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Abstract

This technical report presents a new type of binary relation that sat-
isfies asymmetry but not transitivity and that can be used by a decision
maker in order to derive a partial order on a set of alternatives according
to a given set of criteria. The order is partial since the various criteria (and
the corresponding orders) are not always comparable among themselves.
The technical report defines the binary relation, presents its features as
well as some toy examples to show it at work together with a discussion
of its potential weaknesses.
As usual, reports of errors and inaccuracies are gratefully appreciated.

1



Contents

List of Figures 3

1 Introduction 4

2 A preliminary remark 4

3 The mathematical background 6

4 The basic ingredients 6

5 The definition of the order 8

6 Two toy examples 9

7 Some features of the particular order 13

8 How to deal with isolated nodes 15

9 Conclusions and future plans 16

References 17

2



List of Figures

1 The four linear graphs of the four rankings . . . . . . . . . . . . 10
2 The resulting graph . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 The three linear graphs of the three rankings . . . . . . . . . . . . 11
4 The second resulting graph . . . . . . . . . . . . . . . . . . . . . . 12
5 Conditions for transitivity . . . . . . . . . . . . . . . . . . . . . . 14
6 Possible cycles? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3



1 Introduction

In this technical report we present a method that can be used by a decision
maker or decider in order to rank the a alternatives of a set A according to the
c criteria of a set C . The method aims at producing a directed graph involving
all the alternatives so that it is possible for the decider to identify, at least:

- the worst alternatives;

- the best alternatives.

The worst alternatives are never selected by the decider that performs his
final selection among the best alternatives (see section 6).
The order has been nicknamed particular order (for reasons that will be made
clear shortly from its definition) and has been presented in the author’s PhD
thesis ([3]). For the best of our knowledge it is a novel order and is endowed
with some interesting features.

2 A preliminary remark

At the present time a very wide multitude of orders is available (see, for
instance, [7] for a detailed presentation of many of them).
This technical report, of course, cannot present them in a detailed way neither
individually nor in pairwise or group comparisons. For these purposes we refer
to the literature cited, for instance, in [7] , [5] and [1].
In this section we essentially aim at forestalling the following objection: if so
many orders have already been devised why wasting time in devising one more
brand new order? This is a sound objection to which I can give only an indirect
answer.
During the writing of my PhD thesis ([3]) I had the need to devise a method
where a set of d deciders rank the a alternatives of a given set according to
the c criteria of another given set and so I needed a multideciders multicriteria
method.
The method I devised was based on the following high level steps:

(1) every decider, independently from the others, defines his own partial order
of the alternatives;

(2) the various partial orders are merged together in order to produce a final
global partial order;

(3) the final global partial order is used as a decision aiding tool from the
deciders in order to perform the final selection.

I chose to adopt a partial order since it has a total (or complete) order as a
particular case and since the alternatives are ranked according to a set of inde-
pendent criteria and so they are not necessarily comparable among themselves.
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With this we mean hat given two distinct alternatives1 ai, aj ∈ A the decider
may be unable to state (on the whole set of the criteria) one of the following
mutually exclusive conditions:

- a strict preference of ai over aj ;

- a strict preference of aj over ai;

- an indifference between ai and aj .

At step (1) I imagined that every decider produces a directed graph and such
graphs are merged, at step (2) in order to produce a directed multigraph2.
The key step is step (1) where I could use an existing multicriteria method ([1])
or devise a new one. Against any advice of my tutor I decided to devise a new
method. According to this method, to be described in detail in the present
technical report3 (but see also my PhD thesis [3]), every decider:

- performs c total orders of the alternatives, one for each criterion4;

- merges the c total orders in a single partial order that is represented with
a directed graph5.

The need to define the individual merging step made me devise a new binary
relation that is, in general, not transitive and that defines a partial order that
I termed a particular order.
The collective merging of step (2) can be easily accomplished since the various
directed graphs that correspond to each particular order have, in general, the
same set of nodes whereas the final selection of step (3) is guided by the nodes
in the final multigraph that have no incoming arc and that, therefore, represent
the best alternatives.

1The set A is assumed to have been pruned of both equivalent and dominated alternatives.
An alternative ai ∈ A is termed equivalent to another alternative aj ∈ A if for every
criterion ch ∈ C we have ai ∼h aj where ∼h is a classical indifference relation. In this case we
can discard any of the two alternatives with a caveat. If we discard ai we must record this fact
since, if at the end of the procedure we get aj ∈ Â (or if aj is one of the best alternatives),

we must include also ai in the set Â owing to this equivalence.
On the other hand, an alternative aj is said to be dominated by an alternative ai if:

- for a proper subset of the criteria we have ai ∼h aj ,

- for the remaining disjoint non empty subset of the criteria we have ai ≻h aj where ≻h

is a classical strict preference relation.

