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Abstract


Given a set of integer keys from a bounded universe along with associated data, the dictionary
problem asks to answer two queries: membership and retrieval. Membership has to tell whether
a given element is in the dictionary or not; retrieval has to return the data associated with
the searched key. This paper studies three well-established relaxations of this basic problem:
(Compressed) Static functions, Approximate membership and Relative membership.
(Compressed) Static functions. In this relaxation, also known as retrieval-only dictionaries,
we are given a set S ⊆ U of n integers and each of them has associated data from an alphabet of
size σ. The problem asks to build a dictionary that, given a key x ∈ S, returns its associate data.
Notice that, whenever x 6∈ S, arbitrary data is returned. This problem has been widely studied
in the past [6, 8, 1, 16, 12, 11, 5, 7, 14]. Solutions to this problem have to carefully organize
associated data, so that, they can be retrieved in constant time without the need of storing keys
in S. Compressed static functions move a step forward: not only do not store the keys, but also
achieve space complexities bounded in term of the entropy H0 of the associated data. Such kind
of solutions are very interesting mainly for two reasons. Firstly, being nH0 at most n log σ, these
results are always at least as good as the uncompressed ones. Moreover, since the associated
data often follow a skewed distribution, nH0 could even become sublinear in n. The current
best solutions are by Porat [16] and Hreinsson et al. [12]. The first one requires n log σ + o(n)
bits of space, while the second one uses (1 + δ)nH0 + n · min(p0 + 0.086, 1.82(1 − p0)) bits of
space, where p0 is the probability of the most frequent symbol and δ is a constant greater than
0. Thus, the space complexities of these solutions are incomparable: the former has a sublinear
overhead but is not compressed, while the latter is suboptimal due to the factor (1 + δ) to
multiply H0 and has an overhead that may be Θ(n) depending on p0. Our optimal scheme
achieves the best of the two being the first known solution obtaining simultaneously constant
query time, compressed space (nH0), and sublinear overhead (o(n)). We strongly believe that
these characteristics makes the use of static functions significantly more appealing for many
applications.


Approximate membership. The approximate membership problem has been studied for
decades and the Bloom filter data structure [4] is probably the most popular and widely used
technique solving it. With Bloom filters we can represent a set of n integers by using n log 1


ε log e
bits of space with false positive probability (fpp) ε. Both its space and time complexities are
non-optimal: space is a constant factor away from optimal, and query time is logarithmic in 1


ε .
Constant time approximate membership data structures are able to achieve optimal n log 1


ε +o(n)
bits of space only if 1


ε is a power of two [5, 8, 15, 16]. The current best solution for general
ε has been presented in [12]. This solution requires an O(n) bits overhead in addition to the
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optimal space, for an arbitrary fpp. Our optimal scheme is the first known solution having o(n)
overhead, for any value of ε such that log 1


ε = o(log n/ log log n), namely, any reasonable choice
of ε in practice.


Relative membership. This problem asks to solve a further relaxation of the membership
query [3]. Given two sets S and R with S ⊂ R, we must be able to distinguish whether a key
belongs to S or R \ S. Our compressed static functions are used to obtain a constant time
solution for the problem achieving an optimal space complexity (up to lower order term).


1 Introduction


The dictionary problem is one of the most fundamental problem in algorithmics that consists in
storing and answering queries on a set S = {x1, x2, . . . , xn} of n elements. Usually, elements of S
are integers from a large universe U = [2w], where w is the size of a machine word. Each element
may have associated satellite data which are integers chosen from an alphabet Σ of size σ. The
problem asks to answer two kind of queries: given a key x ∈ U , membership has to decide whether x
belongs to S and retrieval has to return the satellite data associated with x whenever it belongs to
S. This paper studies three well-established relaxations of the dictionary problem: (Compressed)
Static functions, Approximate membership and Relative membership.


(Compressed) Static functions. A well-known relaxation of the retrieval query, also known as
retrieval-only dictionaries, allows to report arbitrary data whenever the searched key x does not
belong to S. The problem can be formally stated as follows.


Given a set S = {x1, . . . , xn} ⊂ U = [2w] of n integers, where w is the size of a machine word.
Elements of S have associated data (called symbol) from an alphabet Σ of size σ. The problem asks
to build a dictionary that, given a key x ∈ S, returns its associate symbol. An arbitrary symbol is
returned whenever x 6∈ S.


Essentially, we are defining a static function F whose domain is the set S and whose codomain
is formed by the symbols associated with those keys (i.e., Σ = {F (x1), . . . , F (xn)}). The problem
asks to evaluate F on its domain with the possibility of returning any symbol for keys in U \ S.


This problem has been widely studied in the past [6, 8, 1, 16, 12, 11, 5, 7, 14]. Solutions
to this problem have to carefully organize associated symbols, so that, they can be retrieved in
constant time without the need of storing keys in S. A simple solution solving the problem resorts
to a minimal perfect hash function (e.g., see [11]) with the aim of serializing F ’s symbols in a
array of length n which is, then, represented plain. This solution uses n log σ +O(n) bits of space
allowing O(1) evaluation time. However, this approach has to pay an ineliminable overhead of at
least n log e ≈ 1.44n bits due to the presence of the minimal perfect hash function. The goal of
the subsequent solutions is that of reducing this overhead as much as possible. Dietzfelbinger and
Pagh [8] provides a solution achieving (1 + δ)n log σ bits of space and O(1 + log 1


δ ) query time, for
any δ > 0. An alternative instance of their technique achieves n log σ + O(log log n) bits of space
whp and O(log n) query time. A subsequent result by Porat [16] is asymptotically superior: it
requires n log σ + o(n) bits of space and O(1) query time. 1


Often the symbols associated with the keys follow a skewed distribution: few symbols are
considerably more frequent than others. In these scenarios, it is desirable to achieve space that
depends on the entropy of the data rather than on the number of possible symbols. Thus, designing


