
Università di Pisa

Dipartimento di Informatica

Technical Report: TR-11-12

JavaΩ: Higher Order
Programming in Java – The

Technical Complements

Marco Bellia and M. Eugenia Occhiuto
Dipartimento di Informatica, Università di Pisa, Italy

{bellia,occhiuto}@di.unipi.it

August 29 2011
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

A:2 The Technical Complements

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java – The Technical
Complements

Marco Bellia and M. Eugenia Occhiuto
Dipartimento di Informatica, Università di Pisa, Italy
{bellia,occhiuto}@di.unipi.it

Contents

1 Introduction 2

2 Translation Semantics and Source to Source Translations: Principles 2

3 Closures: Lambda Expressions in Java 4
3.1 Closure basic Structure . 4
3.2 Syntax of Closures. 5
3.3 Semantics of Closures. 6
3.4 The Translation Semantics F [[]]τ . 6
3.5 The Formal Definition of F [[]]τ . 8

Theorem: this Transparency . 9
3.6 Closure Sub-typing . 10

4 Higher Order Methods: MC parameters. 11
4.1 Syntax and Semantics of MC parameters 11
4.2 The Callback Methodology: A semi-Formal Description 13
4.3 E [[]]ρ: A Callback based, Translation Semantics of MC parameters . . . 15

Theorem: Wrapped Methods for MC parameters 16
Lemma: Existence and Access of MC parameters 16
Lemma: MC parameters are Contracovariant 16
Theorem: Type Safety . 17

5 Examples 17
5.1 HO Programming with a Class of Geometric Shapes 17
5.2 Writing a Method that Maps Closures into Memozed Closures 17

6 Putting Translations Together 17
Theorem: Completeness E [[]]∅ . 17
Theorem: Completeness F [[]]∅ . 19
Theorem: Orthogonality . 20
Theorem: Completeness . 21

7 Conclusions 21

A Appendix - An Unambiguous Grammar for Java 22

B Appendix - Proofs of Lemmas and Theorems 23

C Appendix - MC parameters: Class Literal and Variable Arity Methods 24
C.1 The Type Constructor funClass and the Value Costructor absClass . . 25
C.2 Semantics Structures for funClass and absClass 25
C.3 E [[]]ρ: Translation Semantics for funClass and absClass 27

A:2 The Technical Complements

1. INTRODUCTION

The paper contains the technical complements of [BO11] that describes the extensions of
Java 1.5 with Higher Order mechanisms. The present complements contain the complete
tables of (i) The translation semantics of a form of closure for Java; (ii) The transla-
tion semantics of H.O. methods with mc parameters as arguments; (iii) The translation
semantics of Java extended with the above mechanisms put together; (iv) Theorems,
lemmas and proofs of all the properties of the mechanisms and of the semantics dis-
cussed in the paper. The material includes several technicalities and considerations that
relate to the above mentioned results. In particular, (a.1) An unambiguous, structure
oriented, grammar for Java 1.5; (a.2) A formalism used to define a translation semantics;
(a.3) A semi-formal description of the callback methodology in Java.
Higher Order mechanisms are typical of functional languages and include higher order
abstraction, that makes a Java method parametric with respect to other methods that
are passed as arguments, and code as first class value, that can be assigned to vari-
ables, passed as argument, returned by method invocations, and executed in different
points of a Java program. The main motivations are code reusability [BT96] and code
expressivity [Fel91]. Main aims are [Gaf07; BO09b; BO09a]. Several languages integrate
Object Oriented (OO) and HO features: C# [WH03], F# [Sym03], J# [Lak04], Python
[Com10], Scala [Ode10], Ruby [FM08]. All such languages allow to define closures and
a few ones, C#, F#, J#, Scala, also to pass methods as arguments but the construct
features are different according to the specific language structures. Hence, the project
JavaΩ is motivated to study solutions for the design and implementation of HO con-
structs for and based on the structure of language Java. The project originated in 2004
[BO04], other results are in [BO05; BO07b; BO08c; BO08a; BO09b; BO09a; BO10]. The
main topics considered in the project include:
1) the structure of a closure as an anonymous function value;
2) the meaning of closure declaration (as a closure expression), of closure creation (as
the closure value obtained evaluating a closure expression) and of closure evaluation (as
the application of a closure value to a list of arguments for it);
3) the possibility of occurrences of non local variables and their value update;
4) the structure of closure type
5) and of the resulting Java type system including closure sub-typing;
6) the use of closure in assignment, value return, and as arguments of closures and of
methods;
7) the meaning of this (transparency vs. opacity);
8) the definition of recursive closures; 9) the meaning of methods when used as method
values in HO method arguments;
10) the types of the (formal) parameters that can be bound to method values;
11) the form of expressions of the (actual) parameters when they specify a class method
value or an object method value;
12) the interaction between closures and method values;
13) the extension of Object Calculus models [AC96; ABW01] for the study of the prop-
erties of method values
14) and of closures;
15) the study of implementation techniques for the Java extensions that ensure seman-
tics correctness, allow rapid prototyping, preserve Java re-target-ability.
For details see the companion paper [BO11] or the above cited papers.

2. TRANSLATION SEMANTICS AND SOURCE TO SOURCE TRANSLATIONS:
PRINCIPLES

The translation semantics describes the meaning of the (data and control) structures of
a language (called, the source language) in terms of the structures of another language

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:3

(called the object or target language). In the JavaOmega project, the source language
is a Java extension while the target language is ordinary Java. Hence, It has several
benefits including:

— It defines the meanings of the new constructs in terms of the well known constructs
of Java, without the introduction of the semantic structures otherwise needed.

— It helps in evaluating the expressivity power of the new constructs allowing an imme-
diate comparison between a program that uses the new constructs and its translation.

— It allows an implementation of the execution support of the extended language com-
pletely re-targetable on all the compilers developed for Java.

The translation semantics is basic in the compiler design and implementation, where it is
used in combination with other kinds of semantics (in order to guarantee the correctness
of the compiler back-end) and is almost all expressed through attribute grammars. Other
uses of translation semantics are in compiler bootstrapping, source-to-source translation
[AGG+80; KLV03], reverse engineering [War94].
A translation semantics can be formally defined by means of a rule system containing one
or more rules for each of the productions of an unambiguous grammar G of the source
language. Let p be the production C0 ::= C1 . . . Cn of the grammar, with, C0, . . . , Cn,
n + 1 (possibly non different) grammatical categories. A grammatical category can be
either a syntactic, e.g. Expression, or a terminal (lexical) category, e.g. InfixOp (cfr. the
Java grammar of JLS [GJSB05]). Let GS and GL be the set of all the syntactic and
terminal respectively, categories of a grammar G. Moreover, a grammatical category
can define either an infinite set of syntactic structures, e.g. all the expressions that can
be written in the language, or a finite set, e.g. all the infix operators that can occur
in the expressions of the language. Terminal categories never occur in the left part of
a production and may consist of singletons called tokens. Let E be a source to source
language translation and ΣGE be the rule system that defines E using grammar G. Then,
in correspondence to production p, ΣGE contains k >= 1 rules of the form:

E(A0) = ri(A1, E(A1), . . . , An, E(An)) with bi(A0, A1, . . . , An)

Symbols A0, . . . , An are variables and are ranging on the structures of the set defined by
the corresponding categories C0, . . . , Cn. bi is a predication and expresses a condition
that constrains the structures that can be bound to each Aj in order to apply the ith
rule of production p. Eventually, ri is a syntax constructor and expresses the translation
produced by the rule on the structure bound to A0. Hence, the rule can be read: if the
structure that we are translating is a structure of category C0 and is exactly composed
of a structure A1 of category C1 followed by...followed by a structure An of category Cn
and moreover, on the structures A0, A1, . . . , An condition bi holds, then the structure
A0 is translated in the structure obtained by applying ri to the structure A1, and
possibly, to the translated structure of A1, . . . to the structure An, and possibly, to the
translated structure of An. The one described above, is the general structure of a rule
system for source to source translation. In fact, 1) predication bi rarely requires more
that one or two of the n + 1 arguments indicated, as well as the constructor ri rarely
requires the translation of all the component structures E(A1), . . . , E(An) and the use
of both Ai and of translation E(Ai); 2) More often, the rule system contains only one
rule for production. In this case condition bi is obviously absent. 3) Eventually, only a
small number of rules have a different ri. These rules are the one really significant for
characterizing the translation defined by rules system. The most part of rules have the
following form:

E(X0) = f(X1, E(X1)), . . . , f(Xn, E(Xn))) with bi(X0, X1, . . . , Xn)

In the rule, the constructor ri is the identity constructor that leaves unchanged the
structure X0 but replaces each substructure Xj (j > 0) with the corresponding trans-

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:4 The Technical Complements

lation if any: Hence f(Xj , E(Xj)) stands for Xj if XJ ∈ GL, for E(Xj) if XJ ∈ GS .
A Rule as the above one is really, a metarule when each symbol Xj is a metavariable
ranging on variables of many different categories. A metarule stands for all the rules
that can be obtained, starting from the productions of the grammar, by instantiating
symbols Xj with variables of the right categories. Looking at the two rule systems given
in next sections, we note that they have 12 and 8 respectively, significant rules and only
one metarule for a Java grammar that has many dozen of productions. The metarule is
for both the systems,

E(X0) = f(X1, E(X1)), . . . , f(Xn, E(Xn))) otherwise

It is called otherwise metarule, and applies to the each production of the grammar for
which none of the other rules of the system apply.
Eventually we note that, the use of language grammar guarantees completeness and
termination of source to source translation, namely each program has its translation
and it is computed in as many steps as the productions used to parse the program.
Moreover, the non ambiguity of grammar guarantees soundness, namely the program
translation is unique.

3. CLOSURES: LAMBDA EXPRESSIONS IN JAVA

Closures enclose a piece of code, namely a statement list and/or an expression, possibly
parameterized, and make such code available for possibly, many and different invocations
in the program. More important, closures are values (function objects [Gaf08]) that can
be computed by and passed to methods: They allow the definition of methods whose
code, hence whose behavior, is parametric with respect to the closures with which are
invoked. A closure may contain free variables that are bound in the lexical scope of the
blocks enclosing the closure definition.

3.1. Closure basic Structure

A basic common structure for Java closures emerges from [BGGvdA08; CSC08; Rei09].
This structure can be described by the following characteristics: Closures

(1) encapsulate an arbitrary piece of Java code and generalize it through parameters
(as anonymous functions [Lan66], written in Java)

(2) have a type which depends on the argument types, the type of the possibly computed
value, and the exception types. In Java closure types are generic.

(3) are values hence can be assigned, passed as arguments, returned as value result (of
the correct type)

(4) can be invoked in a uniform way. In particular if a closure is bound to a formal
parameter x of a method, or another closure, the invocation of x does not depend
on (selectors defined in the) the closure type.

(5) can contain non- local variables, in this case the non local variable:
— is the one bound in the lexical scope of the nearest block enclosing the closure,

according to Java static scope rule.
— such variable remains accessible even though the frame related to the execution

of the block has been deallocated.
— it can be accessed and modified as local variables.

Syntax apart, such a structure leads to express the same behaviors (i.e. intended se-
mantics) and programming uses (i.e. methodologies) for closures [Gaf08; CSC08], and
includes those in [BLB06]. As a matter of fact, such a closure basic structure is adopted
in [BO10] and also here.

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:5

3.2. Syntax of Closures.

A closure is syntactically an expression. The following example shows an expression
which is a closure definition: it has a formal parameter of name y and type int and
returns a value of type int, the body contains a non local variable x. Its evaluation
results a closure value (closure for short) which is a function that applies to an an
integer argument updating a non local variable of name x and returning the value of x,
after incrementing it by 1.