Dominated alternatives can be harmlessly removed form the set A .
2A directed graph is a graph where the links between the nodes are directed arcs each

with a tail and with an head. A multigraph is a graph where we can have more than one arc
between any two nodes. In this case we can state for any pair of alternatives ai, aj ∈ A one
of the conditions we have listed in the main text.

3Steps (2) and (3) will be presented in greater detail in a forthcoming technical report.
4We note that it should be self-evident that if we rank a alternatives according to a single

criterion we always get a total order though possibly with some ties among the alternatives.
5The rest of this technical report is devoted to the illustration of the steps through which

this merging is performed and to show how the obtained order is, in general, partial.
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3 The mathematical background

We now recall some properties (some of them will be referred to in section
4) of a binary relation R on a set A.
If for any a ∈ A we have ([7], [8]):

aRa then R satisfies reflexivity.

If for any a, b ∈ A we have:

aRb ⇒ bRa then R satisfies symmetry;

aRb and bRa if and only if a = b then R satisfies antisymmetry;

aRb ⇒ ¬bRa then R satisfies asymmetry.

If for any a, b, c ∈ A we have:

aRb and bRc ⇒ aRc then R satisfies transitivity.

If a binary relation on a set A satisfies reflexivity, symmetry and transitivity it
is termed an equivalence relation so that it partitions the set A in a certain
number of disjoint subsets also called equivalence classes. Given an element
a ∈ A its equivalence class [a] is defined as:

[a] = {y ∈ A | yRa} (1)

If a binary relation on a set A satisfies reflexivity, antisymmetry and transitivity
it is termed a partial order but we do not exclude that the set A is totally or
completely ordered6.
If a binary relation on a set A satisfies asymmetry and transitivity it is termed
a strict simple order ([7]) that is complete (so that for any a, b ∈ A with
a 6= b we have either aRb or bRa) but not strongly complete ([7]). In case of
strong completeness we have that for any a, b ∈ A we have either aRb or bRa

so we allow also a = b.

4 The basic ingredients

In sections 1 and 2 we have already informally introduced some of the basic
ingredients of our particular order. In this section we both complete and
formalize their presentation.
We start with the set of the alternatives:

A = {a1, . . . , aa} (2)

6We recall that the terms total and complete to characterize an order are fully synonyms
and the use of one term rather than the other depends on the cultural background of the
writer. In this technical report we are going use the terms complete and partial, the former
to be defined more formally shortly in the text.
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to which we can associate an index set:

J = {1, . . . , a} (3)

so that we can identify a pair of alternatives either as (ai, aj) or simply as (i, j)
and a single alternative ai through its index i ∈ J .
Next we have the set of the criteria:

C = {c1, . . . , cc} (4)

to which we can associate an index set:

I = {1, . . . , c} (5)

so that a criterion ch ∈ C may be identified by its index h ∈ I.
Over the elements of the set A we7 define two basic binary relations:

≻i

∼i

for each ci ∈ C and use them to define the binary relation ≻ that characterizes
the particular order.
Such basic binary relations are endowed with classical properties ([7]) so that
(see section 3):

(1) the binary relation ≻i satisfies transitivity and asymmetry;

(2) the binary relation ∼i satisfies reflexivity, symmetry and transitivity.

Since both relations satisfy transitivity we have that also their “compositions”
satisfy that property so that from situations such as:

ai ∼h aj ≻h ak (6)

we derive ai ≻h ak. The same occurs also in other similar situations of easy
interpretation.
Within our context, over the elements of the set A we use both relations ≻h

and ∼h (with h ∈ I) so we can define, for any (ai, aj) ∈ A , if we have ai ≻h aj
or aj ≻h ai or ai ∼h aj .
With this we mean that for every ch ∈ C a decider can define a total order of
the alternatives so to end this step with c total orders and the need to get them
merged in a final order that has no guarantee to be total. We devote section 5
to the definition of this merging procedure.

7In many cases we use the term “we” as a shorthand for “the decider”.
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5 The definition of the order

After all the premises we made in sections 3 and 4 it is time to define the
order that we can obtain on the set A through the binary relation ≻.
In order to define the ≻ binary relation we introduce the following quantities,
for any (ai, aj) ∈ A :

x as the number of times where we have ai ≻h aj over all the criteria
h ∈ I;

y as the number of times where we have aj ≻h ai over all the criteria
h ∈ I;

z as the number of times where we have aj ∼h ai over all the criteria
h ∈ I.