1To be precise, this space complexity is achieved by combining solution of [16] with results in [9] and [12].
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compressed static functions asks to represent F with constant evaluation time and by using space
close to nH0 as much as possible, where H0 denotes the 0-th order empirical entropy of the sequence
F (x1), F (x2), . . . , F (xn). Even in this case, there exists a simple solution that serializes F ’s symbols
in an array via a minimal perfect hash function. Here, the array is represented in a compressed
form by using a scheme that guarantees O(1) access time to any of its values (e.g., see [10]). Even
if it achieves space bounded in term of the entropy, the ineliminable overhead of at least n log e
bits still persists. This overhead is even more critical in the compressed scenario: it may become
the dominant term for highly compressible functions. A recent result by Hreinsson et al. [12]
proposes a solution with a smaller overhead. Indeed, their solution represents any function F
within (1 + δ)nH0 + nmin(p0 + 0.086, 1.82(1− p0)) bits of space guaranteeing constant evaluation
time of F , where p0 is the (empirical) probability of the most frequent symbol and δ is a constant
greater than 0. This space complexity has two drawbacks: 1) the solution is suboptimal due to
the factor (1 + δ) to multiply H0; and 2) the overhead may become Θ(n) depending on p0, even if
it has a small constant to multiply n, thus, there may be no asymptotical improvement over the
solution based on perfect hashing.


In Section 2 we describe our optimal scheme which is the first known solution obtaining simulta-
neously constant query time, compressed space (nH0), and sublinear overhead (o(n)). We strongly
believe that these characteristics makes the use of static functions significantly more appealing for
many applications.


Approximate membership. The problem asks to solve a relaxed membership query and is
defined as follows.


Given a set S = {x1, . . . , xn} ⊂ U = [2w], we want to build an approximate membership data
structure AM with false positive probability ε such that:


• Given any element x ∈ S, it always returns true;


• Given any element x ∈ U \ S, it returns false with probability at least 1− ε.


The approximate membership problem has been studied for decades. The Bloom filter data
structure [4] is probably the most popular technique solving this problem. With Bloom filters a
space usage of n log 1


ε log e bits suffices for a false positive probability ε. However, its space and
time complexities are both non-optimal: space is a constant factor away from optimal and query
time is logarithmic in 1


ε . For achieving constant query time we can resort to a minimal perfect
hash function to injectively map the keys of S to the cells of an array of size n. Each cell contains
a log 1


ε -bit signature of its assigned key. A query is solved by mapping the searched key to a cell
and comparing its signature with the one contained in the cell. In this case the space occupancy
can be bounded with n log 1


ε +n log e+o(n) bits. This space usage differs from the best possible by
the term n log e which is ineliminable by resorting to this strategy. Another constant query time
solution has been presented in [6] which still has non-optimal space complexity. More recently,
some other constant time solutions with almost optimal space have been proposed [5, 8, 15, 16]. In
those solutions however the space is optimal (up to lower order term) only when the false positive
probability is a negative power of two. Recently, Hreinsson et al. [12] achieves a smaller space
complexity for an arbitrary false positive probability. However, their space occupancy uses 0.086n
bits of space more than the best possible.


Section 3 describes the first known approximate membership solution achieving optimal space
(up to lower order term) for any false positive probability (not necessarily a power of two).
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Relative membership problem. This problem has been introduced in [3] and asks to solve a
further relaxation of the membership query. We have two sets S and R with S ⊂ R, given any
x ∈ U , the data structure has to establish if x belongs to S or R \ S. More formally, the problem
is defined as follows.


Given two sets of integers S,R such that S ⊂ R ⊆ U = [2w], we want to build a data structure
such that:


• Given any element x ∈ S and x /∈ R, it always returns true;


• Given any element x ∈ R \ S, it always returns false;


• Given any element x ∈ U \R, it is allowed to return an arbitrary answer.


The constant time solution presented in Belazzougui et al. [3] uses log
(m
n


)
+O(n) bits of space,


where n = |S| and m = |R|. Being Ω(log
(m
n


)
) bits a lower bound for this problem, the space


overhead in the solution is Ω(n) bits.
In Appendix C we use our compressed static functions to obtain a constant time solution


achieving an optimal space complexity (up to lower order term).


2 Compressed Static Functions


In this section we address the problem of designing a data structure that stores and retrieves values
that have been associated to the keys of a set S = {x1, . . . , xn} ⊂ U = [2w] of n integers. Values
can be seen as symbols drawn from an alphabet Σ of size σ. 2 The data structure is allowed to
return an arbitrary symbol whenever the searched key x does not belong to S. This corresponds
to the definition of a function F whose domain is the set S and whose codomain is formed by the
symbols associated to those keys (i.e., Σ = {F (x1), . . . , F (xn)}). The problem asks to evaluate F
on its domain with the possibility of returning any symbol for keys in U \ S.


The simple known solution that we mentioned in the Introduction resorts to a minimal perfect
hash function to map S’s keys to the first [n] integers. This mapping can be done with a data
structure (see e.g., [11]) requiring (optimal) n log e+ o(n) +O(logw) bits of space while supporting
a constant time evaluation of the hash functions. The symbols associated with elements of S are
stored in a contiguous (bit)array in the order induced by the minimal perfect hash function. The
overall space complexity of this simple scheme is, thus, ndlog σe+O(n+ logw) bits.