{(int y) :int ⇒ x += y; return ++x;}

The declaration of the return type in the closure definition follows the syntactic struc-
ture of method definition in Java and does not force the implementation of the closure
construct to infer the return type as in [BGGvdA08]. However, we defer to type check-
ing, of ordinary Java compilers, the burden of checking, in the translated programs,
the correctness of the types declared in the closure definition. As a matter of fact, our
translation maps closure definitions with incorrect types into programs with incorrect
types too. A closure (value) has a type: A closure may be assigned to a variable, passed
as a parameter, returned as a value, invoked as a method (using the reserved selector
invoke) – checking the correctness of the types involved in each of the above operations.

All the extensions needed to Java grammar are reported in Appendix A. The main
extensions for closures are:

Primary::=. . . | Closure | . . .
Closure::={FParameters:(Type | void) ThrowsOpt ⇒ Block}
Type::=ParameterizedType | BasicType | ClosType
ClosType::= {([ExtendedTypeList]) : (Type | void) ThrowOpt}
ExtendedTypeList::=ExtendedType (,ExtendedType)∗
NonInvocationSelector::=. . . | .invoke [Arguments] | . . .

Closures are anonymous functions [Lan66] but unlike functional abstractions, closures
can (access and) modify (free, i.e. non local) variables bound in the lexical scope of the
block in which the closure is defined. In particular a closure can use variables that are
bound in a scope that is no more active [LY96] at the time the closure is invoked, see
[Tro08] and the use of the hashtable in the example in Fig. 4.a.

Example 3.1. In Fig. 4.a, the statement return memo f of method memoized returns
a closure that when invoked, would access and modify the hash table which is bound to
the variable table

Since local variables are allocated in a Java frame [LY96] when the scope is active and
deallocated when it is not active, then the handling of non local variables in closures
needs a specific treatment.

Example 3.2. The variable table, of Fig. 4.a, is declared in the body block of method
memoized. When statement return memo f is executed, the execution of memoized ter-
minates and the frame allocated at runtime in the Java Virtual Machine, to contain
the variable table is deallocated. Then no access to the value bound to variable table
is allowed throw the machine stacks. Nevertheless, such a value must be accesses and
modified at each invocation, in the program, of the closure bound to memo f.

A solution of this problem leads to a new, additional, notion for those local variables
that can be accessed and modified as non local in a closure. Such variables must be
allocated in the heap. In [Gaf08] this kind of variables are annotated @shared to mark the
difference with ordinary local variables. In the structure adopted in this paper, shared
is an additional modifier for local variables to mark that the difference between this new
kind of variables and the variables of ordinary Java is mainly semantics and it involves

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:6 The Technical Complements

memory allocation (heap vs. frame [LY96]), access and modification of the variable.
Hence the syntax of both the local variable declarations and the formal parameters
[GJSB00] is extended adding:

LocalVariableDeclarationStatement::= [final | shared] Type VariableDeclarators
FormalParameter::= [final | shared] [Annotations] ExtendedType VariableDeclaratorId

3.3. Semantics of Closures.

The intended meaning of closures associates to a:

(i) closure type {(ET1, ..., ETn) : ET [throws QI1, ..., QIk]}, through a one-to-one cor-
respondence =, a reference type =(ES1, ..., ESn, [QI1, ..., QIk,]ES). Where, for each
i, ESi(resp. ES) is the type ETi(resp. ET), if ETi(resp. ET) is not a closure type,
otherwise it is the reference type associated to ETi(resp. ET).

(ii) closure literal {(FS1 At1 ET1 V1, ..., FSn Atn ETn Vn) : ET [throws QI1, ..., QIk]⇒
BB}, a function object, i.e. an object, of type =(ES1, ..., ESn, QI1, ..., QIk, ES), that
wraps the function HBB below. Type =(ES1, ..., ESn, [QI1, ..., QIk,]ES) is obtained,
according to (i) above, from type {(ET1, ..., ETn) : ET [throws QI1, ..., QIk]} that
is extracted from the closure literal in the obvious way and is the type of the closure
literal. Function HBB is the function that, applied to a n-tuple of values V1, ...,Vn
of type ES1, ..., ESn respectively, either computes a value V of type ES or fails
depending on code BBr, executed of in a frame where V1 is bound to value V1 and,...,
and Vn is bound to value Vn. Eventually, BBr is the ordinary Java code resulting
from the sequence of statements (and declarations) of closure body BB in which free
(i.e. non local) variables, if any, are bound to the corresponding shared (or final)
variables of the lexical scope in which the closure occurs (and nested closures, if any,
are interpreted according to the points (i)-(iv) of the present intended semantics). If
the computation fails then either a checked exception of a type in QI1, ..., QIk) or an
unchecked exception is thrown.

(iii) closure invocation E.invoke(E1, ..., En), where E is an expression computing a func-
tion object c of type =(ES1, ..., ESn, QI1, ..., QIk, ES), the application of the func-
tion, that c is wrapping, to the n-tuple of values V1, ..., Vn that results from the
evaluation of the argument list E1, ..., En. Arguments E1, ..., En must be of the cor-
responding types ES1, ..., ESn.

(iv) shared variable (resp. parameter) V of type ET, possibly initialized with expression
E, a variable of a class of variable objects, i.e. objects that wrap variables of a given
type and are allocated in the heap. The wrapped variable is possibly initialized to
the value of E. The shared variable V is then, accessed and modified through such
a reference.

3.4. The Translation Semantics F [[]]τ .

The translation semantics is defined by translation F [[]]τ in Fig. 1, it is based on the
structures of interfaces, anonymous classes, and classes of variables, in the sense that
F [[]]τ translates closures into a composition of such structures. The one-to-one corre-
spondence = of the closure intended meaning is implemented as a bijective function
ClosType → Interface, between the closure type and the interface for objects wrapping
functions of that type. The implementation of = is based on a family of interfaces,
indexed by a couple of naturals n, k, defined as follows:

. interface I$nk<ET1, ..., ETn, ET,
QI1 extends Throwable,...,QIk extends Throwable>{

publicET invoke(FS1At1 ET1 V1, ..., FSnAtnETn Vn) throws QI1, ..., QIk; }
. interface I$nkvoid<ET1, ..., ETn,

QI1 extends Throwable,...,QIk extends Throwable>{

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:7

F [[CB]]τ = {F [[MB1]]∅ . . .F [[MBn]]∅} with CB = {MB1 . . . MBn}

F [[Py]]τ =



τ(Py) with Py ∈ Identifier | this
new I$n <F [[ET1]]τ , ...,F [[ETn]]τ ,F [[ET]]τ , QI1, .. with Pi ≡ FSi Ati ETi Vi

.., QIk>(){F [[publicET invoke(P1, . . . , Pn)TR{ ∧ TR ≡ throws QI1, ..., QIk
BB}]]τ↑({this/(s$elf,on))} ∧ Py ≡ {(P1, ..., Pn) :ET TR⇒BB}

new I$nvoid <F [[ET1]]τ , ...,F [[ETn]]τ , QI1, ..., with Pi ≡ FSi Ati ETi Vi

QIk>(){F [[public void invoke(P1, . . . , Pn)TR { ∧ TR ≡ throws QI1, ..., QIk
BB}]]τ↑(this/(s$elf,on))} ∧ Py ≡ {(P1, ..., Pn) :void TR⇒BB}

F [[ET]]τ =


I$nk <F [[ET1]]τ , . . . ,F [[ETn]]τ ,F [[ETr]]τTR> with TR ≡ throws QI1, ..., QIk

∧ ET ≡ {(ET1, . . . ,ETn) : ETr TR}
I$nkvoid <F [[ET1]]τ , . . . ,F [[ETn]]τ TR> with TR ≡ throws QI1, ..., QIk

∧ ET ≡ {(ET1, . . . ,ETn) : void TR}

F [[L]]τ =


[final] F [[ET]]τ I[= F [[E]]τ↑(I/this)] with L ≡ [final] ET I [= E] ∧ E ∈ Closure
finalT I = newT([F [[E]]τ]) with L ≡ shared ET V [= E] ∧ E /∈Closure

∧T = C$Shared <F [[ET]]τ>
finalT I = newT([F [[E]]τ↑(I/this)]) with L ≡ shared ET I [= E] ∧ E ∈ Closure

∧T = C$Shared <F [[ET]]τ>

F [[MB]]τ =



D Q F [[TV]]τ I(R1, ...,Rn)OTR{ with MB ≡ D Q TV I(P1, ...,Pn)O TR {BB}
L0 L1 . . .Ln F [[BB]]τ } ∧ Pi ≡ FSi Ati ETi Vi ∧ Vi ≡ IiOi

where :
Ri ≡ FRi Ati ERi Vi and ERi = F [[ETi]]τ
and L0 = final Object s$elf = this;

and Li =

{
finalT G(Ii)Oi = new T (Vi); if FSi ≡ shared

∧T ≡ C$Shared <ERi>
λ if FSi ∈ [final]

and FRi =
{

FSi if FSi ∈ [final]
λ if FSi ≡ shared

and Ei =
{
Ii if FSi ∈ [final]
G(Ii).value if FSi ≡ shared

and τ =
{
τ ↑ (this/(s$elf, off), I1/E1, ..., In/En) if τ(this) = ⊥
τ ↑ (I1/E1, ..., In/En) if τ(this) = (s$elf, on)

F [[BB]]τ = F [[L]]τ ;F [[BBr]]τ↑(I/I.value) with BB ≡ S;BBr ∧ L ≡ sharedET I([])∗[= E]

F [[E]]τ = τ(I) = F [[E]]τ↑(I/this) with E ≡ I = E1 ∧E1 ∈ Closure

where:

τ ↑ (I1/E1, . . . , In/En)(x) =


Ei if x = Ii ≡ ∧ Ei /∈ {(S$elf,on),(S$elf,off)}
s$elf if x = this = Ii ∧ Ei = (s$elf, on)
this if x = this = Ii ∧ Ei = (s$elf, off)
τ(x) if x /∈ {I1, . . . , In}

Legenda: For arbitrary index p, At, Atp ∈ Annotations, BB, BBp ∈ BlockStatements,
CB∈ ClassBody, D, Dp ∈ModifierOpt, E, Ep ∈ Expression, ET, ETp, ERp ∈
ExtendedType, FS, FSp, FRp ∈ [final | shared], x, xp, y, I, Ip∈Identifier, L∈
LocalV ariableDeclarationStatement, MB, MBp ∈ MemberDecl, O, Op ∈ []∗, P,
Pp,Rp ∈ FormalParameter, Py∈ Primary, Q, Qp∈TPs, QI∈QualifiedIdentifier,
S, Sp ∈ Statement, T, Tp ∈ Type, TR∈ ThrowOpt, TV, TVp ∈ [Type | void] V,
Vp ∈ V ariableDeclaratorId,

Fig. 1. Closures: F [[]]τ Translation Semantics.
M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:8 The Technical Complements

public void invoke(FS1At1 ET1 V1, ..., FSnAtnETn Vn)
throws QI1, ..., Tk; }

Each interface represents the functions with n arguments raising exceptions of k different
types. In the first case the represented functions return a value of type ET . In the second
case they do not compute any value (i.e. compute the nullary, unit value). According to
the semantics defined for closures, F [[]]τ translates:

(i) the closure type {(ET1, ..., ETn) : ET [throws QI1, ..., QIk]} into an instantiation
of the interface I$nk in which the type variables ETi are instantiated to the corre-
sponding type ESi obtained translating ETi.

(ii) a closure literal {(FS1At1 ET1V1, ..., FSnAtnETnVn) : ET [throws QI1, ..., QIk]⇒
BB} of type {(ET1, ..., ETn) : ET [throws QI1, ..., QIk]} into an instance of the class
implementing the corresponding interface, namely:

new I$nk <ES1, ..., ESn, ES,QI1, ..., QIk> (){
public ES invoke(FS1At1ES1 V1, ..., FSnAtnESn Vn)

throws QI1, ...QIk {BBr}}
where BBr results from the translation of BB and ESi results from the translation
of ETi according to F [[]]τ .