At this point we can have the following cases:

(o1) x > y so we can state that ai ≻ aj ;

(o2) x < y so we can state that aj ≻ ai;

(o3) x = y so we cannot state any relation between ai and aj .

The occurrence of case (o3) qualifies the order we obtain through the relation
≻ as a partial order. Since, moreover, such a binary relation, in general, fails
transitivity (that is a basic property of many orders as we find them defined in
the literature, see for instance [7]) but satisfies asymmetry8 we called such an
order a particular order.
Some more comments are in order.
First of all, at the basis of the three foregoing cases there is the fact that the
criteria are assumed to have the same weight or importance so that:

- if we are in the cases (o1) and (o2) we can identify a preferred alternative
from a given pair;

- if we are in case (o3) we are in an particular condition.

In the last particular condition (that can be specified as either of undecidability
or of incomparability, see further on) the number of the criteria that favor the
alternative ai against the alternative aj is equal to the number of the criteria that
favor the alternative aj against the alternative ai so that we cannot identify a
preferred alternative nor we can state an indifference condition since the criteria
are, in general, not comparable among themselves.
We underline how, for each pair of alternatives, the constraint is x + y + z = c

and that, independently from z, any combination of the foregoing three cases is
possible.
Next we have to see why relation ≻ fails, in general, transitivity.
If we consider the three alternatives ai, aj, ah ∈ A we can have:

8This property can be easily derived from the definition of the ≻ binary relation and will
be presented more formally in section 7.
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- for the pair ai, aj x > y and so ai ≻ aj ,

- for the pair aj , ah x > y and so aj ≻ ah,

but for the pair ai, ah we can have any of the three cases (o1) (where transitivity
is satisfied), (o2) and (o3), where transitivity is not satisfied. All this depends
from the fact that the alternatives are pairwise compared according to indepen-
dent criteria ([9], [10]). In this way there is no relation between the evaluations
of the three pairs so that transitivity is not necessarily satisfied, as it will be
clear also from the toy examples that we are going to provide in section 6.

6 Two toy examples

We now give two toy examples from [3] in order to show what we have
described in section 5 at work.
We examine firstly the case of four criteria and four alternatives so that we have:

I = {1, 2, 3, 4} to index the criteria,

J = {1, 2, 3, 4} to index the alternatives.

A decider may have the following rankings of the four alternatives according to
the four criteria:

1 ∼1 2 ≻1 3 ≻1 4

2 ∼2 3 ≻2 4 ≻2 1

3 ∼3 4 ≻3 1 ≻3 2

1 ≻4 3 ≻4 2 ≻4 4

In Figure 1 we have represented the four corresponding linear graphs9, in the
order from left to right from top to bottom. In such graphs we represent the
relations ∼i as undirected arcs and the relations ≻i as directed arcs. From such
graphs it is possible to derive the following six pairwise comparisons10,11:

(1,2) 1 ∼1 2, 2 ≻2 1, 1 ≻3 2, 1 ≻4 2 from where we get 1 ≻ 2 and so a directed
arc from 1 to 2;

(1,3) 1 ≻1 3, 3 ≻2 1, 3 ≻3 1, 1 ≻4 3 from where we get a particular condition
over the alternatives 1 and 3 and so no directed arc between them;

9A graph is said to be linear if it can be drawn along a line so that we have a starting
node, an ending node and any node but the ending one has only one connection with another
node.

10We note that for a alternatives we have a(a − 1)/2 possible pairwise comparisons and so
at the most a(a − 1)/2 possible directed connections.

11We recall that the relations ∼i and ≻i are endowed with classical properties so they are
assumed to be transitive so that, for instance, from 1 ∼i 2 ≻i 3 we derive 1 ≻i 3.
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Figure 1: The four linear graphs of the four rankings

(1,4) 1 ≻1 4, 4 ≻2 1, 4 ≻3 1, 1 ≻4 4 from where we get a particular condition
over the alternatives 1 and 4 and so no directed arc between them;

(2,3) 2 ≻3 3, 2 ∼2 3, 3 ≻3 2, 3 ≻4 2 from where we get 3 ≻ 2 and so a directed
arc from 3 to 2;

(2,4) 2 ≻1 4, 2 ≻2 4, 4 ≻3 2, 2 ≻4 4 from where we get 2 ≻ 4 and so a directed
arc from 2 to 4;

(3,4) 3 ≻1 4, 3 ≻2 4, 3 ∼3 4, 3 ≻4 4 from where we get 3 ≻ 4 and so a directed
arc from 3 to 4.