One could expect that in real applications the codomain of F is highly compressible due to
the presence of many repetitions of the same symbols. Interestingly, we can exploit the presence
of these repetitions to reduce the space usage up to achieving, depending on the data, even space
sublinear in the number of bits required to represent F ’s codomain plain (i.e., n log σ bits). To
clarify this aspect, it is convenient to introduce the definition of the 0th order empirical entropy of
a sequence of symbols. Let T be a text obtained by concatenating, in arbitrary order, the symbols
assigned by F (i.e., {F (x1), . . . , F (xn)}). The zero-th order empirical entropy of T is defined as


nH0(T ) =
∑
α∈Σ


nα log
n


nα
,


2In the paper we will assume that σ ≤ n.
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where nα is the number of occurrences of symbol α in T and it is assumed that all logarithms are
taken to the base 2 and 0 log 0 = 0. It is well known that H0 is the maximum compression one can
achieve using a uniquely decodable code in which a fixed codeword is assigned to each alphabet
symbol. In particular, the so-called zero-th order statistical compressors (such as Huffman or
Arithmetic) achieve an output size which is very close to this bound. Notice that, by definition,
H0 is independent on the order of symbols in T .


A simple known approach to represent F in compressed space uses three main components:
minimal perfect hash functions, Huffman coding and prefix sum data structures. We use a minimal
perfect hash function to map S’s keys to the first [n] integers. This mapping can be done with
a data structure (see e.g., [11]) requiring (optimal) n log e + o(n) + O(logw) bits of space. The
symbols associated with elements of S are encoded using Huffman coding and stored in a contiguous
(bit)array in the order induced by the minimal perfect hash function. It is well-known that the
Huffman coding achieves redundancy of at most 1 bit per stored symbol which overall adds up to at
most n bits of extra space. Finally, we store the starting position of the encoding of each Huffman
encoded symbol using a prefix sum data structure which occupies at most n(dlog(H0 + 1)e+ 2) bits
of space. Notice that we also require a data structure to decode each codeword in constant time.
For this aim, a table requiring O(σ log σ) bits of space suffices. 3


Given a query for an element x ∈ S, we first evaluate the perfect hash function on element x.
Then, we probe the prefix sum data structure in order to get the position of the Huffman encoded
symbol which is finally decoded. We observe that this evaluation algorithm takes constant time.


The following Lemma follows from this discussion.


Lemma 1 A static function F defined over a subset S = {x1, . . . , xn} ⊆ U = [2w] into symbols
drawn from an alphabet Σ of size σ can be represented in nH0 +n log(H0 +1)+O(n+σ+logw) bits
of space so that computing F (x) for any x ∈ S takes constant time, where H0 denotes the empirical
zero-th order entropy of the sequence F (x1), . . . , F (xn).


The main advantage of this scheme is that, for large H0, the overhead in its space complexity
is relatively small when compared to H0. In particular the overhead is sublinear whenever H0 is
superconstant. However, its space occupancy is quite far from being optimal for small values of
H0. In particular, for constant H0 the used space is a constant factor away from optimal while for
smaller entropy the overhead becomes dominant. Moreover, we observe that the scheme does not
achieve any compression whenever the alphabet is binary. Indeed, its O(n) additive term results in
being always dominant. As we will see in the subsequent sections, the binary alphabet case is very
interesting due to its important applications. We also observe that no approach based on minimal
perfect hashing could expect to reduce this overhead due to the n log e bits lower bound on their
space occupancy [13].


In this section we will prove that achieving sub linear overhead for static functions is possible.
Our main result states that the overhead for compressed functions is o(n) bits worst case for all
but very large alphabets (namely, log σ = Ω(log n/ log logn)). Indeed, the lower order term is o(n)
as long as H0 = o( logn


log logn), which is always the case whenever log σ = o( logn
log logn) being H0 ≤ log σ.


Formally, we obtain the following theorem


3As minor technical detail, we notice that O(σ log σ) may be Ω(n). In this case we replace Huffman encoding with
Hu-Tucker encoding. The latter requires smaller table of size O(σ) bits at the cost of increasing the redundancy from
1 to 2 bits per symbol.
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Theorem 1 A static function F defined over a subset S = {x1, . . . , xn} ⊆ U = [2w] into symbols


drawn from an alphabet Σ of size σ can be represented in nH0 +O(n(H0+log logn) log logn
logn +σ+ logw)


bits of space so that computing F (x) for any x ∈ S takes constant time. H0 denotes the empirical
zero-th order entropy of the sequence F (x1), . . . , F (xn). The scheme can be built in O(n) expected
time.


The proof of this theorem is divided in the next two subsections. In Subsection 2.1 we start by
presenting proving the result for alphabets of size O(log2 n). Then, in Subsection 2.2, we combine
this idea with a proper alphabet partitioning step in order to deal also with general alphabet sizes.
In Subsection 2.2 we also show how to further reduce the lower order term in Theorem 1 so that
the space complexity vanishes as the underlying function is more compressible.


2.1 Compressed static functions for σ = O(log2 n)


In this subsection we prove the main theorem for alphabets of size σ = O(log2 σ). In the following
we will use fα to denote the frequency of symbol α ∈ Σ.


In our discussion we assume that any symbol α ∈ Σ is sufficiently frequent (namely, fα >
1


log4 n
).


This assumption is not problematic. We can use a simple scheme to manage rare symbols requiring
constant time and O(n/ log n) bits of space. We say that a symbol α is rare if and only if fα ≤ 1


log4 n
).


Let S′ ⊂ S be the subset of keys associated with these rare symbols. Notice that


|S′| =
∑


α∈Σ,fα<1/ log4 n


n · fα ≤ log2 n · n


log4 n
= O(n/ log2 n)


Being rare symbols few, we are allowed to represent them with a simple and explicit scheme. First,
we use a universal hash function h that injectively maps keys of S to [n2]. It is well know that such
a function can be found in linear expected time and its representation requires O(logw+log n) bits.
Then, we use a minimal perfect hash function m to assign an unique identifier to keys in S′. Finally,
for each x ∈ S′, we store explicitly the pair 〈h(x), F (x)〉 in the m(x)-th entry of an array with |S′|
entries. Notice that such entry requires O(log n) bits: O(log n) bits for storing h(x) and O(log log n)
bits for storing F (x). This simple data structure allows us to distinguish in O(1) time between keys
that belong to S′ and keys in S \S′. For keys in S′ we immediately know their associated symbols.
The overall space required by this data structure is O(n · |S′| log n+ logw) = O(n log logn


logn + logw)
bits.