(iii) closure invocation E.invoke(E1, ..., En) into F [[E]]τ .invoke(F [[E1]]τ , ...,F [[En]]τ). As
a matter of fact, closure invocation is not considered in the rules defined in Fig. 1
since it is trivially dealt with by the otherwise metarule.

(iv) shared variables of type ET into final variables of the class:

class C$Shared <ET> {ET value; C$Shared (ET n){value=n;}}

Each access to a variable V, declared shared, is replaced by an access to
V.value. Class I$Shared <ET> is also used to translate shared parameters. If a
shared formal parameter of type ET is declared in a method with body {BB}, it is
translated into a parameter without modifier final. Moreover a final variable with
a new name, is declared in the translation of BB being of type C$Shared <ES>,
where ES is the type resulting by the translation of ET , and is initialized to contain
the value of the parameter. All occurrences of the parameter in the translation of
BB are translated into accesses to the field value of the new variable. The function
G : Identifier → Identifier is used to generate the new name that does not clash with
the other identifiers in BB. G is an injective function that applied to a name of a
parameter generates a new name. In this way the translation F [[]]τ preserves the
method headers.

3.5. The Formal Definition of F [[]]τ

The translation semantics is defined using the syntax directed rule system described in
Section 2. Hence, it has at least one rule for each production of the unambiguous gram-
mar of Appendix A, and the translation computes applying to each program construct
the rule that is associated to the production with which the construct is parsed. As a
matter of fact, the rule system F [[]]τ contains only 12 significant rules and one other-
wise metarule: The metarule applies when the production with which the construct is
parsed has no significant rules associated to it, and the translation leaves unchanged the
construct structure but replaces each component with the result of its translation. In
the sequel, we illustrates the translation discussing rule by rule (only for the significant
ones) how they work. Firstly we introduce the environment τ used as a parameter in the
translation F [[]]τ , whose definition is contained at the end of Fig. 1. The environment
τ associates an identifier I ∈ Identifier to an expression E ∈ Expression. The empty
environment is denoted by ∅ and does not contain bindings. Any other environment is

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:9

obtained by τ ↑ (I1/E1, ...Ik/Ek) that adds k new bindings to a given environment τ
(possibly, the empty environment). Each binding associates to the name Ii an expression
Ei, and we have that τ(Ii) = Ei. Eventually, (∀I) ∅(I) = ⊥ where ⊥ is the undefined
term. The environment τ contains a binding for:

(1) all the shared local variables or shared formal parameters that have the construct
(to which F [[]]τ applies) in their (lexical) scope. In this case the value of the binding
is Ii.value as explained in the previous subsection 3.4.

(2) a local variable whose value is a closure. When a closure is assigned to a local
variable identifier, all occurrences of such identifier, in the closure body are recursive
invocations of the closure. Hence they must be replaced by the self reference this
to the function object that the translation produces.

(3) this: Since the translation maps closures into function objects and occurrences of
this are recursive invocations, we need a different identifier to refer to the object
on which the method that defines the closure is invoked. Hence we define a reserved
identifier s$elf and add a declaration final Object s$elf = this at the begin-
ning of each method body BB see the fifth rule. The environment τ is consequently
extended to support an on-off mechanism which says when F [[]]τ has to replace the
self reference this with the reference to the object bound to variable s$elf. In this
way, in the translated program, this in the method Apply, refers to the function
object implementing the closure and allows recursive invocations, while the object
on which the method that defines the closure is invoked is reached through the
reserved identifier s$elf.

Theorem 3.3 (this Transparency). Occurrences of this in a closure are refer-
ences to the object on which the method that defines the closure is invoked. 1 2

The rules are placed in Fig. 1 in an order which is quite near to the order of their use in
translating a program containing closures (if we ignore the otherwise metarule that is
omitted in the figure and should be placed at the top since it will be the most frequently
used).

. ClassBody:CB. Rule 1 applies to constructs of the category ClassBody and resets
to empty, ∅, the environment of the translation of each MemberDecl construct which
occurs in the ClassBody, since no closure can have such constructs in its scope.
. Primary:Py. The rule 2 replaces the identifier with its value in τ , while rules 3
and 4 replace a closure with the function object obtained instantiating the interface
I$nk on the types obtained translating each formal parameter type hence defining
and translating the method invoke in the environment τ extended with the binding
(this/(s$elf,on)), needed to guarantee the this transparency property.
. ExtendedType:ET. Rules 5 and 6 replace the closure type with the interface type
I$nk instantiated on types obtained applying F [[]]τ to the formal parameter types.
Two different cases are considered, depending whether a return type or void is
defined.
. LocalVariableDeclarationStatement:L Rule 7 considers the case in which a local
variable is declared and initialized to a closure. In this case the closure is to be
translated using a τ in which this is bound to the declared identifier to allow re-
cursive invocations of the closure, case 2 above for τ . Rule 8 considers the declaration
of a shared variable. Such declaration is replaced with the declaration of an object
of type C$shared whose variable type is instantiated on the translated type of the
declared variable. Rule 9 combine first and second case defining a shared closure.

1The proofs of the Lemmas and Theorems enunciated in the paper are in Appendix B

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:10 The Technical Complements

. BlockStatements:BB. The extension of the environment τ to replace the name I
of the shared variable with I.value is dealt with in rule 11.
. MemberDecl:MB. Rule 10 considers the case of a constructor or method decla-
ration. In this case the translation must add a declaration for the local variable
s$elf which must contain the reference to this, deal with shared formal parame-
ters which are treated analogously to shared local variables adding for each shared
parameter a local variable declaration whose type is C$share instantiated to the
translated type parameter. The name of the new variable is obtained translating
the parameter name through function G. The rule also updates the environment τ
in which the method body is translated, adding the binding for each formal param-
eter Ii/G(Ii).value for the shared parameters and the identity for the non shared
ones. Eventually the binding (this/s$elf, off) is added if τ(this)= ⊥, that is this
is not bound in τ . In fact, if τ contains a binding for this such binding can only be
(s$elf,on) which means that we are translating an invoke method of a function
object representing a closure hence the binding for this is not to be modified.
. Expression:E. Rule 12 deals with an assignment expression in case the expression
on the righthand side is a closure. In such a case the identifier I on the lefthand
side is replaced by its binding in τ and the closure expression, analogously to local
variable declaration, is translated using a τ in which I is replaced by this.

3.6. Closure Sub-typing

In [BO10] we define a minimal core calculus extending Featherweight Java [ABW01]
with a form of closures which differ from the one adopted in JavaΩ only syntactically.
In that paper we define a reduction semantics for the calculus and prove type safety.
Other interesting properties, like sub-typing and the abstraction property will be inves-
tigated in future works. The final goal is to prove that the two semantics (reduction
and translation semantics) commute so that the properties proved in the reduction se-
mantics hold in the translation semantics and in the implementation obtained from it.
About sub-typing, it is ease to note that both the intended semantics of Section 3.3 and
the translation semantics defined by F [[]]τ do not consider closure sub-typing. Hence,
if x is a variable of closure type T then in the assignment x = e, expression e must
be a closure of type T: more in general, any expression of closure type can be replaced
only by an expression having the same exact closure type. However contracovariance
(TC for short) is a good way to have closure sub-typing in order to weaken the rigidity
previously exemplified. Rule ClosTC is for TC on closure types and is intended to extend

Closure Sub-typing Rules
S1 � T1, ..., Sn � Tn T � S Q v P
{(T1, ..., Tn) : T [⇑ Q]} � {(S1, ..., Sn) : S [⇑ P]}

(ClosTC)

{(T1, ..., Tn) : T [⇑ Q]} � {(S1, ..., Sn) : S [⇑ P]}
q I$nk<T1, ..., Tn, T,Q“u”> � q I$nh<S1, ..., Sn, S, P“u”> in PC

(FClosSub)

Legenda: Abbreviations and symbol conventions:
• P = P1, ..., Ph, Q = Q1, ..., Qk, P“u” = P1u, ..., Phu
• Q“u” = Q1u, ..., Qku, u = extends Throwable, ⇑ = throws
• � = extends, PC = Translated Program Classes
• judgements : v= is subtype, in = is in

the inference rules of the Java sub-typing system. Moreover to have TC in the translation
semantics we need to define F [[]]τ to satisfy the rule FClosSub below. Rule FClosSub

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:11

says that if the source program asserts that closure type Tsub = {(T1, ..., Tn) : T [⇑ Q]}
is sub-type of the closure type Tsuper = {(S1, ..., Sn) : S [⇑ P]}. Then the translated
program must contain that the interface q I$nk <T1, ..., Tn, T,Q“u”>, associated, by
F [[]]τ , to Tsub, is declared extends the interface q I$nh<S1, ..., Sn, S, P“u”>, associated,
by F [[]]τ , to Tsub. Noting that ClosTC and FClosSub are inference rules but are not
translation rules. Moreover, rule FClosSub requires the inference rule system defining
the Java sub-typing relation � (see rule premises). This fact makes difficult to design
translation rules that implement (i.e. translate code that satisfies) FClosSub. A way
is modifies each translation rule so that: For each expression of a closure type Tsub,
all the uses of the expression in the program are considered and the expected types are
collected. Let Tsuper1 , ..., Tsupern be the expected types. Then, all these types are closure
types (or should be it) and are super-type of Tsub. So The interface associate to Tsub
has the component extends declared consequently. However the problem is represented
by the collection of the uses. The possible uses are: invocation, assignment, argument,
return value. We have the following expected type:

— Invocation – the type itself;
— assignment – the type of the variable (or more in general, of the expression on the

assignment left side). The selection of such a type is obtained by a contextual analysis
of the assignment in which the expression occurs as assignment right side;

— argument – the type of the corresponding formal parameter of the method/closure
that is invoked by the invocation in which the argument occurs. The selection of the
invoked method requires the construction and use of the program symbol tables. This
may results a cumbersome duplication of the symbol tables construction that a Java
compiler front-end must produce;

— return value – the type of the type return declared by the method/closure in whose
body the expression occurs. The selection of such a type is obtained by a contextual
analysis of the method/closure declaration in which the expression occurs as return
value.

4. HIGHER ORDER METHODS: MC PARAMETERS.

The Java extension here defined is a revised version of the one described in [BO08a;
BO09b]. It introduces constructs to define HO methods for both class (static) and
object methods. HO methods have at least one mc parameter that is a parameter that
is bound, during the invocation of the HO method, to a method of an arbitrary class
or object of the program. Moreover, the parameter can be used, inside the body of the
HO method, as if it were any method: It is invoked on a class or an object and applies
to arguments of the right types for the bound method.

4.1. Syntax and Semantics of MC parameters

The main extensions are concerned with formal and actual parameters to include meth-
ods as arguments in the definition and invocation of HO methods: Hence, new type
expressions for formal mc parameters and new (value) expressions for the actual ones.
A complete definition of the extended Java grammar is in Appendix A, while the syn-
tactic categories directly affected are listed below.

ExtendedType::= Type | FType
FType::= fun RootClass:([ExtendedTypeList])→(void|Type)ThrowOpt
RootClass::= ParameterizedType
ParameterizedType::=Identifier ParsOpt (.Identifier ParsOpt)∗ []∗
ParsOpt::= [<TypeArguments+>]
ThrowOpt::= [throws QualifiedIdentifier+]

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:12 The Technical Complements

FType is the new category that we add to Java grammar to extend the type system
with a type for mc parameters. The new type begins with the keyword fun and specifies
a class type and a signature for the methods that can be bound to the mc parameter.
The class type can be either an Identifier, namely a bound type variable, or a Parameter-
izedType. It specifies the root class of the hierarchy to which the classes, containing the
methods that can be passed as argument, belong. Then, the signature specifies number
and types of the arguments of such methods and the type of the computed value, and
possibly, of the throwable exceptions. Note that FType is not a sub-category of Type,
which contains the types of ordinary Java, but FType and Type are both sub-categories
of ExtendedType. This new category allows to constraint, already at syntactic level, the
use of methods as values. In fact, methods can only be used as values of mc parameters,
hence passed as arguments to HO methods and to closures (see the definition of Formal-
Parameter in Appendix A, where ExtendedType is used instead of Type). In contrast to
closures, as defined in Section 3, methods cannot be assigned to variables (or fields), nor
can be returned as values computed by other methods (or closures) (see for instance,
definition of MethodOrConstructorDecl where category Type is still used for the return
type).

