in the polyhedron D needs to be routed.

Theorem 1.1 (2−RND), in its decisional version, is NP-complete.

Proof: Given an instance of the Partition problem, define an instance of (2−RND) as follows. Construct
the layered network Gq depicted in Figure 1. The instance of (2 − RND) defined on this layered network
has q + 2 origin-destination pairs: (si, ti), i = 1, . . . , q, plus the pairs (s, t) and (o, g). Consider the demand
polyhedron D defined as the convex envelope of the following q + 2 demand vectors: d1 = (a1, 0, 0, ...0, 0),
d2 = (0, a2, 0, ...0, 0), ..., dq = (0, 0, 0, ...aq, 0, 0), dq+1 = (0, 0, 0, ...

Pq
i=1 ai

2 , 0) and dq+2 = (0, 0, 0, ...0,
Pq

i=1 ai

2 ).
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Figure 1: Layered network Gq

Assume that the alternative routing templates are given for the first q origin-destination pairs. Specifi-
cally, the pair (si, ti) may use either the routing template (si, ui, wi, ti) (this path defines the routing template
y1siti) or (si, vi, zi, ti) (this path defines the routing template y2siti), i = 1, . . . , q. On the other hand, the
routing templates related to the pairs (s, t) and (o, g) have to be determined.

Let the capacity installation cost be 1 for each arc (ui, wi) and for each arc (vi, zi), i = 1, . . . , q, while it
is 0 for the other arcs, and assume that only the extreme points of D, i.e. d1, d2, ...., dq+2, have to be routed
along the layered network (as previously indicated, a special (2 − RND) instance is so defined). We shall
show that there exists a feasible solution for the constructed instance of (2−RND), having cost ≤

∑q
i=1 ai,

if and only if we can answer YES to the given instance of the Partition problem. Since this problem is
NP-complete, we will able to conclude that (2 − RND), in its decisional version, is NP-complete. Observe
that, in order to route the extreme points of the given polyhedron, the cost of installation is necessarily
≥

∑q
i=1 ai, due to the demands dq+1 and dq+2 and due to the topology of the network.

First assume that the given instance of the Partition problem is such that there exists a partition of
the coefficients into two subsets such that the sum of the coefficients in each subset is

Pq
i=1 ai

2 . Let P1 and
P2 denote the two subsets. Then, if ai belongs to P1, route the demand di using the routing template y1

(observe that this involves the only origin-destination pair (si, ti)); otherwise, route di using the routing
template y2. In addition, route the demands dq+1 and dq+2 in such a way as to exploit the capacity

Pq
i=1 ai

2
which has been installed on the two bipartite subgraphs of Gq induced by the nodes (ui, wi), i = 1, . . . , q,
and (vi, zi), i = 1, . . . , q. This choice guarantees an installation cost equal to

∑q
i=1 ai.

Now suppose that there exists a capacity vector x for the constructed layered network which is feasible
for routing d1, d2, ...., dq+2, and whose cost is exactly

∑q
i=1 ai (as observed before, the cost can not be

<
∑q

i=1 ai). This implies the existence of a partition of the subset of demands {d1, d2, ...., dq}, say D1 and
D2, such that the demands in D1 are routed by means of routing templates of type (si, ui, wi, ti), the ones
in D2 are routed by means of routing templates of type (si, vi, zi, ti), and such that the overall capacity
requirement for the demands in each subset of the partition is exactly

Pq
i=1 ai

2 . Otherwise, in fact, a capacity

greater than
Pq

i=1 ai

2 should be necessarily allocated either on the bipartite subgraph of Gq induced by the
nodes (ui, wi), i = 1, . . . , q, or on the bipartite subgraph induced by the nodes (vi, zi), i = 1, . . . , q, in order to
route some demand subset, say D1. In addition, a capacity equal to

Pq
i=1 ai

2 should be necessarily allocated
on the arcs of the subgraph used to route the demands in the latter subset, that is D2, in order to route
either the demand of (s, t) or the demand of (o, g). But that would require an overall capacity (and so, an
overall cost) strictly greater than

∑q
i=1 ai. Therefore, if we denote by P1 the subset of the coefficients ai

such that di belongs to D1, and by P2 the subset of the coefficients ai such that di belongs to D2, then the
partition (P1, P2) is such that the sum of the coefficients in each subset is

Pq
i=1 ai

2 . The thesis follows.

5



Corollary 1.1 (h − RND), that is the generalization of (2 − RND) where h alternative
routing templates can be used to satisfy the demands in D, is NP-Hard for h ≥ 2.

Corollary 1.2 (2 − RND) is NP-Hard also when some routing templates are given, and
when only a subset of the demands of the polyhedron D has to be routed.

2. Conclusions and future research

We have investigated the time complexity of (2 − RND), i.e. the robust network design
problem where the demands of a given polyhedron D can be routed through two alternative
routing templates. We have shown that the problem, in its decisional version, is NP-complete
by reduction from the Partition problem. This result applies also to the generalizations of
(2 − RND) where a constant number (greater than or equal to 2) of alternative routing
templates can be used to satisfy the demands in D. In addition, the problem has been
proved to be hard also when some routing templates are given as input data, and when only
some demands in D are required to be routed.

It is therefore a challenging topic of research to devise tractable approaches for special (2−
RND) cases, along the lines discussed in [6]. Moreover, we plan to perform a computational
study aimed at discovering cases where the routing solution provided by (special cases of)
(2 − RND) is less expensive than the optimal oblivious routing solution. This will be the
subject of further investigation.
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