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Abstract


Candle auctions have been used in the past as a variant of the English
auction with a random termination time associated either to the going
out of a candle or to the falling of a needle inserted in a random position
in a burning candle.
In this case such auctions are used by the auctioneer A for the allocation
of a good to one of the n bidders bi of the set B.
Our basic motivation for the use of this type of auctions is the following.
We are planning to use such auctions for the allocation of a chore ζ at
one bi from the set B whose members have been selected by A using a set
of private criteria that do not depend on the willingness to attend of the
single bidders.
The to be selected bidder has to be chosen from the set B given that the
available information about these bidders are imprecise or fuzzy. These
features prevent the profitable and direct selection of a suitable bidder
with the guarantee of choosing the best one.
For this reason we plan to adopt an auction mechanism ([3]) where the
bidders pay for not getting ζ but one of them has to get it though he also
receives a compensation for being the wining bidder.
The compensation to the winning bidder derives him form the other bid-
ders, the so called losing bidders, and is accumulated during the various
steps or rounds on which the auction is based.


1







Contents


1 The theoretical background 3


2 Some preliminary remarks 5


3 The basic ingredients 7


4 The fixed termination case 8


4.1 The basic steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 The possible collective and individual strategies . . . . . . . . . . 9


5 The variable termination case 13


5.1 The basic steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 The possible collective and individual strategies . . . . . . . . . . 15


6 Concluding remarks 16


References 18


2







1 The theoretical background


Auctions ([3], [4]) represent an allocation mechanism through which a re-
source (the so called auctioned item) is allocated to one actor from a set of
actors called bidders. In classical cases the auction mechanism is characterized
by the following features:


- the bidders attend the auction on a voluntary basis;


- the bidders attribute a positive value to the auctioned item so each of
them is willing to bid for getting it;


- the rules of the auction are well known and are common knowledge among
the bidders;


- the value that each bidder attributes to the auctioned item determines his
strategy of bidding.


When the auction is over the winning bidder gets the auctioned item and pays a
sum that depends on the structure of the auction. Ties among winning bidders
are resolved with the use of a properly designed random device.
An auction is characterized by an auctioneer (who auctions an item) and a set
of bidders (who submit bids) xi and are characterized by the evaluations mi.
The bids may be ([3, 4]):


- open cry if they are publicly visible;


- sealed if they are made privately and are revealed all at the same time;


- one shot if they are submitted only once;


- repeated if they are repeatedly submitted until a termination condition
is satisfied;


- ascending if they start low and then rise;


- descending if they start high and then decrease.


Classical auctions types include1:


- English auctions;


- Dutch auctions;


- First Price Sealed Bid (FPSB) auctions;


- Second Price Sealed Bid (SPSB) auctions.


1Other possible types of auctions are: all pay auctions, where all the bidders bid and
pay their own bids but only the highest bidding bidder wins the auction, and third price


auctions that are similar to a SPSB auction but for the fact that the paid price is the third
highest bid.
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In an English auction bids are open cry, repeated and ascending and the winner
is the highest bidding bidder who pays the sum he bid that is coincident to the
price at which the second last bidder dropped out.
In a Dutch auction bids are open cry and are offered by the auctioneer, repeated
and descending and the winner is the bidder who accepts the current value and
that pays such a value.
In an FPSB auction bids are sealed and one shot and the winner is the highest
bidding bidder who pays the sum he bid.
In an SPSB auction bids are sealed and one shot and the winner is the highest
bidding bidder who pays the the second highest bid.
The evaluations mi are the maximum sums each bidder is willing to pay to get
the auctioned item. Such evaluations may be:


- private if they are independent one from the others so that a reciprocal
knowledge would not change the individual values;


- interdependent if a reciprocal knowledge may change the individual val-
ues;


- common if the evaluations are ex-post the same among the bidders.