All these relations (or lack of relations) are summarized in the graph of Figure 2
that, therefore, represent the particular order of the four alternatives according
to the four criteria. In that graph we use a directed arc between the alternatives
i and j with the proper orientation in order to represent the relation between
such alternatives according to relation ≻.
From the graph of Figure 2 we can see how the decider:

- considers the alternatives 1 and 3 as the best alternatives,

- considers the alternative 4 as the worst alternative,

- ranks the alternatives 1 and 3 as incomparable (see section 7),

- ranks the alternatives 1 and 4 as undecidable (see section 7).
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Figure 2: The resulting graph

The final selection is made by the decider from the set Â = {a1, a3} so that he
can choose the alternative a3 that is strictly better than alternatives a2 ad a4
and is incomparable with alternative a1. Anyway the full treatment of this final
selection step is out of the scope of the present technical report.
We now give the second toy example, in this case with three criteria and four
alternatives so that we have:

I = {1, 2, 3},

J = {1, 2, 3, 4}.

Figure 3: The three linear graphs of the three rankings
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In this case the decider may have the following rankings of the four alternatives
according to the three criteria:

1 ≻1 2 ≻1 3 ∼1 4

2 ∼2 3 ≻2 4 ≻2 1

3 ≻3 4 ∼3 1 ≻3 2

To such total orders there correspond the linear graphs of Figure 3 (in the order
from left to right and from top to bottom) so that, following the same steps
that we have followed in the previous example, we get the following rankings
according the ≻ binary relation:

1 ≻ 2

3 ≻ 1

2 ≻ 4

3 ≻ 4

Such relations can be represented through the directed graph of Figure 4.

Figure 4: The second resulting graph

We note that the pairs of alternatives 2, 3 and 1, 4 are characterized by null
differences between the corresponding x and y values (see section 5) so that no
arc is drawn between their representative nodes.
In this case the decider can argue that the alternative 3, though not directly
comparable with alternative 2, is the only good candidate for being the best
alternative from the set J = {1, 2, 3, 4} according to the criteria of the set
I = {1, 2, 3}. Also in this seemingly simple and clearcut case, however, the full
treatment of this final selection step is out of the scope of the present technical
report.
On the ground of the foregoing examples we comment a little on the fact that
the preference relation ≻, in general, is not transitive.
Such relation is defined through pairwise comparisons of possibly tied alterna-
tives through, as primitives, relations that we assume transitive such as ∼h and
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≻h for each criterion h. This means that relation ≻ is derived from such prim-
itive relations and from the rules we have established for its definition.
From such rules we may have both i ≻ j and j ≻ k but not i ≻ k. Examples
of this fact, caused also by the presence of the relation ∼h over pairs of distinct
alternatives, can be found, for instance, in the second example where we have:

- 1 ≻ 2 and 2 ≻ 4 though not 1 ≻ 4,

- 3 ≻ 1 and 1 ≻ 2 though not 3 ≻ 2.

To explain this feature we may note that:

· for the pair (1, 2) the alternative 1 is preferred to the alternative 2 for the
first and the third criterion,

· for the pair (2, 4) the alternative 2 is preferred to the alternative 4 for the
first and the second criterion.

This fact prevents the satisfaction of the transitivity since the alternative 1 is
preferred to the alternative 4 on the first criterion (where we have concordance)
but no agreement is possible on the other two criteria where we have either
discordance or indifference (whereas our definition of the relation ≻ imposes
1 ≻ 4 if there is a majority of criteria that establish such preference through the
relations ≻i).
Another instance can be found in the first example where we have 1 ≻ 2 and
2 ≻ 4 but, applying the rules that define the relation ≻, we do not have 1 ≻ 4.

7 Some features of the particular order

At this point, after the two toy examples that we have given in section 6, we
say something more about the particular order based on the binary relation
≻ that we defined in section 5.
First of all the defined order is not complete since we can have:

- decidable alternatives for any pair of alternatives i, j joined by a di-
rected arc so that we can say if it is either i ≻ j or j ≻ i;

- undecidable alternatives for any pair of alternatives i, j joined by a
directed path but not by a directed arc;

- incomparable alternatives for any pair of alternatives i, j without any
directed connection between them.