To deal with actual mc parameters we extend Java expressions adding the syntactic
category AExp below:

AExp::= abs MethodSpecifier from Type
MethodSpecifier::=Identifier ([ExtendedTypeList])→(void|Type) ThrowOpt

Hence, an actual mc parameter is an expression that begins with the keyword abs and
computes a possibly overloaded method having name, signature and declaration class
as specified in the expression. Given a program, we denote by M(I, EL, T, TL, Tc) the
method, if any, that has name I, is either defined (possibly overridden) or inherited
in class Tc, is applicable (by subtyping, conversion and variable arity, see Section 15.12
[GJSB05]) to invocations with argument type list EL, has return type T (possibly void),
and exception type list TL. If methodM(I, EL, T, TL, Tc) exists then such a method is
unique (see Section 8.2 [GJSB05]). Otherwise M(I, EL, T, TL, Tc) is the undefined ⊥.
The intended meaning of mc parameters associates to:2

(i) Expression abs I (EL)→T [throws TL] from Ta, the partial function below:

λf :C→λc :C→M(I,ELTa
, T,TLTc

, Tc) if c� f�Ta ∧M(I,ELTa
, T,TLTa

, Ta) 6=⊥

that, given f and c, selects the method M(I,ELTa , T,TLTc , Tc), i.e. the method
named I in class Tc, that can be invoked with argument type list ELTa , return type T
and has exceptions TLTc , where TLTc is included (see Section 8.4.6 in [GJSB05]) in
TLTa . If I is not overloaded in Ta then ELTa ≡EL. Otherwise, ELTa is the list of types
computed in class Ta by Java overloading resolution (see Section 15.2 in [GJSB05]).
IfM(I,ELTa

, T,TLTc
, Tc) 6=M(I,ELTa

, T,TLTa
, Ta) thenM(I,ELTa

, T,TLTc
, Tc) is

an overriding of M(I,ELTa
, T,TLTa

, Ta). If M(I,ELTa
, T,TLTa

, Ta) does not exist
then the program is not legal.

(ii) Parameter fun Tf:(ELTf
)→TTf

[throws TLTf
] p, together with the argument

(abs | absClass) I (EL)→T [throws TL] from Ta supplied for it, the partial
function below:

λc : C →M(I,ELTa
, T,TLTc

, Tc) if c� Tf �Ta ∧M(I,ELTa
, T,TLTa

, Ta) 6=⊥

2� (and �) is the Java subtyping relation (see Section 4.10 [GJSB05]) possibly extended on lists of types
in the obvious way, i.e. t1 . . . tn � s1 . . . sn means t1 � s1∧ . . .∧tn � sn. Eventually, t1 . . . tn v s1 . . . sk
means (∃t1 � u1, . . . , tn � un){u1, . . . , un} ⊆ {s1, . . . , sk}, where ⊆ is set inclusion

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:13

that, given a class c, subclass of Tf , selects method M(I,ELTa
, T,TLTc

, Tc), pro-
vided that both following conditions hold: (a) Tf � Ta; (b) M(I,ELTa

, T,TLTa
, Ta)

is a contracovariant [LW93; AC96; BO05]of the expected method, i.e. T �
TTf
∧ TLTa v TLTf

∧ ELTa � ELTf

(iii) Occurrence e.p(e1,...,en) inside the body of a HO method invoked with argument
abs I (EL)→T [throws TL] from Ta supplied for parameter fun Tf:(ELTf

)→TTf

[throws TLTf
] p, the invocation of method M(I,ELTa

, T,TLTc
, Tc) where Tc is the

effective (i.e. run-time) class of the object computed by e and ELTa are correct types
for the argument list E1, ..., En.

The intended meaning states the following relevant semantics properties:

— The method bound to a mc parameter has: a) the effective signature that results
resolving overloading in the root class Ta, and b) the effective definition that is found
in the class Tc of the object on which the mc parameter is invoked (see Java run-time
method dispatch in Section 15.12.2.5 in [GJSB05]);

— The class Tc is a subclass of Tf which must be a subclass of Ta;
— The method effectively invoked in the invocation of an mc parameter is a contra-

covariant of the method expected. Then invocation either computes a value which
is subtype of the value expected or throws one exception among those expected.
Moreover, invocation applies to arguments that have types that are subtypes of the
signature of the effectively invoked method. Hence, in all the cases, invocation behaves
well with any program context in which the invocation of a mc parameter occurs and
which is correct with respect to Java ordinary type checking.

The translation semantics defined in this paper is a constructive formalization, using
Java structures, of the intended meaning: It replaces code containing definitions and
invocations of mc parameters with code that contains definitions and invocations that
yield the invocations of the methods that are effectively bound to such mc parameters,
according to the intended meaning. Moreover, it is based on the computational struc-
tures of the callback methodology [GHJV05].

4.2. The Callback Methodology: A semi-Formal Description

Callback is a way to pass executable code to procedures in event driven programming.
In OO languages callback is implemented through function objects [Mey04; Hor07] that
wrap a code in order to treat it as an ordinary datum that can be passed anywhere in
the program and unwrap it when the code must be executed. The methodology, here
discussed for objects wrapping methods, method objects, can be summarized in four
points.

(1) Interfaces for Method Objects. We introduce an interface representing classes
of objects wrapping methods, that can be passed, in the program, as arguments
of HO methods. In fact, we need a family of interfaces ApplyClass$nk, where the
suffices n and k stand for the number of arguments and for the number of different
types of throwable exceptions of the wrapped methods for which the interface is
defined. Each interface has only one method Apply whose first parameter is an
object, namely the object on which the wrapped method must be invoked, while
the following n parameters are the n parameters to which the wrapped method
applies. Eventually, Apply throws the same k different classes of exceptions of the
wrapped method. Interface ApplyClass$nk has n+k+2 type variables: In addition
to the n type variables for the types of the arguments and the k for those of the
throwable exceptions, it has one type variable for the class of objects on which the
wrapped method may be invoked, and one type variable for the type of the result

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:14 The Technical Complements

that the wrapped method computes. Hence, interface ApplyClassV$nk has n+k+1
type variables and is the analog of ApplyClass$nk for void wrapped methods.

. public interface ApplyClass$nk<RT,ET1, ...,ETn, T,
QI1 extends Throwable,...,QIk extends Throwable>{

public T apply(RT o,ET1 x1, ...,ETn xn) throws QI1, ...,QIk; }
. public interface ApplyClassV$nk<RT,ET1, ...,ETn,

QI1 extends Throwable,...,QIk extends Throwable>{
public void apply(RT o,ET1 x1, ...,ETn xn) throws QI1, ...,QIk; }

(2) Classes of Method Objects. For each use of the method, which is to be passed
as parameter, a class, which implements ApplyClass$nk (resp. ApplyClassV$nk, if
it is a void method) and consequently Apply, must be defined. Apply invokes the
method on the object passed to it as first argument, with the arguments passed in
the rest of its arguments list. Suppose we have C<Ta1, ...,Tap> (where Ta1, ...,Tap
are the type arguments supplied to the generic class C<Q1, ..., Qp>, of the program,
with type parameters Q1, ..., Qp) having methods named m1,...mq, which are to be
passed as parameters in the program. Then q classes are defined. In particular, for
each, possibly generic, mi, let ETai1 , ...,ETaini

be the types of the arguments to
which the method applies in the invocation, once passed as parameter, let Ti be the
invocation return type, Tti1 , ..., Ttiki

be the list of exception classes that invocation
can throws. Then, a class I[mi] is defined3 as follows:

static class I[mi] implements ApplyClass$niki<C<Ta1, ..., Tap>,
ETai1 , ..., ETaini

, Ti, Tti1 , ..., Ttiki
> {

public Ti Apply(C<Ta1, ..., Tap> o, ETai1x1, ..., ETaini
xni

)
throws Tti1 , ..., Ttiki

{
return (o.mi(x1,...,xni

);}}
(3) HO Methods. Every HO method Iho is defined having one ApplyClass$nk pa-

rameter o for each object wrapping one of the method mi which will be bound to it
during an invocation of the HO method. This is expressed as below

public ETIho Iho (...ApplyClass$nk<ETE , ET1, ..., ETn, T, T1, ..., Tk> o...)
{... o.Apply(E, E1, .., En) ...}

where E is the expression of reference type (i.e. computes an object) on which mi
must be invoked, and Ej (j ∈ [1, ni]) are the arguments of mi. If E is a qualified
identifier naming a class then we cannot use interfaces defined in this way (see
Appendix C).

(4) Creation of Method Objects. The invocation of Iho requires the construction of
one object of the class I[mi]. This is accomplished in the invocation below, under
the assumption, in point 2, that class I[mi] is defined as an inner class of class C

... E.hm(...new C.I[mi]()...)
Point 4 concludes the description of the callback methodology that has been presented
in the case that the passed methods are void and non void object and class (fixed
arity) methods. If the passed methods are variable arity methods we can simply use the
interfaces as defined in Table 1 of Appendix C in which thr method apply contains one
more, optional, parameter [,ET...y] for methods with variable arity parameters of type
ET. The Java static invocation mode (see Section 12.4 in [GJSB05]) for class methods

3I[mi] is a class identifier which must be unique for each different use of method mi as argument in
the HO methods of the program. Then, the specific name chosen for I[mi] depends from the method
identifier, the list of types used in the invocation and the class in which mi is defined, and the technique
[BO09b] used for the definition of the class: inner, anonymous or stand alone.

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:15

bound to mc parameters, is considered, in Point 3, by resorting to the use of a default
object of the class. This is further discussed in Appendix C. Moreover, different solutions
can be considered for the definition of the classes of objects wrapping a method, given
in point 2. In the presentation given above we use inner classes but anonymous classes
and stand alone classes offer alternative supports for this aim with different advantages
as discussed in [BO09b]. In particular, the use of anonymous classes avoids the need of
introducing names for the classes (as for I[mi] in point 2 of the methodology.). Hence,
unlike the one presented in [BO09b], the translation presented in next section uses
anonymous classes and combines points 2 and 4.

4.3. E [[]]ρ: A Callback based, Translation Semantics of MC parameters

The translation semantics is defined using the syntax directed rule system described in
Section 2. Hence, it has at least one rule for each production of the unambiguous gram-
mar of Appendix A, and the translation computes applying to each program construct
the rule that is associated to the production with which the construct is parsed. How-
ever, the rule system E [[]]ρ contains only 8 significant rules and the otherwise metarule
of Section 2. Hence we illustrate the translation discussing rule by rule (only for the
significant ones) how the rules work. However, firstly we introduce the parameter ρ used
in the translation E [[]]ρ. This parameter is an environment for the application of the
translation to a construct: It contains one binding for each parameter (of constructor or
method) that has the considered construct in its (lexical) scope. The empty environment
is expressed by ∅ and does not contain bindings. Any other environment is obtained by
R[[T I]]ρ that adds a new binding [[T I]] to a given environment ρ (possibly, the empty
environment): The new binding associates to the name I a type T . Environments are
used in the translation in order to discover which identifiers, in the considered program
construct, are parameters that are bound to a FType, hence are mc parameters (see the
two rules 7 and 8 for PrimarySelector in Fig. 2).