On the basis of such definitions we note that2:


- Dutch auctions ≡ FPSB auctions;


- under private values, English auctions ≡ SPSB auctions.


Given such equivalences we note that, [3]:


- in a SPSB auction it is a dominant strategy for a bidder to bid his own
evaluation of an item so that we have xi = mi for each bidder;


- if we assume a symmetric model (see further on) in a FPSB auction it
is a dominant strategy for a bidder to bid a little less δ > 0 than his
evaluation. Under the assumption that the evaluations of the bidders are
independent and uniformly distributed over the same interval tis δ tends
to zero as the number of the bidders increases.


All the types of auctions we have seen so far are characterized by a fixed termi-
nation rule that depends either on the structure of the auction (as it is in sealed
bid auctions) or on the actions of the bidders (as it is in open cry auctions).
On the other hand we may devise auction mechanisms that terminate indepen-
dently from the actions of the bidder in the sense that they are implemented
with an iterative multi step mechanism and at each step there is a non null
probability that the auction ends without the bidder may perform any bid.
These types of auction have been used as variants of the English auctions and
represent, at least in part, the subject of the present Technical Report (TR).
In the literature ([1]) they are seen as a counterpart of the so called hard close
auctions, those auctions that we formerly called classic auctions.


2With ≡ we denote a strategic equivalence. Two games are strategically equivalent,
[3], if for every strategy in a game a player has a strategy in the other game with the same
outcome.


4







2 Some preliminary remarks


In the present TR we propose an iterative mechanism that is characterized
by a certain number L of rounds.
The rounds are numbered as j = 0, 1, 2 . . . , L − 2, L − 1, L but only L are use-
ful rounds since at the L + 1−th the auction ends for sure without any bidder
having the possibility of performing any action. This is the main reason why
we speak in many cases of L ticks or times.
At each round j one of the n bidders bi ∈ B is randomly selected with a proba-
bility equal to π (see equation (1)) and can either accept or refuse (what this
means will be explained in section 3). The presence of this random selection is
enough to qualify the proposed mechanism as a purely probabilistic mechanism.
The auction goes on until a termination condition is verified and then it stops.
At the end of the auction the last accepting bidder is the winning bidder


whereas all the other bidders are the losing bidders (see section 3).
In the proposed mechanism we may introduce the following termination condi-
tions:


(a) the mechanism is executed a fixed number L of times3 for j =
0, 1, 2 . . . , L− 2, L− 1;


(b) the mechanism is executed L times but each time we have a non null
probability of a premature termination.


We call the case (a) a fixed termination mechanism whereas the mechanism
in the case (b) is termed a variable termination mechanism.
If we denote as pj the probability that the auction goes on at round j (and with
qj = 1− pj the corresponding probability of termination at round j) we have:


- in the case (a) we have pj = 1 for j ∈ [0, L− 1] and pL = 0;


- in the case (b) we have:


· p0 = 1,


· pL = 0,


· for j ∈ [1, L− 1] pj is monotonically non increasing.


The last condition allows us to define probabilities that are piecewise constant.
A typical case is the following4:


- for j ∈ [0, Lmin] we have pj = 1,


- for j ∈ [Lmin, L− 1] we have that pj is monotonically decreasing,


- pL = 0.


3We note that at t = L the auction ends without none of the bidders performing any action
so this last tick has a purely formal meaning.


4We note that Lmin < L− 1.
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In this case the auction has a minimum guaranteed duration that is common
knowledge among the bidders.
We underline that at each step where the auction does not terminate each bidder
is selected with a probability equal to:


π =
1


n
(1)


whereas the complementary probability of not being selected is:


π̄ = 1−
1


n
= 1− π (2)


Meaningful events in the case of fixed termination are the following:


(ev1) a bidder bi is never selected;


(ev2) a bidder bi is selected at least once;


(ev3) a bidder bi is selected at round h ∈ [0, L− 1] and afterwards he is no more
selected.