After having addressed the extreme case of too rare symbols we can present our scheme by safely
assuming that any fα is at least 1


log4 n
. Crucial for our scheme is the intial step that partitions the


keys of S into m = Θ(n log logn
logn ) buckets containing at most b = c0


logn
log logn keys each, where c0 is an


arbitrary constant smaller than 1. The keys of the same bucket are injectively mapped to the range
[logc1 n], for some constant c1 > 0. Given x ∈ S, we use G(x) and Q(x) to denote respectively the
bucket in which x has been mapped and its offset within this bucket. We resort to a partitioning
strategy having these characteristics as stated by the following lemma (whose proof is reported in
Appendix A).


Lemma 2 Given a set S of n keys each of length w bits, and fixed any parameter b such that
b = O(logΘ(1) n), and any range R such that R = [logΘ(1) n)], we can build in linear time a data
structure that partitions the set S into m = Θ(n/b) buckets. There exists a data structure consisting
of two functions G and Q that has the following properties:
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• The number of keys mapped by G to the same bucket Bi is O(b);


• The keys of the same bucket are injectively mapped by Q to the range R;


• The data structure is described by using O(n log logn
b + logw) bits of space;


• Both G and Q can be evaluated in constant time.


For our problem, each bucket Bi has its own configuration of offsets and symbols. This config-
uration can be seen as a tuple 〈(o1, s1), . . . , (ok, sk)〉 with k ≤ c0


logn
log logn , oj < oj+1, ok ≤ logc1 n,


and sj ∈ Σ. Essentially, we have the pair (oj , sj) if and only if there exists a key x in S such that
G(x) = i, Q(x) = oj and F (x) = sj .


Our objective is to encode all bucket configurations by using space close to nH0 bits. The idea
is to use a (fully) randomly generated table T that has n3ε rows and logc1 n columns, with ε a
parameter smaller than 1/3 that will be set later. Each cell of T is randomly set equal to any
symbol α ∈ Σ with probability fα (≥ 1


log4 n
). The table index r of bucket Bi is the index of the first


row of table T whose cells match the configuration of Bi (namely, for any j ≤ k, we must have that
T [r, oj ] is equal to sj). We obtain a binary vector V by concatenating, in order, the table indexes
of all the buckets. Each table index is encoded in binary by using dlog re bits, where r is the index
of the row that matches the bucket. We augment this representation with a standard prefix sum
data structure which stores the starting position of each bucket by using overall O(n(1+H0) log logn


logn )
bits of additional space.


The constant time evaluation of F (x) is as follows. Given the key x, we first determine its
bucket G(x) and its offset Q(x). Then, we use the prefix sum data structure to retrieve the table
index r of the bucket BG(x). By construction, Q(x)-th cell of r-th row of table T is the value of
F (x). Obviously, an arbitrary value is returned whenever x does not belong to S.


Space/Time analysis. It remains to show that the length of the binary vector V can be bounded
in term of nH0 if we use suitable tables T which are sufficiently easy to be found. We evalu-
ate the number of possible bucket configurations. Recall that a bucket configuration is a tuple
〈(o1, s1), . . . , (ok, sk)〉, where each oi is an offset in R and si ∈ [Σ] is a symbol. Thus, we can
have at most |R| · σ different values for each pair (oi, si) and consequently at most (logc1 n · σ)b =


(logc1 n · log2 n)
c0


logn
log logn = 2(c1+2)c0 logn different bucket configurations. Therefore, in order to con-


clude that the total number of possible bucket configurations is at most nε, it suffices to choose c0


and c1 so that (c1 + 2)c0 < ε, for any constant ε < 1.
As said above, the table T is built by randomly generating n3ε rows with logc1 n symbols each.


For each bucket Bi, we identify the first row that matches its configuration as explained above. If
at least one bucket configuration fails in finding its match among the n3ε rows of T , we generate a
new random table T and we start everything from scratch. Now we show that the probability that
this happens is at most 1


n2ε . We denote with Pi the probability that a generic row of T matches
Bi. A row of T matches the configuration 〈(o1, s1), . . . , (ok, sk)〉 of bucket Bi if and only if the row
contains the symbol sj at position oj , for every j ∈ [k]. Being fsj the probability that the row
contains the symbol sj in position oj , we conclude that Pi =


∏
1≤j<k fsj .


Let the random variable Xi be the position of this row in the T . Observe that Xi follows a
geometric distribution with Pi as probability of success. Since we are assuming that the frequencies
fsj are larger that 1


log4 n
, it follows that Pi > ( 1


log4 n
)k = 2−4c0 logn. Thus, it suffices to set c0 <


ε
4


to ensure that Pi >
1
nε . By Markov’s inequality, the probability that Xi is larger than n3ε (i.e.,
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n2ε times more than the maximum expected number of trials nε) is 1/n2ε. By the union bound,
a failure over the (at most) nε configurations occurs with probability at most 1/nε. Thus, the
expected number of attempts needed to find a suitable table T for all the configurations is upper
bounded by O(nε).


If each bucket configuration has found its match in T , we check that the size of V is good
enough. More precisely, we check that


|V | =
∑


1≤i≤m
dlogXie ≤


∑
1≤i≤m


logXi +m ≤ nH0


(
1 +


1


log3 n


)
+m.