. CompilationUnit:CU. Rule 1 applies to constructs of the category Compilatio-
nUnit and resets to empty, ∅, the environment of the translation of each ClassOrIn-
terfaceDeclaration construct which occurs in the CompilationUnit, since no method
parameter can have such constructs in the scope.
. MethodOrConstructorDecl:MB. Rule 2 extends the environment of the translation
of the block with the method parameters, since the block is the method body and
such parameters have it in their scope.
. ExtendedType:ET. Rules 3 and 4 apply to type expressions of the new cat-
egory FType and replace the type with the type interface ApplyClass$nk and
ApplyClassV$nk used to model method objects as described in Section 4.2, point
1.
. Expression:E. Rules 5 and 6 apply to the value expressions AExp that compute an
actual mc parameter. The rules replace the expression with an instance creation ex-
pression of an anonymous class. Similarly to what we did in Section 4.2 using inner
classes, the two rules insert the code to create an anonymous class that implements
the appropriate interface, (point 2), and, at the same time, to create a method ob-
ject that instantiates such a class, (point 4). Hence, rule 5 considers each expression
abs I EL→T [throwsTL] fromTc computing a non void method. It replaces the ex-
pression with the code that creates, (point 4), a method object wrapping a method
that has name I, belongs to a class in the hierarchy rooted at class Tc, applies to
argument type list TL and has return type T . Analogously the rule 6 creates a void
method object.
. PrimarySelector:PS. The last two rules, 7 and 8, apply to value expressions of
the category PrimarySelector. This category reformulates, in an unambiguous way,
the syntactic structures defined, in the grammar of JSL [GJSB05], combining the

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:16 The Technical Complements

two categories Primary and Selector. The two rules consider each invocation PS.I A
where a formal mc parameter I is invoked on expression PS and applies to the
arguments in A. Since, in the translated program, I is bound to an object wrapping
the method to be invoked, the rules replace the invocation with an invocation on
I of method Apply that applies to the argument list containing the translation of
PS followed by the translations of the arguments in A. The translation of PS maps
reference type expressions into Java reference type expressions and primitive type
(i.e. non reference type) expressions into primitive type expressions. The translation
of the arguments as well as that of the entire invocation, in rule 8, are cast to the
expected types, in order to guarantee the contracovariance of the wrapped method
(see Theorem4.1).

The following properties hold for: (i) the translation semantics of mc parameters, (ii) the
rule system with which the semantics is defined, (iii) the programs obtained applying the
rule system. The properties assert that the wrapped methods are essentially the methods
of the intended semantics of mc parameters. Moreover, the existence and access of the
methods passed using mc parameters in the source program, can be checked, at compile
time, checking for the existence and access of the wrapped methods in the translated
program. Again, the methods that are passed by mc parameters are checked to be
contracovariant with the expected methods: Hence their invocation, in the body of an
HO method, is type safe. Eventually, the execution of the translations of Java programs
that use mc parameters and HO methods never goes in unexpected, unrecoverable,
computation states. This furnishes an indirect proof of type safety of Java extended
with mc parameters and HO methods. The proof is indirect since it is not obtained
resorting to the type system of Java extended with the new types (for mc parameters
and HO methods) and proving that well typed programs of the extended language
compute values and never get stuck. Instead, type safety of the extended programs is
reduced to the type safety, in standard Java, of the corresponding translated programs.
Eventually, Corollary 4.5 asserts that the translation semantics E [[]]ρ does not allow static
invocation mode for mc parameters: It means that even if the method that is bound
to a mc parameter is a class method, the invocation of the mc parameter must contain
a target reference (as it happens for Java virtual invocation mode, Section 15.12.3 in
[GJSB05]).

Theorem 4.1 (Wrapped Methods for MC parameters). Let E ≡abs I
ELs→T [throws TL] from Ta in the scope of an environment ρ, and EL≡ E [[ELs]]ρ.
Let M be the wrapped method of the object, if any, created executing E [[E]]ρ. Then M
is (possibly an overriding of) M(I,ELTa

,T,TLTa
,Ta), where ELTa

and TLTa
are the

overloading resolution, in class Ta, of an invocation of a method with name I, argument
type list EL, return type T and exception type list TL. 2

Lemma 4.2 (Existence and Access of MC parameters). Let E ≡abs I
ELs→T [throws TL] from Ta in the scope of an environment ρ, and EL≡ E [[ELs]]ρ. Let
M(I,ELTa , T,TLc,Tc) be the method that results, for any given Tc � Tf � Ta, from
the intended semantics of E. Then M(I,ELTa ,T,TLc,Tc) (i) exists if and only if E [[E]]ρ
has no compile-time type errors; (ii) can be invoked only if the E [[E]]ρ has no method
access violations. 2

Lemma 4.3 (MC parameters are Contracovariant). Let p be a
mc parameter of a HO method Iho (in a source program) and funRT:EL→T[throws
TL] be its type with EL ≡ ET1, . . . , ETn. Let o be a binding for p in an invocation
of Iho in the translated program obtained by E [[]]⊥ and e.p(e1, ..., en) any invocation
of p occurring in the body of Iho, and e be a reference type expression. Then, o is
wrapping a method which is contracovariant with EL→T (i.e. has return type which is

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:17

a subtype of T and type signature ETo1 , . . . , ETon
such that EToi

is a supertype of ETi
(∀i ∈ [1..n])), if and only if the translation of e.p(e1, ..., en) is a Java well typed term. 2

Theorem 4.4 (Type Safety). Let P be any Java program extended with
mc parameters. Then P is type safe only if its translation E [[P]]⊥ is a Java type safe
program, i.e. (i) it is well-typed and, (ii) its execution never gets stuck. 2

Corollary 4.5 (Static Mode Invocation). Static mode invocation of
mc parameters must have a target reference: Each invocation e.p(e1, ..., en), where p is
a mc parameter, has e computing an object (i.e. E [[e]]ρ is a reference type expression)
even if p can be bound to a class method (namely, a method that is invoked in static
mode). 2

5. EXAMPLES

5.1. HO Programming with a Class of Geometric Shapes

A first example is a classical problem for higher order programming already discussed in
[BO04], but here modified to use generics an classes in Java APIs such as LinkedList
and ListIterator. The example defines an abstract class Shape for geometric shapes
and several concrete classes Rectangle, Circle, Triangle etc .and an extension of
LinkedList in which a HO method map is defined. The HO method is used to compute
the list of areas of all the shape contained in a list, even though the the method to
compute the area is a different one according to the type of the element in the listth
that is being processed.

5.2. Writing a Method that Maps Closures into Memozed Closures

A second example, taken from [Goe07], defines, in Fig.4.a, a method memoized that
maps closures of type {(T1) : T} into memoized closures of the same type and same
external behavior but of different performance since a memoized closure avoids repeating
computation for previously processed inputs. To obtain this, memoized has a closure
parameter f, declared final, of type {(T1) : T}, bound to the closure to be memoized,
and a shared variable table initialized to an empty hash table. memoized returns a
closure that behaves as follows. It has a parameter x of type T1 and asks table table
for a key equals to the value of x. If the key is found then it returns the value bound
in table to x, otherwise it behaves like f, invoking f.invoke(x), updates table, adding
the key/value pair x/f.invoke(x), returns the value f.invoke(x). Note that, in this
way, each hash table table is a private resource of the memoized closure since each time
memoized returns the closure and ends, thus making table no more accessible outside
the returned closure. Eventually, note that such a solution works properly for closures
without the recursion operator. For recursive closures the reader is invited to consider
the code for the Fibonacci numbers in Fig. 4.c, whose translation and execution are left
to the reader:

6. PUTTING TRANSLATIONS TOGETHER

We have introduced and discussed, in a separate way, the extension of Java 1.5 with
mc parameters and the extension of Java 1.5 with closures. For each extension, we have
followed the same methodology and used the same techniques, obtaining two separated
translation semantics. One of the most interesting aspects of our project is how the
two extensions can be integrated in order to obtain only one language which extends
Java with both mc parameters and closures. Before delving into this aspect, we consider
two properties of the semantics we have defined. The first one is concerned with each
translation semantics, individually, and asserts the completeness of the translation: It
guarantees that the translated programs are pure Java (1.5).

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:18 The Technical Complements

E [[CU]]ρ=[[At] package QI;] IM E [[CD1]]∅ . . . E [[CDn]]∅
with CU =[[At] package QI;] IM CD1 . . .CDn

E [[MB]]ρ = D [Q] [TV] I E [[FP]]ρ O0 TR E [[B]]ρ↑FP with MB ∈ MethodOrConstructorDecl

E [[ET]]ρ =


ApplyClass$nk <E [[RT]]ρ[, E [[ET1]]ρ, .., E [[ETn]]ρ], E [[To]]ρ[, E [[QI1]]ρ, .., E [[QIk]]ρ]>

with ET = fun RT : ([ET1, . . . ,ETn])→ To [throwsQI1, . . . , QIk]
ApplyClassV$nk <E [[RT]]ρ[, E [[ET1]]ρ, .., E [[ETn]]ρ, E [[QI1]]ρ, .., E [[QIk]]ρ]>

with ET = fun RT : ([ET1, . . . ,ETn])→ void [throwsQI1, . . . , QIk]

E [[E]]ρ =



new ApplyClass$nk<TLr>(){ with E=abs I([EL])→T [throwsTL] fromTc
publicT Apply FPr[throwsTL]{ ∧ EL = ET1, . . . ,ETn
return o.I(x1, . . . ,xn);}} ∧ TL = QI1, . . . ,QIk

where
TLr = Tc,E [[ET1]], . . . ,E [[ETn]],T ,QI1, . . . ,QIk
FPr = (Tc o,E [[ET1]]x1, . . . ,E [[ETn]]xn)

new ApplyClassV$nk<TLr>(){ withE=abs I([EL])→void [throwsTL] fromTc
public void Apply FPr[throwsTL]{ ∧ EL = ET1, . . . ,ETn
o.I(x1, . . . ,xn)}} ∧ TL = QI1, . . . ,QIk

where
TLr = Tc,E [[ET1]], . . . ,E [[ETn]],QI1, . . . ,QIk
FPr = (Tc o,E [[ET1]]x1, . . . ,E [[ETn]]xn)

E [[PS]]ρ =


(T)(I.Apply(E [[PS1]]ρ, (ET1)E [[E1]]ρ, . . . , (ETn)E [[En]]ρ))

with PS = PS1 .I ([E1, . . . ,En]) ∧ ρ(I) = fun RC: ([ET1, . . . ,ETn])→ T TR
I.Apply(E [[PS1]]ρ, (ET1)E [[E1]]ρ, . . . , (ETn)E [[En]]ρ)

with PS = PS1 .I ([E1, . . . ,En]) ∧ ρ(I) = fun RC: ([ET1, . . . ,ETn])→ void TR

where: R[[T I]]ρ(x)=T if I = x ∧ T ∈ Ftype R[[T I]]ρ(x) = ⊥ if I = x ∧ T /∈ Ftype
R[[T I]]ρ(x) = ρ(x) if I 6= x ∅(x) = ⊥
ρ ↑ () = ρ
ρ ↑ (P1P2 . . . Pn) = R[[ET1 I1]]ρ↑(P2...Pn) with Pi = [final] Ati ETi Ii([])∗

Legenda: For arbitrary index p, A∈ Arguments, AR∈ ArrayCreatorRest, At∈
Annotations, B, Bp∈Block, BB, BBp ∈ BlockStatements, BS, BSp ∈ BlockStatement,
BT∈ BasicType, CB∈ ClassBody, CD, CDp ∈ ClassOrInterfaceDeclaration,
CN∈ CreatedName, CR∈ ClassCreatorRest, CU∈ CompilationUnit, D, Dp ∈
ModifierOpt, E, Ep ∈ Expression, EL, ELp ∈ ExtendedTypeList, ET, ETp ∈
ExtendedType, F, Fp∈ITs, FP, FPq ∈ FParameters, FS, FSp ∈ [final | shared], GS∈
ExplicitGenericInvocationSuffix, x, xp, I, Ip∈Identifier, IM∈ImportDeclaration,
IO∈ InfixOp, K∈ Literal, L∈ LocalV ariableDeclarationStatement, MB, MBp ∈
MemberDecl, NI∈ NonInvocationSelector, Oi ∈ []∗, P, Pp ∈ FormalParameter,
PO∈ PostfixOp, PS, PSq ∈ PrimarySelector, Py∈ Primary, Q, Qp∈TPs, QI∈
QualifiedIdentifier, RT∈RootClass, S, Sp ∈ Statement, Srp ∈ Selector, T, Tp∈Type,
Tap,T̃ap ∈ TypeArgument, TA∈ ParsOpt, TL, TLp ∈ TypeList, TR∈ ThrowOpt, TV,
TVp ∈ [Type | void], U, Up ∈ ST , V, Vp ∈ V ariableDeclaratorId,

Fig. 2. MC parameters: E[[]]ρ Translation Semantics.