If we consider the various selections as independent events we can associate to
the foregoing events, in that order, the following probability values:


P (ev1) = (1− π)L = π̄L (3)


P (ev2) = 1− (1− π)L = 1− π̄L (4)


P (ev3) = π(1− π)L−h−1 = ππ̄L−h−1 (5)


Such events may occur also in the case of variable termination but the cor-
responding probabilities must be modified to account for the presence of the
values pj .
We note indeed that the probability that the auction lasts for L rounds (from
0 to L− 1) can be expressed as:


ΠL =


L−1∏


j=0


pj (6)


whereas the probability that it lasts for 0 < h < L− 1 rounds can be expressed
as:


Πh =


h−1∏


j=0


pj (7)


We underline how, from the definitions we have given for the values pj , the
probability that it lasts 1 round is equal to 1 and the probability that it lasts
L+ 1 rounds is equal to 0 since pL = 0.
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3 The basic ingredients


The basic ingredients of the proposed mechanism are therefore:


- an auctioneer A and a set B of n bidders bi, i = 1, . . . , n;


- every bidder bi has the following available individual strategies Si = {a, r}
of either acceptance or refusal;


- every bidder bi is characterized by the number ki of his refusals and the
number k


−i of the refusals of the other bidders, both to be initialized at
0 and one independent from the other5;


- an integer L > 0 and a counter t that starts at 0 and stops not later than
L;


- a fee f and a common pot P (initialized at P = 0) that is the compensation
for the winning bidder;


- a set of values pj for j ∈ [0, L] that are common knowledge among all the
bidders;


- a random number generator that generates (according to an uniform dis-
tribution) an integer in the interval [1, n] at each tick of the counter;


- a private value vi that represents the damage that each bidder receives
from the allocation of the chore.


From the foregoing list it should be clear why we call the last accepting bidder
as the winning bidder (so that the other bidders are termed losing bidders):
because he is the one who gets the pot P that is formed, for what concerns his
utility, by the payments of the others.
We note how both the value of L and the entity of the fee f play an important
role in the mechanism.
The auctioneer A is free to select f at his will and to select L from an interval
[Lmin, Lmax].
For what concerns f we note that:


- if it is fixed too low the bidders tend to refuse more often than they accept
but the content of the pot may rise too slowly to effectively compensating
the damage deriving from the allocation;


- if it is fixed too high the bidders tend to accept more often than they
refuse so that the content of the pot may rise too slowly to effectively
compensate the damage deriving from the allocation.


5The independence derives from the fact that ki depends on the behavior of bi whereas
k
−i depends on the behaviors of the other bidders.
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On the other hand the values Lmin and Lmax must be selected so that the value
L is neither too low nor too high.
If L is too low the probability that all the bidders refuse for the whole duration
of the auction is high. On the other hand it is meaningless to have L too high
so that at each step from one value of the counter on all the bidders accept.
In this case the pot is no more incremented and the auction is a mere waste of
time.
We make some more comments in sections 4.2 and 5.2.


4 The fixed termination case


4.1 The basic steps


In the case where the auction has a fixed termination time the rules of the
auctions are the following:


- we have an initialization phase where we put P = 0 and t = 0;


- at each tick t of the counter from 0 to L−1 a random integer i is generated
and a bidder bi is selected;


- the bidder bi can either accept or refuse;


- if he refuses he adds a fee f to the common pot so that P = P + f ,
t = t+ 1;


- if he accepts he qualifies as the current candle holder or cch, t = t+1;


- when the counter expires the cch wins the auction and gets both ζ and
the content of the common pot P .


The counter is incremented of one unit at each acceptance or refusal and runs
for L+ 1 ticks (from 0 to L) and at t = L it stops with no selection so that we
have only L useful ticks.
At the end of the auction (so when the counter expires) we can have two cases:


(o1) there is a cch that is the winner of the auction,


(o2) there is no cch so the auction is void.