First, we observe that the expected size of V can be bounded in term of 0-th order entropy.
Indeed,


E[|V |] = E[
∑


1≤i≤mdlogXie]
≤ E[


∑
1≤i≤m logXi] +m


=
∑


1≤i≤mE[logXi] +m
≤


∑
1≤i≤m logE[Xi] +m


= nH0 +m


where the last inequality follows by Jensen’s inequality (since logarithm is concave).
To conclude, we use Markov’s inequality to bound the probability that |V | is larger than the


above bound by a factor 1 + 1
log3 n


. Indeed, by Markov’s inequality the probability that |V | >
E[|V |](1 + 1


log3 n
) is at most 1/(1 + 1


log3 n
). This means that |V | ≤ nH0(1 + 1


log3 n
) with probability


Ω( 1
log3 n


). If table T is not good enough for achieving that space bound, we retry everything from


scratch by using a new randomly generated table. Notice that a suitable table is found with
O(log3 n) expected trials. Since building and checking the size of V induced by each table requires
O(n4ε) = o(n) time (by choosing ε < 1


4), a suitable table can be found in O(n4ε log3 n) expected
time.


2.2 Compressed static functions for general alphabets


There is only one issue that prevent us from using directly the scheme of the previous section to
prove Theorem 1 also for larger alphabet sizes. The problem is due to the fact that the number
of possible bucket configurations is at least 2b·log σ, where b is the maximum number of keys in a
bucket. Since it is required this quantity to be O(nε), larger is the alphabet size, the smaller we
have to choose the value b (namely, we have to choose b = ε logn


log σ to match the required condition).


However, partitioning accordingly to Lemma 2 requires O(n log logn
b ) = O(n log σ log logn


logn ) bits for
obtaining buckets of size at most b. By plugging these arguments into our solution, we obtain a
scheme that requires nH0 + O(n log σ log logn


logn ) + O(σ + logw) bits of space. Thus, the lower order
term of this approach is larger than the bound claimed in Theorem 1 for large alphabets (namely,
log σ = ω(log log n)). Thus, the best we can achieve in this way is the following weaker lemma
which, nevertheless, will be useful later.


Lemma 3 A static function F defined over a subset S = {x1, . . . , xn} ⊆ U = [2w] into symbols


drawn from an alphabet Σ of size σ can be represented in nH0 +O(n(log σ+log logn) log logn
logn +σ+logw)


bits of space so that computing F (x) for any x ∈ S takes constant time. H0 denotes the empirical
zero-th order entropy of the sequence F (x1), . . . , F (xn). The scheme can be built in O(n) expected
time.
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We improve this lemma by appropriately dividing the original function F into several static
functions Fi. Each of these functions Fi is responsible only for keys associated with a portion of
the symbols in Σ having approximately the same frequencies. We resort to a global function Fg
over an alphabet of size O(log2 n) which is used as a dispatcher to choose the function Fi which is
responsible for the queried key. More precisely, we divide keys of S in groups by using the alphabet
partitioning strategy presented in [2]. We start by sorting symbols by their frequencies and we
form at most log2 n groups of symbols. The group Gi is formed by the symbols with frequencies
in the range [2−(i/ logn), 2−(i+1)/ logn), for i an integral in [0, log2 / log logn − 1]. Each group has
assigned an unique identifier in [log2]. Let σi denote the number of distinct symbols in group Gi,
each symbol of group Gi has assigned an unique identifier in [σi].


Function Fg is obtained from F by replacing each symbol with its group identifier. We have
a function Fi for each group Gi which is defined only for the keys S which are associated with
symbols in Gi. Thus, Fi is obtained from F by replacing occurrences of symbols in Gi with their
identifiers. In order to achieve space bounded by nH0 +O(n/ log n) bits, it is enough to represent
only Fg in compressed form, namely, by using close to nH ′0 bits, where H ′0 denotes the empirical
zero-th order entropy of the sequence Fg(x1), . . . , Fg(xn). Indeed, since symbols represented by
the same function Fi have almost the same frequencies, the use of succinct representations for Fis
suffices, i.e., each Fi can be represented by using log σi bits per key. For a formal proof of this
intuitive fact we refer to [2]. Our scheme resorts to different representations for the above functions
depending on the frequencies and the number of distinct symbols.


• Function Fg is represented by resorting to the scheme described in the previous subsection. We
notice, indeed, that Fg is defined over an alphabet of size at most log2 n. The space required


by this representation is nH ′0 + (
n(H′0+log logn) log logn


logn ) bits of space, where H ′0 denotes the
empirical zero-th order entropy of the sequence Fg(x1), . . . , Fg(xn).


• Function Fi for a group Gi where the sum of the frequencies of its symbols is at most 1
log4 n


is represented with a dedicated plain dictionary as we have done for rare symbols in Subsec-
tion 2.1. Notice that this dictionary stores at most O(n′ log n/ log4 n) keys, where n′ is the
size of the domain of Fi, and, thus, uses negligeble space.


• Function Fi with i ≥ log2 n/ log log n is represented with a simple scheme that costs no more
than log σi + Θ(1) bits per symbol. The scheme is obtained by using a minimal perfect hash
function and by writing an array with its symbols. The overhead of Θ(1) bits is within the
lower order term of Theorem 1. Indeed, the contribution of infrequent symbols to F ’s entropy
is at least Θ( logn


log logn) bits.


• Function Fi with i ≤ log n log logn is represented with the scheme of the previous subsection.
Indeed, the number of distinct symbols having frequencies in [2−(i/ logn), 2−(i+1)/ logn) cannot
be more than log2 n.


• Function Fi with log n log logn < i < log2 n/ log logn is represented by the scheme of Lemma


3. The space complexity is, thus, n′ log σi + O(n
′ log σi log logn′


logn′ ) + O(σi + logw) bits, where


n′ is the size of the domain of Fi. We observe that even in this case the lower order term
is within the lower order term of Theorem 1. Indeed, with these choices of i we have that
log σi ≤ log 2(i+1)/ logn = (i+ 1)/ log n being 2(i+1)/ logn the maximum number of symbols
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having their frequencies in [2−(i/ logn), 2−(i+1)/ logn). Notice that the contribution of these
symbols to F ’s entropy is at least i bits.