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:19

public abstract class Shape {
public abstract Double Area();
public abstract Double Perimeter();}

public class Rectangle extends Shape {
private double base;
private double height;
public Rectangle(double b, double h){base=b;height=h;}
public Double Perimeter() {return new Double(2*base+2*height);}
public Double Area() {return new Double(base*height);}}

public class Circle extends Shape {
private double radius;
public Rectangle(double r){radius=r;}
public Double Perimeter() {return new Double(2*3.14*radius);}
public Double Area() {return new Double(3.14*radius*radius);}}

public class Triangle extends Shape {...}

public class FList <C> extends LinkedList <C> {
public <T> FList<T> Map(fun C:() -> T s){

FList<T> L=new FList<T>();
for (C g: this) L.add(g.s());
return L;}}

public class Compute {
public static void main (String [] args){
FList <Shape> L= new FList<Shape>();
... L.add(new Rectangle(3.0,4.2)); L.add(new circle(1.5));...
... L.Map(abs Area ()->Double from Shape); }}

Fig. 3. a. HO Programming with a Class of Geometric Shapes: P

// first 15 lines are unchanged
public class FList <C> extends LinkedList <C> {

public <T> FList<T> Map(ApplyClass$00<C,T> s){
FList<T> L=new FList<T>();

for (C h: this) L.add((T)(s.Apply(h)));
return L;}}

public class Compute {
public static void main (String [] args){
FList <Shape> L= new FList<Shape>();
... L.add(new Rectangle(3.0,4.2));L.add(new Circle(1.5));...
... L.Map(new ApplyClass$00<Shape,Double>(){

public Double Apply (Shape o){
return o.Area(); }});}}

public interface ApplyClass$00 <T,S> {
public S Apply(T m);}

Fig. 3. b. HO Programming: The Translated Program – E[[[P]]ρ

Theorem 6.1 (Completeness E [[]]∅). Translation E [[]]∅ is complete, i.e. it maps
each program of Java extended with closures into an equivalent program of ordinary
Java 1.5. 2

Theorem 6.2 (Completeness F [[]]∅). Translation F [[]]∅ is complete. 2

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:20 The Technical Complements

public class Memoize<T1,T>{//maps closures into memoized closures
public {(T1):T} memoized(final {(T1):T} f){

shared Hashtable<T1,T> table = new Hashtable<T1,T>();
{(T1):T} memo f = {(T1 x): T ⇒ T res = table.get(x);

if (res == null){res = f.invoke(x); table.put(x,res);}
return res;};

return memo f;}}

Fig. 4. a. Class Memoize: A Method that Memoizes Closures

public class Memoize<T1,T>{//maps closures into memoized closures
public I$1<T1,T> memoized(final I$1<T1,T> f){
final Shared<Hashtable<T1,T>> table =

new Shared<Hashtable<T1,T>>(new Hashtable<T1,T>());
I$1<T1,T> memo f = new I$1<T1,T>(){

public T invoke(T1 x){T res = table.get(x);
if (res == null){ res = f.invoke(x); table.put(x,res);}
return res;};

return memo f;}}

Fig. 4. b. Class Memoize: The Translated Program – F [[Memoize]]τ

shared {(Integer):Integer} Yfib;
{(Integer):Integer}fib = {(Integer x):Integer ⇒ if (x==0 || x==1) return 1;

else Yfib.invoke(x-1)+ Yfib.invoke(x-2)}
Yfib = new Memoize<Integer,Integer>().Memoized(fib);
// Yfib = fib; without memoization

Fig. 4. c. Class Memoize: Memoizing Fibonacci Numbers

The following property is concerned with the two translations together and says that
they are one another orthogonal: Hence one definition does not affect the other one. In
particular, modifications on one translation could be treated without any consideration
on the other one.

Theorem 6.3 (Orthogonality). The composition of the two translations is com-
mutative, i.e.: F [[E [[P]]∅]]∅=E [[F [[P]]∅]]∅. 2

The language, obtained integrating the two extensions, allows to define programs that
contain: closures having also mc parameters, and vice versa, HO methods having clo-
sures as parameters, or computing a closure as return value. If we look at the syntactic
extensions, introduced for the closures and those introduced for the mc parameters, we
see that these extensions already are designed to be merged into a grammar, without
conflicts or ambiguities. Therefore, the grammar of the integrated language is simply ob-
tained putting together all the productions, introduced, separately, by each extension.
At the semantics level, on the other hand, we resort to the translation semantics we
have defined through the rule system F [[]]τ and through the rule system E [[]]ρ in order to
obtain, for every production of the integrated grammar, the translation semantics of the
integrated language. The translation rules of the integrated language must apply, to each
production of the integrated grammar, the rule of F [[]]τ and/or that of E [[]]ρ, depending
on if F [[]]τ and/or E [[]]ρ is defined for such a production. Then, we see that, in corre-
spondence to a production p of the form C0 ::= C1 . . . Cn, four cases arise. Let EF [[]]ρ,τ
be the translation semantics of Java extended with HO methods, mc parameters and

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:21

closures. Then, we define EF [[]]ρ,τ examining, case by case, how to compose translations
E [[]]ρ and F [[]]τ in each of the four cases.

Case1. Only one, between F [[]]τ and E [[]]ρ, is defined on p. This is the case for rules 3, 4, 5, 6,
7, 8 of E [[]]ρ, and rules 2, 3, 4, 5, 6, 7, 8, 9, 11, 12 of F [[]]τ . All these rules become rules
of EF [[]]ρ,τ when each occurrence of E [[U]]ρ and F [[U]]τ are replaced by EF [[U]]ρ,τ for
any argument U .

Case 2.F [[A0]]τ = ri(A1,F [[A1]]τ , . . . , An,F [[An]]τ with bi(A0, A1, . . . , An)
E [[A0]]ρ = f(A1, E [[A1]]ρ), . . . , f(An, E [[An]]ρ) with bi(A0, A1, . . . , An)
(Symmetric case: Changing F [[]]τ with E [[]]ρ) This is the case of the rule 1 of E [[]]ρ,
and of the rule 1 of F [[]]τ . In fact, both rules would be otherwise rules if it were not
for the environments that change. Each rule becomes a rule of EF [[]]ρ,τ provided that
E [[U]]σ is replaced by EF [[U]]σ,τ and F [[U]]θ by EF [[U]]ρ,θ, for any U and environment
ρ changing into σ and τ changing into θ.

Case 3.F [[A0]]τ = f(A1,F [[A1]]τ), . . . , f(An,F [[An]]τ) with bi(A0, A1, . . . , An)
E [[A0]]ρ = f(A1, E [[A1]]ρ), . . . , f(An, E [[An]]ρ) with bi(A0, A1, . . . , An)
This is the case of the otherwise metarule of the two systems which is replaced by
the otherwise metarule of EF [[U]]σ,τ .

Case 4.F [[A0]]τ = ri(A1,F [[A1]]τ , . . . , An,F [[An]]τ with bi(A0, A1, . . . , An)
E [[A0]]τ = si(A1, E [[A1]]τ , . . . , An, E [[An]]τ with bi(A0, A1, . . . , An)
(Symmetric case: Changing F [[]]τ with E [[]]ρ) Differently than we would expect, since
Theorem 6.3 on orthogonality, this case contains two rules: Rule 2 of E [[]]ρ and rule
10 of system F [[]]τ . Nevertheless, rule 2 is not an otherwise metarule because of the
environment that changes but, like an otherwise metarule, its ri constructor is the
identity constructor, hence the rule leaves unchanged the structure of MB and applies
the translation to the components. Then, EF [[]]ρ,τ contains only one rule. The rule is
rule 10 of F [[]]τ where: (i) F [[MB]]τ (on the left side) is replaced by EF [[MB]]ρ,τ ; (ii)
[F [[TV]]τ] is replaced by [EF [[TV]]ρ,τ]; (iii) F [[BB]]τ is replaced by EF [[BB]]ρ↑FP,τ

Theorem 6.4 (Completeness). Translation EF [[]]∅,∅ is complete: It maps each pro-
gram of the extended language onto an equivalent program of ordinary Java 1.5. 2

7. CONCLUSIONS

In this work (chapter) we have described two HO mechanisms: mc parameters and clo-
sures, to extend Java, defining a translation semantics and proving some fundamental
properties including completeness and orthogonality. The implementation of the ex-
tended language, along the lines already experimented in JavaΩ [BO07a; BO08b], is
immediate: The translation semantics EF [[]]ρ,τ , can be formally converted into a source-
to-souce translation and implemented as a one-pass preprocessor [ALSU07] that is de-
veloped using Lex & Yacc [LMB95] and GNU Bison [CS06]. This implementation allows
to quickly develop a prototype that can be used to test the programming features of the
extended language and runs in combination with any Java compiler, including Javac of
SUN, GCJ of GNU, ECJ of Eclipse. Moreover, for competitive compilations of the ex-
tended language, the compiler modifications can be obtained, in a straightforward way,
from the translation semantics: The abstract syntax generation phase of the compiler
parser creates the abstract tree of EF [[u]]ρ,τ in correspondence of the parsing of any
language structure u, for suitable contexts (producing the environments) ρ and τ . We
are currently investigating the possibility to apply software engineering techniques and
Java annotations to support error localization in non-native constructs. The aim is that
errors in a non-native construct of a program, for instance a closure type, found by the
Java compiler during the analysis of the code, obtained by program preprocessing, are
recognized as errors of the construct and localized (for possibly error recovery) on the
source program, i.e. the program before preprocessing. Moreover, as mentioned in sec-

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:22 The Technical Complements

tion 3, we are still investigating the definition of core Java sub-languages with reduction
semantics to obtain different modelizations of a same construct, for instance closures,
to experiment the adequacy to the initial aims and to prove properties of each mod-
elization and eventually prove that all such properties are preserved in the full language,
extended with the new construct, when the reduction semantics of the sub-language and
the translation semantics of the extended language commute.

A. APPENDIX - AN UNAMBIGUOUS GRAMMAR FOR JAVA

The syntactic categories that are used, but not defined, are underlined and are those
in chapter 18 of the Java JSL[GJSB05]. We use the same syntactic EBNF conventions
of JSL for the alternation operator (a|b means one occurrence of either a or b) and for
option operator ([a] means zero or one occurrence of a) but we use ∗ for the iteration
operator (a∗ means zero, one or more occurrences of a). Eventually, a+ is an abbreviation
for aa∗.