In the case (o1) the cch gets ζ and P with a net utility of:


ui = k
−if − vi (8)


as the difference between the net gain that bi receives form P and the damage
he suffers from the allocation of ζ.
From relation (8) we can easily understand how the last cch may have also a
negative utility, depending on the value of the parameter k


−i in relation to the
values f and vi and so depending on the decisions of the other bidders.
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For what concerns the losing bidders bj 6= bi we note that each of them gets an
utility that can be expressed as:


uj = vj − kjf (9)


as the difference between the gain that bi has from the missed allocation of ζ
and the the sums he has paid for refusing the allocation of ζ.
From relation (9) we can easily understand how the losing bidders may have
also a negative utility, depending on the values of the parameters kj in relation
to the values f and vj . We note that ki depends only on the decisions of the
bidder bi and on the chances of being selected at each step.
The case (o2) can occur if all the bidders refuse at every tick from 0 to L.
In this case at the end of the auction we have P = Lf and the auctioneer can
use this sum to allocate the chore to a further player not included in the set B.
In section 4.2 we are going to show how, at least in the current fixed termination
case, this case can hardly ever occur in practice.


4.2 The possible collective and individual strategies


In the current case every bidder knows how long the auction is going to last
for sure and this feature is a common knowledge among the bidders.
What each bidder does not know for sure, before the end of the auction, is:


- if and when he can be selected,


- once selected, if and when he will be selected again.


We can express this fact by saying that the probability that the auction ends
at step h for a given bidder has a probability given by relation (5).
We recall indeed that the bidder bi can play his individual strategies Si only if
he is selected and this can occur, at every round, with a probability π. So if
a bidder is no more selected his auction has ended the last time he has been
selected (though he is sure of this only when the auction actually ends).
When a bidder is selected he can choose one of his available actions depending
on:


- the value of h;


- the value of ki;


- the value of k
−i;


- the value of vi.


At this point we start by examining some particular collective strategies and
then we examine the various possibilities that a bidder has at a generic round
h ∈ [0, L− 1].
For what concerns the collective strategies we want to verify if and under which
conditions the following collective strategies may be a Nash Equilibrium (NE,
[6], [5], [2]):
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(cs1) each bidder, upon a selection, always accepts;


(cs2) each bidder, upon a selection, always refuses.


In the case (cs1) to verify it is a NE we can proceed as follows. We assume
to have L− 1 consecutive acceptances (from 0 to L− 2) and we see if a bidder
selected at the L−th round is better off by accepting or by refusing. In the first
case (cs1) is a NE otherwise not.
So we suppose to have6:


a0, a1, . . . , aL−2, xL−1 (10)


where x may be either a or r.
In order to make the desired verification we note that at round L− 2 we have7


P = 0 so when the currently selected bidder bi has to choose an action he
considers that, from relations (8) and (9):


- if he accepts he has an utility ui = −vi,


- if he refuses he has an utility ui = vi − f since ki = 1.


In this case bi refuses if vi − f > −vi or if f < 2vi (and therefore the collective
strategy of all acceptances is not a NE) but accepts if f > 2vi so that that the
collective strategy of all acceptances would be a NE. We are going to make
some more comments shortly.
In the case (cs2) we have a succession of refusals8 and we want to verify if the
bidder bi selected at round L − 1 is better off by accepting or by refusing. We
want to verify if, in the succession (11) the x must be an a or an r:


r0, r1, . . . , rL−2, xL−1 (11)


In order to verify this we note that at round L − 2 we have, owing to L − 1
consecutive refusals, P = (L− 1)f = (ki + k


−i)f so when the currently selected
bidder bi has to choose an action at round L−1 he considers that, from relations
(8) and (9):


- if he accepts he has an utility ui = k
−if − vi,


- if he refuses he has an utility ui = vi − (ki +1)f (since by refusing he has
to pay once more the fee).