The space bound claimed in Theorem 1 easily follows by summing up the above space com-
plexities. The query algorithm is as follows. Given x, we query Fg(x) to identify the group of the
symbol associated with key x. Then, we query the function with index Fg(x) which is responsible
for this group (i.e., we query FFg(x)(x)). This concludes the proof of Theorem 1.


The main drawback of Theorem 1 is that its space occupancy does not vanish when H0 tends
to zero. Following an idea in [12], it is possible to overcome this limitation by carefully combining
the result of Theorem 1 and an approximate membership data structure. The following theorem
summarizes the obtained result. Due to space limitations, its proof is deferred to Appendix B.


Theorem 2 A static function F defined over a subset S = {x1, . . . , xn} ⊆ U = [2w] into symbols


drawn from an alphabet Σ of size σ can be represented in nH0 +O(nH0 log log(nH0)√
log(nH0)


) +O(σ + logw)


bits of space so that computing F (x) for any x ∈ S takes constant time, where H0 denotes the
empirical zero-th order entropy of the sequence F (x1), . . . , F (xn). The scheme can be built in O(n)
expected time.


3 Optimal solution for the Approximate membership problem


As reported in the introduction (constant time) approximate membership data structures (AM) are
able to achieve optimal n log 1


ε + o(n) bits of space only if the false positive probability (fpp) ε is
a power of two [5, 8, 15, 16]. The current best solution for general fpp has been presented in [12].
This solution requires an overhead of 0.086 · n bits over the optimal space, for an arbitrary fpp. In
this section we show a solution whose overhead is reduced to o(n) bits, for values of ε such that
log 1


ε = o(log n/ log log n). More formally we prove the following theorem.


Theorem 3 There exists an approximate membership data structure that, given a set S ⊂ U = [2w]


of n elements, has O(1) query time and requires n log 1
ε + O(


n(log logn+log 1
ε
) log logn


logn + logw) bits of
space, for any false positive probability ε. The scheme can be built in O(n) expected time.


We start by showing a space optimal solution for the simpler case in which ε is any constant in
(1/2, 1). More precisely, we prove the following lemma.


Lemma 4 There exists an approximate membership data structure that, given a set S ⊂ U = [2w]


of n elements, has O(1) query time and requires n log 1
ε + O(n(log logn)2


logn + logw) bits of space, for
any false positive probability ε ∈ (1/2, 1). The scheme can be built in O(n) expected time.


The idea is to use an approach similar to the one in the previous section. In this context, we
want to encode only two values, 0 and 1, whose probabilities are respectively 1− ε and ε. We have
that the elements of S have assigned symbol 1, while elements in U \ S have assigned symbol 1
with probability at most ε and symbol 0 with probability at least 1 − ε. In this case we partition
the keys of S into Θ(n/b) buckets of size at most b = c0


logn
log logn . The offset of each key inside its


bucket is assigned with a global pairwise independent hash function Q that maps a key to a value
in K = [logc1 n]. We notice that for this problem collisions induced by Q among keys of S are not
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problematic: keys in S are always associated with symbol 1. By this construction, there are at


most (logc1 n)
c0


logn
log logn = 2c0c1 logn = nc0c1 distinct sets of size b = c0


logn
log logn out of universe of size


k = |K| = logc1 n, with c0 < 1/2 and c1 ≥ 2 chosen so that c0c1 < 1.
As in the previous section, we randomly generate a binary table T with k columns and nc0c1 =


o(n) rows. In this case, we force each row to have exactly k1 = bεkc − b cells set to 1 and exactly
k0 = k − k1 cells set to 0. A bucket is encoded by writing the index of the first row of T that
matches its configuration (namely, all the cells corresponding to the keys of S in the bucket must
be set to 1). We have that the probability p that a cell matches a bucket with t ≤ b keys of S (i.e.,
all its t keys are mapped to a 1) is at least (k1


k (1− t
k1


))t.
Thus, the expected size of the encoding of the bucket is at most blog(1/p)c ≤ log(1/p) + 1 bits.


We have
log(1/p) + 1 = t log( kk1


( 1
1− t


k1


)) + 1


= t(log k
k1
− log(1− t


k1
)) + 1


= t(log(1
ε (1 +O( tk )))− log(1− t


k1
)) + 1


≤ t log 1
ε +O( b


2


k ) + 1


where we use k
k1


= 1
ε (1 + O( bk )) and t ≤ b, and the fact that | log(1 + x)| = Θ(x) when |x| < 1.


Now we know that k = logc1 n and that b < log n which means that the final size of the encoding
is t log 1


ε + O(log2−c1 n+ 1). By setting c1 ≥ 2, we ensure that the additive term O(log2−c1 n+ 1)
remains O(1). By summing up the encoding sizes for all the Θ(n/b) buckets, we obtain the space


usage of n log 1
ε +O(n(log logn)2


logn ) bits.
Finally, we analyze the false positive probability of our scheme. We consider a key x /∈ S and


we assume that x has been mapped to a certain bucket with t ≤ b keys of S on it. We want to
bound the probability that the scheme erroneously reports that x belongs to S. This could happen
in two cases: 1) x collides with a key of S in its bucket; 2) x has been mapped to a cell with a 1
in the row of T that matches its bucket configuration. The probability of case 1 is at most t/k.
Indeed, by the pairwise independence of the function Q, we know that x collides with each of the
t keys with probability at most 1/k. Thus, x collides with any of the t keys with probability at
most t/k (notice that those t keys themselves could collide and be mapped to only t′ ≤ t distinct
positions without affecting the false positive probability of the scheme). In case 2, since x does not
collide with any of the t keys, it is mapped to one of the other k− t′ possible cells. We have a false
positive iff the cell has been set to 1. By construction of the row, k1− t′ cells are set to 1 and k−k1