In some particular cases we could have an alternative ah that is preferred neither
to nor by any other alternative ak (so that we have x = y ∀ak) and that
corresponds to an isolated node. In order for this to occur we must have an
alternative ah for which we have x = y for any other alternative ak. We deal
with this feature in section 8.
In our toy examples we have no isolated node. In the first toy example indeed
we have:
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- the alternatives 1, 3 are incomparable whereas the alternatives 1, 4 are
undecidable;

- all the other alternatives are decidable.

In the second toy example we have:

- the alternatives 1, 4 and 2, 3 are undecidable;

- all the other alternatives are decidable.

Figure 5: Conditions for transitivity

As we have already seen in sections 5 and 6, relation ≻ dos not satisfies transi-
tivity (owing to the presence of incomparable and undecidable alternatives).
A necessary condition for transitivity is that among the a alternatives we have
(see footnote 10):

a(a− 1)

2
(7)

directed connections. Such condition is not sufficient as we show with the ex-
amples of Figure 5 where we have:

- on the left a transitive relation among the alternatives;

- on the right a non transitive relation among the same alternatives since
we have 1 ≻ 2 and 2 ≻ 4 but 4 ≻ 1 against the definition of transitivity.

From all these considerations we have that transitivity is, in general, not satisfied
by the≻ binary relation and must be verified case by case as an ex-post property.
On the other hand the binary relation ≻ satisfies asymmetry. Let us verify
this. If we consider the alternatives ai, aj ∈ A and we have (see section 5)
x > y we have ai ≻ aj . From x > y we have ¬(y > x) or ¬(aj ≻ ai) and so the
asymmetry.
Since relation ≻ is asymmetric we cannot have cycles like the one shown in
Figure 6 where we would have 1 ≻ 4 and 4 ≻ 1. This situation can never occur
since, from the asymmetry of the ≻ binary relation, the former relation prevents
the latter from occurring and vice versa.
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Figure 6: Possible cycles?

8 How to deal with isolated nodes

As we have seen in section 7, in the process of producing his directed graph
the decider may identify an alternative ah that is preferred neither to nor by
any other alternative ak and that corresponds to an isolated node.
First of all we note that if we have x = y = 0 ∀ak with k 6= h we have:

ah ∼i ak ∀ci ∈ C (8)

where ∼i is a classical indifference relation that satisfies transitivity. In this
case if we consider the alternatives ak and al (with both k 6= h and l 6= h) we
have:

ah ∼i ak ∀ci ∈ C (9)

and:
ah ∼i al ∀ci ∈ C (10)

and, from the transitivity of ∼i:

al ∼i ak ∀ci ∈ C (11)

so that we have no arc between any pair of alternatives ak and al.
From all this we derive that the alternatives would be equivalent among them-
selves so that the decider can select one of them at random.
On the other hand if we have x = y 6= 0 for some ak with k 6= h we have that
the alternative ah (to which it corresponds an isolated node) does not belong

either to Â or to Ǎ so that it must be discarded from the final selection process.
In the unfortunate case where the final graph contains only isolated nodes we
must conclude, therefore, that the method has failed and that the decider is
unable to perform his final selection. The only possible solution for the decider
is to enlarge the set C of the classifying criteria and repeat the procedure until
he is able to define a directed graph with at least a subset of decidable and
undecidable alternatives.

15



9 Conclusions and future plans

In this technical report we have presented a binary relation ≻ that defines
a type of order on a set of alternatives A according to a set of criteria C and
that we nicknamed a particular order.
Such binary relation is not complete, satisfies asymmetry but fails transitivity
and allows the definition of the set Â of the best alternatives among which the
decider can perform his final selection.
As we have seen in section 5, relation ≻ is based on the execution of pairwise
comparisons among the alternatives of the set A through the use of classical and
easy to evaluate binary relations ≻i and ∼i for each criterion ci ∈ C . Moreover
it has a simple definition based on a simple counting and on the evaluation of
either a “strictly greater than” relation or an “equal to” relation.
As to the particular order we have shown how it can be represented through
a directed but in general non complete graph where the set Â coincides with
the set of the nodes without any incoming arc.
Future plans include the use of these tools in more complex real-world cases
and a verification of the claim that the alleged properties are enough to let the
decider define, by using the sets A and C , a well characterized set Â from
which he can select the best alternative.
If we consider the criteria as voters and the alternatives as candidates another
stream of research that could be worth pursuing is a more formal and detailed
analysis of the properties of the proposed method as a voting method ([2], [4],
[12], [6], [9], [10]) with particular attention to its behavior with regard to some
famous impossibility theorems such ah the Arrow’s and Sen’s theorems ([11],
[9], [10]).
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