In this case bi refuses if:


vi − (ki + 1)f > k
−if − vi (12)


6We use the notation ah to denote an acceptance from any of the bidders at step h and xh


to denote a generic action at step h. We are not interested in putting in evidence repeated
acceptances from the same bidder.


7We note that P = (ki + k
−i)f so if P = 0 we have ki = 0 and k


−i = 0 and vice versa.
8We use the notation rh to denote a refusal from any of the bidders at step h and xh


to denote a generic action at step h. We are not interested in putting in evidence repeated
refusals from the same bidder.
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or if:


2vi > k
−if + (ki + 1)f = (k


−i + ki)f + f = (L− 1)f + f = Lf (13)


So if:


f <
2vi
L


(14)


then bi refuses and we have that the collective strategy of all refusals is a NE
otherwise he accepts and that collective strategy is not a NE.
We have therefore derived that if 2vi/L < f < 2vi the foregoing collective
strategies are not NE so that we are sure that at the end of the auction:


- there will be a winning bidder,


- there will be a pot P to compensate him.


Such conditions depend, however, on the value vi of the last selected bidders.
In order to make it operational we can choose 2v/L < f < 2v where v is such
that vi ∈ [v, v̄] for every bi and for a suitable pair v, v̄.
Before going on we want to examine:


(is1) when it is optimal for a selected bidder bi to choose a at t = 0;


(is2) when it is optimal for a selected bidder bi to choose r at t = 0.


In the case (is1) after the acceptance we can have the following meaningful
cases:


- L− 1 consecutive refusals of the other bidders so that b1 is the final cch;


- at least one acceptance from one of the other bidders so that b1 is not the
final cch.


In the former case bi is surely better off by accepting if (L − 1)f ≥ vi and this
is true also if the same bidder is selected again at step h if, between step 0 and
step h, we had only refusals.
On the other hand if (L − 1)f < vi then bi is better off by refusing and so
reducing his utility from vi to vi − f under the hypothesis that vi ≥ f (we are
in the case (is2)).
In other words bi is better off by accepting at t = 0 if he is sure either to have
a gain if he will be the final cch or if he is sure not to be the final cch so he
avoids paying once more than it is necessary the fee9 f .
We now focus the attention on the behavior of the single bidder and assume:


- to be at round h ∈ [1, L− 1]


- that the bidder bi is selected;


9We recall that if at step h− 1 the utility of bi is ui(h− 1) and if at step h he refuses his
utility becomes ui(h) = ui(h − 1) − f . On the other hand if bi accepts at step h his utility
remains unchanged.
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- that he has already accumulated ki refusals;


- that the net content10 of the pot for him is k
−if


We want to see which strategy bi should select in the various possible cases.
We start by considering the case where bi has never been selected before the
current step h. In this case we have ki = 0 and possibly k


−i > 0. We can define
for bi:


- a(h − 1) = ui(h − 1|w) as the utility at step h − 1 if he will be the final
cch;


- b(h− 1) = ui(h− 1|l) as the utility at step h− 1 if he will not be the final
cch.


It is easy to see how we have:


a(h− 1) = ui(h− 1|w) = k
−if − vi (15)


and:
b(h− 1) = ui(h− 1|l) = vi (16)


At step h we have that bi accepts if he has already a gain or expects to have a
gain by winning the auction otherwise he refuses.
More formally we have the following cases:


- if a(h − 1) ≥ 0 then bi accepts since he can only become better off if in
subsequent rounds other bidders refuse;


- if a(h−1) < 0 then bi considers that if a(h−1)(L−h−1)f ≥ 0 he accepts
otherwise he refuses.