cells are set to 0. Therefore, the global probability of a false positive for x is at most


t
k + k1−t′


k−t′ ≤
t
k + k1


k


= t+bεkc−b
k ≤ ε


This concludes the proof of Lemma 4.
We obtain a scheme for the general case with ε ≤ 1/2 by combining Lemma 4 with a compressed


function of Theorem 1. We first observe that the false positive probability ε can be seen as ε = c2−i,
with c ∈ (1/2, 1) and i a positive integer. We store the keys in a first AM implemented according
to Lemma 4 with fpp c. We also use a pairwise independent hash function Q to map keys of
S to signatures in [2i] (i.e., of length i bits) which are stored as their associated symbols in the
compressed function. A query is solved by first querying the AM and, if the key passes the filter,
by comparing its signature with the one returned by the compressed function.
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The false positive probability of this second scheme is bounded as follows. Consider a key x /∈ S.
The filter is passed with probability at most c. The signature returned by the compressed function
could be of two types: it is the signature of a key, say y, in S or it is a completely random symbol
stored in a cell of the table used in our solution to represent the function (see Section 2). In both
cases the probability that the two signatures are equal is 1/2i. 4
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A Proof of Lemma 2


Lemma 2. Given a set S of n keys each of length w bits, and fixed any parameter b such that
b = O(logΘ(1) n), and any range R such that R = [logΘ(1) n)], we can build in linear time a data
structure that partitions the set S into m = Θ(n/b) buckets. There exists a data structure consisting
of two functions G and Q that has the following properties:


• The number of keys mapped by G to the same bucket Bi is O(b);


• The keys of the same bucket are injectively mapped by Q to the range R;


• The data structure is described by using O(n log logn
b + logw) bits of space;


• Both G and Q can be evaluated in constant time.


The partitioning strategy we use to obtain this lemma is a variation of the one by Hagerup
and Thoely [11] which proves a similar bound with the exception that b must be Θ(logΘ(1) n). We
modify their partitioning in the following way. First, we use their partitioning by choosing buckets
of size b′ in Θ(logΘ(1) n) which is multiple of our target b. Their partitioning gives us m′ = Θ(n/b′)
buckets with at most b′ keys each. Keys in each bucket are injectively mapped to R = [logΘ(1) n)].
Then, we process each of the above buckets separately dividing them into subbuckets of size b each
(possible with the exception of the last one). In this way we obtain overall Θ(n/b′) subbuckets
which is our final partition. We use an atomic heap [17] for each bucket to store the first key
of each of its subbuckets. The atomic heap is used to solve predecessor queries in constant time
(notice that the number of keys to manage in each atomic heap is polylogarithmic). At query time,
the atomic heap of a bucket is used to understand which subbucket contains the queried key x ∈ S.
The space required by these fusion trees is Θ(n log logn/b) bits as required.


B Proof of Theorem 2


As we already observed, a drawback of Theorem 1 is that the space occupancy does not vanish
when H0 tends to zero. Following an idea in [12], it is possible to overcome this limitation by
carefully combining the solution of Theorem 1 and the approximate membership data structure of
Theorem 3 in order to prove the following theorem.


Theorem 2. A static function F defined over a subset S = {x1, . . . , xn} ⊆ U = [2w] into symbols


drawn from an alphabet Σ of size σ can be represented in nH0 +O(nH0 log log(nH0)√
log(nH0)


) +O(σ + logw)


bits of space so that computing F (x) for any x ∈ S takes constant time, where H0 denotes the
empirical zero-th order entropy of the sequence F (x1), . . . , F (xn). The scheme can be built in O(n)
expected time.


The idea is that of using an AM as (pre-)filter for the compressed function whenever the fre-
quency f of the most frequent symbol α is sufficiently high (namely, f > 1− log logn√


log(n)
). In this case,


indeed, the task of the AM is that of individuating most of α’s occurrences. A small compressed
function is used to disambiguate the remaining uncovered keys in S.


If such a frequent symbol does not exist, we simply use the solution of Theorem 1. This
suffices since the bound of Theorem 1 already matches the bound of Theorem 2, if all symbols
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have frequency at most 1− log logn√
log(n)


. Indeed, in this case H0 = Ω( (log logn)2√
log(nH0)


) and Theorem 1 has an


overhead of O(n (log logn)2


logn ) = O( nH0√
log(nH0)


) bits.


Thus, in the following we will assume that there is a symbol α which has frequency at least
f > 1 − log logn√


logn
. Let Sα with |Sα| = nf denote the set of keys mapped to symbol α and let


q =


√
log(nH0)


log log(nH0) . As filter we use an AM with false positive probability equal to (1− f)q/f built on


the set Sᾱ = S \Sα of keys mapped to a symbol different from α. For the AM we use the solution of
Theorem 3. Any key that passes the filter has automatically assigned the symbol α since we know
that it does not belong to Sᾱ. However, due to the approximation of the membership query, there
are keys in Sα that are erroneously considered in Sᾱ. We use E to denote the set of these keys and
we observe that its size is n(1−f)q. This wrong assignment is solved by using a compressed function
of Theorem 1 on the set R = E∪Sᾱ, where we associate the symbol α to keys in E and their original
symbols to keys in Sᾱ. Notice that the set R has size n′ = |E| + |Sᾱ| = n(1 − f)q + n(1 − f) =
n(1− f)(1 + q).


Querying for a key x is simple. We query the AM: If x is considered in Sᾱ, we return the symbol
stored in the compressed function, otherwise we return α.