CompilationUnit ::= [[Annotations] package QualifiedIdentifier ;] ImportDeclaration∗

(ClassOrInterfaceDeclaration | ;)
ClassDeclaration ::= public class Identifier [TPs] [ST] [ITs] ClassBody
TPs::=<TypeParameter (, TypeParameter)∗>
ST::=extends Type
ITs::=implements TypeList
ClassBody::={(MemberDecl)* }
MemberDecl::= ;

|[static] Block
|ModsOpt FieldDeclarator
|MethodOrConstructorDecl
|ClassOrInterfaceDeclaration

FieldDeclarator::= Type Identifier VariableDeclaratorRest
MethodOrConstructorDecl::=ModsOpt [TPs] [(void|Type)] Identifier FParameters []∗

ThrowOpt (Block | ;)
ModsOpt::=Modifier∗

ThrowOpt::= [throws QualifiedIdentifier (,QualifiedIdentifier)∗]
ExtendedType::= Type | FType
Type::= ParameterizedType | BasicType | ClosType
ExtendedTypeList::=ExtendedType (, ExtendedType)∗
FParameters::= ([FormalParDecls])
FormalParDecls::=[final | shared] [Annotations] ExtendedType FormalParDeclsRest
FormalParDeclsRest::= VariableDeclaratorId [, FormalParDecls]

| ... VariableDeclaratorId
ClosType::= {([ExtendedTypeList]):(void|Type) ThrowOpt}
ParameterizedType::=Identifier ParsOpt (.Identifier ParsOpt)∗[]∗

FType::= fun RootClass:([ExtendedTypeList]) →(void|Type) ThrowOpt
RootClass::= ParameterizedType
ParsOpt::= [<TypeArguments+>]
Expression::= AExp | Expression1 [AssignmentOperator Expression1]
Expression3::= PrefixOp Expression3

|(Type) Expression3
|PrimarySelector PostfixOp∗

PrimarySelector::= PrimarySelector NonInvocationSelector
|PrimarySelector .[<TypeList>] Identifier Arguments
|Primary

Primary::=ParExpression

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:23

|<TypeList> (ExplicitGenericInvocationSuffix | this Arguments)
|this [Arguments]
|super (Arguments | . Identifier [Arguments])
|Literal
|new [<TypeList>] CreatedName CreatorRest
|QualifiedIdentifier [[]∗.class | [Expression]]
|BasicType []∗.class
|void.class
|Closure

CreatorRest::=ArrayCreatorRest | ClassCreatorRest
Closure::={FParameters:(Type | void) ThrowOpt ⇒ Block}
AExp::= abs MethodSpecifier from Type
MethodSpecifier::=Identifier ([ExtendedTypeList])→(void|Type) ThrowOpt
LocalVariableDeclarationStatement::= [final | shared] Type VariableDeclarators
NonInvocationSelector::= . this

|. super (Arguments | . Identifier [Arguments])
|. new [<typeList>] Identifier ClassCreatorRest
| [Expression]
|. invoke [Arguments]

B. APPENDIX - PROOFS OF LEMMAS AND THEOREMS

Proof. Theorem 3.3. Entering a method, τ is extended with a binding of the fic-
titious identifier this with the pair (s$elf,off) where s$elf is the name of a fresh
variable introduced in the assignment above, and off is a flag specifying that the bind-
ing for this is not active. In fact, the binding is set active when F [[]]τ traverses a closure
updating τ to set the flag to on, thus making the binding for this active when F [[]]τ
traverses a closure updating τ to set the flag to on thus making the the binding for this
active in the third and fourth rule.

Proof. Theorem 4.1. Assume that execution of E [[E]]ρ creates an object. By rule
5 (6) of E [[]]ρ, the created object wraps a method that can be invoked by expression
o.I(x1,...,xn). Hence, the method must be invoked on objects of the class of o, namely
(any subclass of) Ta, has the type signature that results from the overloading solution
for a method named I, in the class Ta, of the type list of x1,...,xn. This type list is
EL: Let ELTa be its overloading solution (possibly, ELTa ≡EL). Again, the wrapped
method must compute a value of type T, since the expression is the argument of a
return statement. Eventually, the method may throw exceptions of types included in
the types of the list TLa, since such a return statement is the body of an Apply method.
Hence, the wrapped method is a possibly overriding method of a class Tc �Ta, has
name I, arguments type list ELTa

and throwable types TLTa
, and return type T. This

completes the proof.

Proof. Lemma 4.2. (i)-if part. In this case E [[E]]ρ has no type errors. Hence, E [[E]]ρ
execution creates an object on which Theorem 4.1 holds for a wrapped method. Such a
method is, possibly an overriding of, M(I,ELTa ,T,TLa,Ta) for any class Tc such that
Tc � Tf � Ta, namely M(I,ELTa ,T,TLc,Tc).
(i)-only if part. Assume that method M(I,ELTa ,T,TLc,Tc) exists. Then, Tc, Ta, ELTa ,
T and TLc are correct types.
(ii) Assume that method M(I,ELTa

,T,TLc,Tc) exists for Tc � Tf � Ta. Then, the
method can be invoked where E occurs in the program. This completes the proof.

Proof. Lemma 4.3. By the rule 7 (8) of E [[]]ρ any invocation e.p(e1, ..., en)
of a mc parameter, p, of the source program is replaced, in the translated pro-

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:24 The Technical Complements

gram, with an invocation of the Apply method on the object bound to p:
(T)(p.Apply(E [[e]]ρ, (ET1)E [[e1]]ρ, ..., (ETn)E [[en]]ρ)). This object must be a method ob-
ject of type ApplyClass$nk and is inserted, in the translated program, by rule 5 (6).
Moreover, according to such a rule and by definition of the Interface ApplyClass$nk,
this object is wrapping a method m. Let To be the return type of m and ETo1 , . . . , ETon

be the argument type list with which m can be invoked. Then, when Apply invoca-
tion applies to arguments (u,e1, . . . ,en), m (is invoked on the object u and) applies to
arguments (e1, . . . ,en), i.e. u.m(e1, ..., en) is executed.

- If part. Since Apply invocation is cast to T , m must compute a value of a subtype
of T . Otherwise, a compile-time type error occurs in the translated program and the
invocation is not a Java well typed term. This completes the proof as far as covari-
ance of the return type. Moreover, since m applies to (e1, ...,en), it has type signature
ETo1 , ..., ETon such that EToi is a supertype of the type of ei. But each argument ei is
cast to ETi, hence for each i, EToi is a supertype of ETi. This completes the proof as
far as contravariance and of the if part.

- Only If part. If m is contracovariant with ET1, ..., ETn → T , for all method objects
that are bound to p then invocation (T)(p.Apply(E [[e]]ρ, (ET1)E [[e1]]ρ, ..., (ETn)E [[en]]ρ))
is a Java well typed term since each m results Java potentially applicable and satisfies
compile-time step 2 of Java method invocation (see Section 15.12.2 [GJSB05])

Proof. Theorem 4.4. (i) By definition when we assume that each program in Java
extended with mc-parameters is well typed if and only if its E [[]]⊥ translation is a Java
well typed program. (ii) Immediate from Lemma 4.2 and Lemma 4.3 which guarantee
that the invocation of a mc parameter computes the invocation of a method that exists,
can be accessed, and is applicable.

Proof. Corollary 4.5. Let p be a formal mc parameter and e ≡ e0.p(e1, ..., en) be
an invocation of p. Let er = E [[e0]]ρ be the translation of e0 for a right ρ. If er is a non-
reference type expression then in E [[e]]ρ, invocation of method Apply contains a type
error on its first argument since a type reference is expected. Hence, by Theorem 4.4, e
cannot be typed.

Proof. Theorem 6.1. It is enough proving that E [[]]∅ is idempotent, i.e. E [[E [[P]]∅]]∅
= E [[P]]∅ for each program P (namely, compilation unit, in Java). None of E [[]]ρ rules
inserts types fun or constructs abs in the translated program. Instead, rules 3 and 4
remove types fun from each extended type ET and each of the types occurring inside
ET. Similarly, rules 5 and 6 act on the construct abs. Hence, if E [[P]]∅ contains an
occurrence of either fun or abs then such an occurrence was already in P . But it cannot
be since rules 3, 4 or 5, 6 would have removed the occurrence.

Proof. Theorem 6.2. It can be given following the arguments of the proof of Theo-
rem 6.1 reformulated on F [[]]∅ about the removal of shared, closure type and the closure
construct.

Proof. Theorem 6.3. By induction on the structure of P : Proving that, rule by rule,
F [[E [[U]]ρ]]τ=E [[F [[U]]τ]]ρ holds for each component U to which the rule applies (and any
correct pair of environment ρ and τ).

Proof. Theorem 6.4. Immediate from Theorems 6.1 and 6.2 on completeness and
Theorem 6.3 on orthogonality of the component translations.

C. APPENDIX - MC PARAMETERS: CLASS LITERAL AND VARIABLE ARITY
METHODS

We confine mc parameters invocations to the syntax below (which essentially forbids
the use of mc parameter in invocation mode super (see Section 15.12.3 in [GJSB05])):

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:25

PrimarySelector::= PrimarySelector . [<TypeList>] Identifier Arguments

where Identifier may be the name of either a method or a mc parameter. Primary Selec-
tor is either a target reference or a class literal (see Section 15.12.4 in [GJSB05]). In the
first case, the expression computes the object on which the method or the mc parameter
must be invoked. This is the case considered in Section 4.2 and Section subsec:transform
for mc invocations. In particular, interfaces ApplyClass$nk and ApplyClassV$nk, and
the translation rules apply correctly to the mc parameter when it is bound to an ob-
ject (fixed arity) method as well as to a class (fixed arity) method. However, when
the bound method has variable arity arguments the interfaces ApplyClass$nk and
ApplyClassV$nk are unusefull since do not furnish way to deal with variable arity
arguments. Again, when Primary Selector is a class literal, both the interfaces and the
translation rules do not apply correctly since rule E [[PS]]ρ, for instance, assumes that
PS1 is an expression computing an object but it is a class literal (thus its use yelds a
wrong translated program with a type error in the first argument of Apply).

C.1. The Type Constructor funClass and the Value Costructor absClass

In the use of class methods that are bound to a mc parameter, we distinguish, at the
user level, between the case in which parameter invocations are with PrimarySelector
computing an object and the case in which PrimarySelector is a class literal. This is
accomplished extending the syntax as below:

FType::= (fun | funClass)RootClass:([ExtendedTypeList])→(void|Type)ThrowOpt
AExp::= (abs | absClass) MethodSpecifier from Type

Type constructor funClass is for the type of mc parameters that are bound to class
methods and invoked using class literals as PrimarySelector. Value constructor absClass
is for class methods that can be passed to mc parameters which are always invoked
using class literals as PrimarySelector. Hence, fun and abs are used, as described in
Section 4, for the type of mc parameters and for the object and class methods bound
to mc parameters that are invoked using target references as PrimarySelector. Hence,
in the following we revise and extend the intended semantics and the next subsection
we consider how interfaces must be extended to support mc parameters invoked using
class literals and to support methods with variable arity arguments. Then we conclude
the section with the rules for the translation semantics of these new forms.

(iii) Occurrence e.p(e1,...,en), where expression e is a target reference, inside the body of
a HO method invoked with argument abs I (EL)→T [throws TL] from Ta supplied
for parameter fun Tf:(ELTf

)→TTf
[throws TLTf

] p, the invocation of method
M(I,ELTa

, T,TLTc
, Tc) where Tc is the effective (i.e. run-time) class of the object

computed by e and ELTa
are correct types for the argument list E1, ..., En. If e is not

a target reference then sentence (iv) below must apply.
(iv) Occurrence c.p(e1,...,en), where expression e is a class literal, inside the body of

a HO method invoked with argument absClass I (EL)→T [throws TL] from Ta
supplied for funClass Tf:(ELTf

)→TTf
[throws TLTf

] p, the invocation of method
M(I,ELTa

, T,TLc, c) where c ≡ cf ≡ ca and ELTa
are correct types for the argument

list e1, ..., en.

If none of (iii) and (iv) applies then the program contain an uncorrect use of
mc parameter.

C.2. Semantics Structures for funClass and absClass

If the passed class method is invoked using a class literal then point 1 of the call-
back methodology (see Section 4.2) requires two specific interfaces ApplyClassS$nk
and ApplyClassSV$nk, for nonvoid and void respectively, without the first parameter.