In the acceptance cases we have:


a(h) = a(h− 1) (17)


and:
b(h) = b(h− 1) (18)


whereas in the refusal case we have:


a(h) = a(h− 1) (19)


and, under the assumption that we have b(h− 1)− f > 0:


b(h) = b(h− 1)− f (20)


We now consider a more general case where up to step h− 1 we had ki refusals
from bi and possibly k


−i > 0 refusals from the other bidders. In this case we
define the following quantities:


a(h− 1) = ui(h− 1|w) = k
−if − vi (21)


10Each bidder bi sees the content of the pot as P = (ki + k
−i)f so that the net content for


bidder i is represented by the payments made by the others and so by k
−if .
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b(h− 1) = ui(h− 1|l) = vi − kif (22)


c(h− 1) = k
−if + (L− h− 1)f − vi (23)


Also in this case we have that bi accepts (so that both relations (17) and (18)
are satisfied) if either a(h− 1) ≥ 0 or a(h− 1) < 0 and c(h− 1) ≥ 0.
On th other hand if we have:


- c(h− 1) < 0


- b(1) = ui(h|l) = vi − (ki + 1)f ≥ 0


then bi refuses so that both relations (19 and 20 are satisfied.
The problematic case occurs whenever we have:


- c(h− 1) < 0


- b(1) < 0


so that bi has to take a decision by choosing the current lower loss. In this case
we have that if a(h− 1) ≥ b(h) then bi accepts otherwise he refuses.
We recall that at any refusal the utility of bi is worsened by f whereas at any
acceptance it remains unchanged


5 The variable termination case


5.1 The basic steps


In this case at every step j ∈ [0, L − 1] we have a probability pj that the
auction ends at that step (see section 2). In this case the proposed procedure
is based on the following steps:


(1) starts at j = 0 with all the variables properly initialized;


(2) at step j we see if the auction can go on (with a probability pj) or must
stop (with a probability 1− pj);


(3) if it must stop go to (7);


(4) if it can go on a bidder bi is randomly selected;


(5) if bi accepts then bi is the cch; j = j + 1; go to (2);


(6) if bi refuses then P = P + f ; j = j + 1; go to (2);


(7) the final cch gets P and ζ;


(8) end;
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The final cch at step (7) is the current cch when the auction ends. The ter-
mination of the auction at every step is determined with the use of a properly
defined random device that uses a predefined distribution of probability values
that are assumed to be common knowledge among the bidders.
From this structure and from what we have seen in section 2 we easily derive
that at step h:


- every bidder bi knows his current situation as represented by the values
ki and k


−i;


- every bidder bi can evaluate the probability that the auction goes on for
k more rounds and also until round L− 1;


- every bidder bi can evaluate the probability of being selected once again
before the end of the auction.


With this we mean that every bidder bi knows if the past is profitable or not
and if the future is promising or not. The past is profitable if for bi at step h
we have (see relations (21), (22)) we have:


- a(h− 1) ≥ 0


- b(1) = ui(h|l) = vi − (ki + 1)f ≥ 0


On the other hand the future is promising if the expected gain considering also
it is positive or if (see relation (24)):


c(h− 1) ≥ 0 (24)


where:
c(h− 1) = k


−if + (L− h− 1)P (L− h− 1)|h)f − vi (25)


In relation (24) we define as P (L − h − 1|h) the probability that the auction
lasts until round L− 1 having reached round h.
We recall that ph is the probability that at round h the auction goes on so that
a bidder can be selected so that we may define the probability that the auction
lasts for k more rounds having lasted until round h as:


P (k|h) =


k∏


j=h+1


pj (26)


where k ≥ h+ 1.
From relation (26) we derive:


- P (L− h− 1|h) =
∏L−1


j=h+1
pj


- P (1|h) =
∏h+1


j=h+1
pj = ph+1


We recall indeed that between h+1 and L−1 we have L−1−h−1+1 = L−h−1
rounds.
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5.2 The possible collective and individual strategies


At this point we have to consider what we have seen in section 4.2 and
extend it to the new situation where the bidders know the probabilities pj (for
j ∈ [0, L− 1]) and can guess the probabilities P (k|h) for any h ∈ [1, L− 2]. and
k > h.
It is easy to see how, for h = L− 1, we have (see also section 4.2):


- a succession of L acceptances is not a NE for the same reasons we saw in
section 4.2;


- a succession of L refusals may not be a NE for the same reasons we saw
in section 4.2.