We now analyze the space usage of this scheme.
Let use H ′0 to denote the entropy of the symbols stored in the compressed function (i.e., the


symbols associated with elements of R). Notice that n′H ′0 ≤ nH0 as the compressed function stores
only part of the original set S and, thus, it must use less space. We consider separately the entropy
of symbols in Sᾱ and in Sα.


The AM stores symbols of Sᾱ with false positive rate (1−f)q/f . Thus, it uses space |Sᾱ| log( f
(1−f)q )+


O( (|Sᾱ|+1)(log log |Sᾱ|)2


log |Sᾱ| ) bits. Now, we know that |Sᾱ| ≤ nH0 which means that this bound is within
the lower order term of Theorem 2.


The compressed function uses n′H ′0 +O(
n′(H′0+log logn′) log logn′


logn′ )+O(σ+logw) bits of space. We


notice that n′ = n(1− f)(1 + q) ≤ nH0(1 + q) ≤ nH0(1 +


√
log(nH0)


log log(nH0)) and n′H ′0 ≤ nH0, to obtain


that its lower order term is actually O(nH0 log log(nH0)√
log(nH0))


) bits and, thus, as in the claimed Theorem 2.


We now turn our attention to the dominant terms in the AM and in the compressed function.
For that we analyse separately the contributions of elements of Sᾱ and elements of E ⊂ Sα to the
term n′H ′0.


The dominant term in the compressed function is n′H ′0 ≤ nH0.
We know that the compressed function stores all elements of Sᾱ but only the part E ⊂ Sα. We


thus have


nH0 = |Sα| log(
n


|Sα|
) +


∑
c∈(Σ\{α})


|Sc| log(
n


|Sc|
)


n′H ′0 = |E| log(
n′


|E|
) +


∑
c∈(Σ\{α})


|Sc| log(
n′


|Sc|
)
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We know that n′ = n+ |E| − |Sα| and that |E| < |Sα|. We thus deduce that


|E| log( n
′


|E|) = |E| log(n+|E|−|Sα|
|E| )


= (|Sc|+ |E| − |Sc|) log( n+|E|−|Sα|
|Sc|+|E|−|Sc|)


< |Sα| log( n
|Sα|)


(The inequality derives from the fact that the function (x + a) log(1 + b
x+a) is monotonically in-


creasing)
Thus, elements of E contribute less to n′H ′0 than to nH0.
It remains to bound the space used for encoding elements of Sᾱ. For an element in Sc ⊂ Sᾱ the


contribution to nH0 is


log( n′


|Sc|) = log(( (1−f)n
|Sc| )( n


(1−f)n))


= log( (1−f)n
|Sc| ) + log( n


(1−f)n)


= log( (1−f)n
|Sc| ) + log( 1


1−f )


Its contribution to n′H ′0 is


log( n′


|Sc|) = log(( (1−f)n
|Sc| )( (1−f)n))


= log( (1−f)n
|Sc| ) + log( n′


(1−f)n)


= log( (1−f)n
|Sc| ) + log(n(1−f)(1+q)


(1−f)n )


= log( (1−f)n
|Sc| ) + log(1 + q)


On the other hand for each element of in Sᾱ, the AM uses space log( f
(1−f)q ). Thus, when


summing up the space used by the AM and the compressed static function, we have that, for the
element of Sc ⊂ Sᾱ, we use space


log( (1−f)n
|Sc| ) + log(1 + q) + log( f


(1−f)q ) = log( (1−f)n
|Sc| ) + log(1 + q)− log(q) + log( f


1−f )


≤ log( (1−f)n
|Sc| ) + log 1


1−f + Θ(1
q )


Thus, the space used for an element in Sᾱ is within Θ(1
q ) from optimal. This concludes the proof


of Theorem 2.


C Optimal solution for the Relative membership problem


In the Relative membership problem we have two sets S and R such that S ⊂ R ⊆ U and we want
to answer to the following query: given a key x ∈ U , it has to establish whether x ∈ S or not. The
query is allowed to return any answer whenever x ∈ U \R.


It can be proven that the number of bits required by any solution to this problem is B(m,n) =
log


(m
n


)
= n log m


n + (m − n) log m
m−n − O(log n), where m = |R| and n = |S|. A previous result


in [3] provides a constant time solution requiring B(m,n) + O(n + logw) bits of space which is
based on a combination of an AM and a static function on binary alphabet. A simple way to obtain
an improved result is to directly apply Theorem 2 on a binary function defined on the key R by
assigning symbol 1 to keys in S and symbol 0 to keys in R \ S. A query for a key x ∈ U is solved
by querying the compressed function and by deducing that x ∈ S if and only if the compressed
function returns the value 1.


We derive the following lemma by using Theorem 2 and by observing that nH0 = B(m,n),
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Lemma 5 There exists a data structure solving in O(1) time the relative membership problem on


two sets S ⊂ R ⊆ [2w] which requires B(m,n) +O(B(m,n) log logB(m,n)√
log(B(m,n))


+ logw) bits of space, where


n = |S| and m = |R|. The scheme can be built in O(m) expected time.


By combining this lemma with the result of Belazzougui et al [3] we get the following theorem:


Theorem 4 There exists a data structure solving in O(1) time the relative membership problem


on two sets S ⊂ R ⊆ [2w] which requires B(m,n) + O(min(n, B(m,n) log logB(m,n)√
log(B(m,n))


,m − n) + logw)


bits of space, where n = |S| and m = |R|. The scheme can be built in O(m) expected time.


The combination is done in the following way: in case B(n,m) ≤
√


logn


log logn (assuming n ≤ m/2 5)
we use Lemma 5 which has overhead at most O(n) bits which is at least as good as the result of
Belazzougui et al but may become even o(n). Otherwise, we use the result of Belazzougui et al.


5The case n > m/2 is handled in the same way by replacing the set S with its complement R \ S and associating
0 instead of 1 with the set R \ S and 1 instead of 0 with the set S.
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