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:26 The Technical Complements

Interfaces with, possibly, a variable arity parameter [,ET...y]

public interface ApplyClass$nk<RT, ET[,ET], T, QI “extends Throwable”{
public T apply(RT o, ET x[,ET...y]) throws QI; }

public interface ApplyClassV$nk<RT, ET[,ET], QI “extends Throwable”{
public void apply(RT o, ET x[,ET...y]) throws QI; }

public interface ApplyClassS$nk<RT, ET[,ET], T, QI “extends Throwable”{
public T apply(ET x[,ET...y]) throws QI; }

public interface ApplyClassSV$nk<RT, ET[,ET], QI “extends Throwable”{
public void apply(ET x[,ET...y]) throws QI; }

Method Objects with, possibly, a variable arity parameter [,ET...y]

static class I[mi] implements ApplyClass$niki<C<Ta>, ETai[,ET], Ti, Tti>{
public Ti Apply(C<Ta> o, ETai x [,ET...y]) throws Tti{

return (o.mi(x [, y]);}}
static class I[mi] implements ApplyClassV$niki<C<Ta>, ETai[,ET], Tti>{
public Apply(C<Ta> o, ETai x [,ET...y]) throws Tti{

o.mi(x [, y];}}
static class I[mi] implements ApplyClassS$niki<C<Ta>, ETai[,ET], Ti, Tti>{
public Ti Apply(ETai x [,ET...y]) throws Tti{

return (C<Ta>.mi(x [, y]);}}
static class I[mi] implements ApplyClassSV$niki<C<Ta>, ETai[,ET], Tti>{
public Ti Apply(ETai x [,ET...y]) throws Tti{

C<Ta>.mi(x [, y];}}

HO Method Iho with an invocation of a method object o

public ETIho Iho (... ApplyClass$nk<ETe, ET [,...ETy], T, T> o ...)
{... o.Apply(Ee, E [,...Ey]) ...}

public ETIho Iho (... ApplyClassV$nk<ETe, ET [,...ETy], T> o ...)
{... o.Apply(Ee, E [,...Ey]) ...}

public ETIho Iho (... ApplyClassS$nk<ETe, ET [,...ETy], T, T> o ...)
{... o.Apply(E [,...Ey]) ...}

public ETIho Iho (... ApplyClassSV$nk<ETe, ET [,...ETy], T> o ...)
{... o.Apply(E [,...Ey]) ...}

Legenda: Metavariables are ranging in the syntactic domains specified
in Fig.1 and in Fig.2. Moreover we adopt the following conventions:
• u is a shortand for u1, ..., un
• u “w” is a shortand for u1w, ..., unw
• u w is a shortand for u1w1, ..., unwn

Table 1

Point 2 has method Apply without first argument and with the occurrence of o, in the
body, replaced by the name of the class that contains the passed static method. Point 3
has invocation of Apply without first argument. In addition to this, other modifications
to the form of interfaces are needed in order to consider variable arity method: interfaces
change a bit and points 1-3 are modified to consider the use of the syntactic form ‘...’,

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:27

introduced in Java, for the occurrence of a variable arity parameter (see Section 8.4.1
[GJSB05]). Table 1 summarizes all these modifications: It shows the form of the four
families of interfaces, the structure of the four families of classes of method objects, the
form of the invocation of the method Apply for the four families. Note that, the needs
for four distinct families of interfaces is due to the following two facts that hold in Java.
(1) void is not a true type: Hence we have to distinguish between methods with a return
type and methods without return type. (2) Class literal is not a true value: Hence in
the invocation e.m(e1, ..., en) of a class method m we must distinguish between the the
following two cases: e is an expression that computes a target reference o; e is a class
literal expressing the class of which m is a member.

C.3. E [[]]ρ: Translation Semantics for funClass and absClass

Completing E [[]]ρ translation of ET for funClass mc parameters

E [[ET]]ρ = ApplyClassS$nk<E [[RT]]ρ[, E [[ETs]]ρ], E [[To]]ρ[, QI]>
with ET = funClass RT : ([ETs])→ To[throws QI]

E [[ET]]ρ = ApplyClassSV$nk<E [[RT]]ρ[, E [[ETs]]ρ][, QI]>
with ET = funClass RT : ([ETs])→ void [throws QI]

Completing E [[]]ρ translation of E for absClass mc parameters

E [[E]]ρ = new ApplyClassS$nk<Tc,E [[ET]]ρ,T[,QI]> (){
public T Apply(E [[ET]]ρ x)[throws QI]{

return Tc.I(x);}}
with E = absClass I([ET])→T[throws QI] from Tc

E [[E]]ρ = new ApplyClassSV$nk<Tc,E [[ET]]ρ[,QI]> (){
public void Apply(E [[ET]]ρ x)[throws QI]{

Tc.I(x);}}
with E = absClass I([ET])→void [throws QI] from Tc

Completing E [[]]ρ translation of PS for funClass mc parameters

E [[PS]]ρ = (T)(I.Apply(“(”ET“)”E [[E]]ρ))
with PS = QI .I ([E]) ∧ ρ(I) = funClass RC:[ET]→ T TR

E [[PS]]ρ = I.Apply(“(”ET“)”E [[E]]ρ)
with PS = QI .I ([E]) ∧ ρ(I) = funClass RC:[ET]→ void TR

Legenda: Metavariables are ranging in the syntactic domains specified
in Fig.1 and in Fig.2. Moreover we adopt the following conventions:
• u is a shortand for u1, ..., un
• u “w” is a shortand for u1w, ..., unw
• u w is a shortand for u1w1, ..., unwn
• E [[u]]ρ is a shortand for E [[u1]]ρ, ..., E [[un]]ρ

Table 2

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

A:28 The Technical Complements

Table 2 completes the Translation Semantics given in Fig. 2. It considers the case in
which a class method is used as a mc parameter and the parameter is invoked using the
name of the class as primary selector, see Section C.1.

REFERENCES

Igarashi A., Pierce B., and P. Wadler. Featherweight Java: A Minimal Core Calculus for Java and GJ.
ACM TOPLAS, 23:396–450, 2001.

M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

Paul F. Albrecht, Phillip E. Garrison, Susan L. Graham, Robert H. Hyerle, Patricia Ip, and Bernd Krieg
Brückner. Source-to-Source Translation: Ada to Pascal and Pascal to Ada. In ACM-SIGPLAN
symposium on The ADA programming language, SIGPLAN ’80, pages 183–193, New York, NY,
USA, 1980. ACM.

A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles, Tecniques, and Tools. Addison-
Wesley, 2007.

G. Bracha, N. Gafter, J. Gosling, and P. von der Ahe. Closures for the Java Programming Language
(aka BGGA), 2008. www.javac.info.

D. Lea B. Lee and J. Bloch. Concise Instance Creation Expressions: Closure without Complexity, 2006.
crazybob.org/2006/10/java-closure-spectrum.html.

M. Bellia and M.E. Occhiuto. Higher Order Programming through Java Reflection. In CS&P’2004,
volume 3, pages 447–459, 2004.

M. Bellia and M.E. Occhiuto. Higher Order Programming in Java: Introspection, Subsumption and
Extraction. Fundamenta Informaticae, 67(1):29–44, 2005.

M. Bellia and M.E. Occhiuto. JH-Preprocessing, 2007. www.di.unipi.it/∼occhiuto/JH.

M. Bellia and M.E. Occhiuto. Methods as Parameters: A Preprocessing Approach in Java. In
CS&P’2007, volume 1, pages 47–59, 2007.

M. Bellia and M.E. Occhiuto. JavaΩ: A Preprocessor for Java with M parameters. In CS&P’2008, pages
25–34. Humboldt-Universitat zu Berlin, 2008.

M. Bellia and M.E. Occhiuto. JavaΩ: The Structures and the Implementation of a Preprocessor for
Java with m parameters, 2008.

M. Bellia and M.E. Occhiuto. Methods as Parameters: A Preprocessing Approach to Higher Order in
Java. Fundamenta Informaticae, 85(1):35–50, 2008.

M. Bellia and M.E. Occhiuto. JavaΩ: A Translation Semantics for Closures in Java. In CS&P’2009,
pages 72–83. Warsaw University, 2009.

M. Bellia and M.E. Occhiuto. A Preprocessing for Java with M and MC parameters. Fundamenta
Informaticae, 93(1):35–50, 2009.

M. Bellia and M.E. Occhiuto. JavaΩ: Proving Type Safety for Java Simple Closures. In CS&P’2010,
pages 61–72. Humboldt-Universitat zu Berlin, 2010.

M. Bellia and M.E. Occhiuto. Java in Academia and Research, chapter JavaΩ: Higher Order Program-
ming in Java. iConcept Press Ltd., 2011.

R. Biddle and E. Tempero. Understanding the Impact of Language Features on Reusability. In Fourth
International Conference on Software Reuse. IEEE Computer, 1996.

Python Community. The Python Language 3.1, 2010. http://docs.python.org/py3k/reference/.

C.Donnely and R. Stallman. Bison: The YACC-compatible Parser Generator, 2006.
www.gnu.org/software/bison/manual.

S. Colebourne, S. Shulz, and R. Clarkson. FCM+JCA, 2008.
http://www.jroller.com/scolebourne/entry/fcm closures options within.

M. Felleisen. On the Expressive Power of Programming Languages. Sci. Comput. Program., 17:35–75,
December 1991.

D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O’Reilly, 2008.

N.M. Gafter. JSR Proposal: Closures for Java, 2007. JavaCommunity Process,
www.javac.info/consensus-closure-jsr.html.

N.M. Gafter. Java Closures Prototype Feature-Complete, 2008. //gafter.blog- spot.com/2008/08/java-
closures-prototype-feature.html.

E. Gamma, R. Helm, R. Johnson, and J.M. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 2005.

J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification - Second Edition.
Addison-Wesley, 2000.

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

JavaΩ: Higher Order Programming in Java A:29

J. Gosling, B. Joy, G. Steele, and G. Bracha. The JavaTM Language Specification - Third Edition.
Addison-Wesley, 2005.

B. Goetz. The Closures Debate: Should Closures be Added to the Java Language, and if so, How?, 2007.
Java Theory and Practice, IBM Technical Library, www.ibm.com/developerworks/java/library/j-
jtp04247.html.

C. Horstmann. Big Java ,3rd ed. Wiley Computing, 2007.

J. Koser, H. Larsen, and J. A. Vaughan. SML2Java: a Source to Source Translator. In Proceedings of
DP-Cool, PLI03, Uppsala, Sweden, 2003.

P. Lakshman. The Delegate Type in J#, 2004. http://msdn.microsoft.com/en-us/library.

P.J. Landin. A λ−Calculus Approach. In Andvances in Programming and Non-numerical Computation,
Ed. L. Fox, pages 97–141. Pergamon Press, 1966.

J.R. Levine, T. Mason, and D. Brown. Lex & Yacc. OŔelly, 1995.

B. Liskov and J.M. Wing. Definition of the Subtype Relation. In ECOOP’93, Object Oriented Pro-
gramming, volume 707 of LNCS, pages 118–141. Springer, 1993.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification. The Java Series, Addison Wesley,
1996.

B. Meyer. The Power of Abstraction, Reuse and Simplicity: An Object-Oriented Library for Event-
Driven Design. In Essay in Memory of Ole-Johan Dahl 2004, volume 2635 of LNCS, pages 236–271.
Springer, 2004.

M. Odersky. The Scala Language Specification, 2010. http://scala-lang.org/node/89.

M. Reinhold. Project Lambda: Straw-Man Proposal, 2009. //cr.openjdk.java.net/ mr/lambda/straw-
man/.

D. Syme. F# 2.0 Language Specification, 2003. http://fsharp.net.

Z. Tronicek08. Java Closures Tutorial, 2008. //gafter.blogspot.com/2008/08/java-closures-prototype-
feature.html.

M.P. Ward. Reverse Engineering through Formal Transformation: Knuths ’Polynomial Addition’ Algo-
rithm. Comput. J., 37(9):795–813, 1994.

S. Wiltamuth and A. Hejlsberg. C# Language Specification 2.8, 2003. http://msdn.microsoft.com/en-
us/library.

M. Bellia, M.E. Occhiuto - Dipartimento Informatica - Università di Pisa