Similar considerations hold for a succession of h acceptances (for h ∈ [1, L− 2])
if a bidder bi thinks that, being selected at the turn h − 1, he evaluates that
P (h+ 1|h) is a very low value.
At step h = 0 (see section 4.2) we have that it is usually better for a bidder bi
to accept than to refuse.
At that step we have ki = 0 and k


−i = 0 so that we have the following utilities
for the bidder bi:


- if accepts ui(0) = −vi;


- if refuses ui(0) = vi − f .


It would seem that accepting is dominated by refusing unless we have f > 2vi
but if bi thinks that the auction can last at least h more rounds he can evaluate
the following probability:


P (h|0) (27)


If he thinks that such a value is high enough he may be tempted to accept since
he can imagine the following scenarios:


- h consecutive refusals so that his expected utility is ui(h|w) = hfP (h|0)−
vi,


- at least one acceptance from one of the other bidders.


In the former case of only refusals from the other bidders he will be the final
cch. In the latter case where there is at least one acceptance from one of the
other bidders bi will not be the final cch and, at the same time, he saved to pay
one more time the fee f . In this case he is surely better off since vi > vi − f for
every value of f > 0.
If bi refuses at t = 0 his utility becomes vi − f instead of vi and he is not the
cch (and under this condition he cannot be the final11 cch).
At this point we can say that bi is better off by accepting if the following
constraint is satisfied:


hfP (h|0)− vi > vi − f (28)


11We note that a bidder becomes firstly the cch and when the auction ends and he has that
title he becomes the final cch.
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or if the utility from an acceptance (in the best case where he is the final cch)
is higher than the utility from a refusal. Such relation can be rewritten as:


hfP (h|0) > 2vi − f (29)


from where we derive that if:


P (h|0) >
2vi − f


hf
(30)


the bi is better off by accepting otherwise he is better off by refusing.
At a generic step h (for h ∈ [1, L−2]) we may argue that every bidder bi knows:


- his ki,


- his k
−i,


so we can repeat the considerations we have made in section 4.2.
Informally we have that:


- bi accepts if the past is enough rewarding;


- bi accepts if the foregoing condition is false and he may expect to gain
from the expected future rounds;


- bi refuses if he has not already refused too much and the foregoing condi-
tions are not satisfied.


We say that the past is rewarding if we have:


k
−if − vi > 0 (31)


whereas we say that the past and the foreseen future are enough rewarding if
we have:


k
−if + kfP (k|h)− vi > 0 (32)


Last but not least we say that bi has not refused too much if we have:


vi − (ki + 1)f > 0 (33)


since we have to account for a further refusal and so a further payment of the
fee.


6 Concluding remarks


The present TR introduces two repeated or multi shot auction mechanisms.
In both the mechanisms the bidders are selected at each step according to a
uniform distribution so that each bidder can perform a choice (accept or refuse)
only if he is selected.
In this way each bidder has a random termination time for his participation to
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the auction as the last time he is selected. On the other hand every bidder is
influenced by the decisions of the others.
If bi at step h is selected and accepts he becomes the cch. He keeps this title
upon successive refusals from the other bidders (that make him better off) and
upon his own successive acceptances (upon being selected) and loses it upon
any acceptance of one of the other bidders.
In the former mechanism this random selection is the only probabilistic element
we introduced in it whereas in the latter we introduced a further probabilistic
device since we allowed each step to be assigned a probability of termination at
that step.
Both mechanisms have been presented and described together with some strate-
gies for the bidders.
Their formal treatment must, however, still be completed and will be the subject
of further research efforts.
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