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Abstract


We propose a version of the (generalized) bundle scheme for convex nondifferentiable
optimization suitable for the case of a sum-function where some of the components are
“easy”, that is, they are Lagrangian functions of explicitly known compact convex pro-
grams. This corresponds to a stabilized partial Dantzig-Wolfe decomposition, where suit-
ably modified representations of the “easy” convex subproblems are inserted in the master
problem as an alternative to iteratively inner-approximating them by extreme points, thus
providing the algorithm with exact information about a part of the dual objective func-
tion. The resulting master problems are potentially larger and less well-structured than
the standard ones, ruling out the available specialized techniques and requiring the use of
general-purpose solvers for their solution; this strongly favors piecewise-linear stabilizing
terms, as opposed to the more usual quadratic ones. This in turn may have an adverse
effect on the convergence speed of the algorithm, so that the overall performance may
depend on appropriate tuning of all these aspects. Yet, very good computational results
are obtained in at least one relevant application: the computation of tight lower bounds
for Fixed-Charge Multicommodity Min-Cost Flow problems.


Keywords: Nondifferentiable Optimization, Bundle methods, Lagrangian Re-
laxation, Stabilized Partial Dantzig-Wolfe Decomposition, Multicommodity Net-
work Design


1 Introduction


We are concerned with the numerical solution of the problem
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(Π) inf
{
f(x) =


∑
k∈K f


k(x) : x ∈ X
}


, (1)


where K is a finite set, each fk : Rn → R is a finite-valued (hence proper) convex possibly
nondifferentiable function, and X ⊆ Rn is closed convex. To simplify the treatment, we will
initially assume X = Rn, with the extension to the constrained case to be separately discussed
later on. Our motivation comes from the case where f is the Lagrangian function of a block-
structured problem


(Ω) sup
{ ∑


k∈K c
k(uk) :


∑
k∈KA


kuk = b , uk ∈ Uk k ∈ K
}


(2)


w.r.t. the “complicating” constraints that link together blocks of variables that would otherwise
be independent, i.e.,


(Ωx) f(x) = xb+
∑


k∈K


(
fk(x) = sup


{
ck(uk)− (xAk)uk : uk ∈ Uk


} )
(3)


(with a little abuse of notation we use the same index set K in both (1) and (3), although (1)
should have one extra index to account for the linear term xb in (3)). However, as we shall
see, the approach actually requires only some of the fk to be Lagragian functions. To save on
notation, we will often write c(u), Au = b and U respectively for the objective function, linking
constraints and feasible region in (2)/(3) when the sum-function structure is not relevant.


Bundle methods are known to be among the most efficient implementable algorithms for
convex nondifferentiable optimization. We will refer in particular to the generalized ones defined
in [21], since that is perhaps the largest class of bundle methods with a unified convergence
analysis. However, several other bundle-type algorithms have been proposed (see [34] for a
thorough discussion and several recent references like [1, 31, 32, 37, 39, 40, 43, 44, 52]), and the
basic idea of the present paper appears to be easily applicable to most of them as well. For (3),
it is known that bundle algorithms also solve a “convexified” version of (2) (see e.g. [19, 21, 45]
and (29) below), which is useful e.g. in combinatorial optimization [22, 27] and stochastic
programming [18, 50].


It is a standard assumption in most nondifferentiable optimization algorithms that f is only
known through an oracle (“black box”) that, given any x (∈ X), returns the value f(x) and
one subgradient z (∈ ∂f(x), the subdifferential of f at x). Let us immediately remark that
we will extensively exploit the Fenchel conjugate f ∗(z) = supx{xz − f(x) } of f as the way
to succinctly represent “primal” (in the sense of (2)) objects. This is discussed in detail in
§3.1, but in short the rationale is that f ∗ represent optimality in (3), in the sense that for any
optimal solution u one has


b− Au = z ∈ ∂f(x) ⇐⇒ f(x)− xz + f ∗(z) = 0


and f ∗(z) = c(u) (cf. (27)). This means that for any z (u) produced by solving (3) with some
x we can assume knowledge of f ∗(z) as well as f(x), as one is immediately available when the
other is known. The main idea of bundle methods is to collect the bundle B = { z̄ ∈ ∂f(x̄) }
for a finite set {x̄} of tentative points in order to construct a model fB of f ; typically, the
(aggregated) cutting-plane model


f̂B(x) = max
{
f(x̄) + z̄(x− x̄) : z̄ ∈ B


}
≤ f(x) . (4)


This is then used to construct the next tentative point; its simplest choice—that of Kelley’s
Cutting Plane method—is just a minimum of f̂B, but some form of stabilization (discussed
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below) is usually necessary in order to improve the performance. Several different forms of
stabilization have been analyzed in the literature [1, 21, 31, 32, 38, 43, 52], but the focus of the
present paper is rather the choice of the model fB.


Indeed, it is well-known that exploiting as much as possible the structure of the problem
at hand is necessary to obtain efficient convex minimization algorithms. This can take many
different forms even in “simple” algorithms like subgradient methods, such as exploiting the
geometrical structure of the proximal term (be it the Euclidean norm [47] or a Bregman dis-
tance [5]), exploiting the sum-function structure to reduce the iteration cost [8], exploiting the
composite structure to perform smoothing [48], exploiting the availability of a self-concordant
barrier for the feasible region X [49], and others. Not surprisingly, many of these ideas apply
to bundle methods (which some subgradient methods are the “poorman’s version” of [4]) as
well: see e.g. [38] for the use of entropic proximal terms, [17] for reducing the iteration cost
in the sum-function case, [55] for the composite structure, [32] for the log-barrier, and [39] for
exploiting the structure of X. A significant fraction of the results concern the development
of specialized models exploiting specific properties of f . For a sum-function such as (3), for
instance, a separate oracle is typically available for each component k ∈ K providing fk(x)
and zk ∈ ∂fk(x), so that f(x) =


∑
k∈K f


k(x) (+xb) and z =
∑


k∈K z
k (+b). Thus, a relatively


straightforward idea is to separately keep the |K| disaggregated bundles Bk = { z̄k } to con-
struct |K| independent models fkB, one for each component, so that fB =


∑
k∈K f


k
B is a much


better model—for the same set {x̄} of tentative points—of f than (4). This disaggregated model
improves the convergence speed so much as to amply compensate the increased cost due to the
larger size of the corresponding master problems [3, 10, 16, 36, 53]. Other relevant cases are
piecewise-conic models of piecewise-conic functions [33, 39, 51], and Newton-type models of
smooth components fk of a sum-function [2, 40, 44].


In this paper, we continue on the same vein targeting a different structure that—somewhat
surprisingly—does not seem to have been exploited yet: the case where some of the fk are
Lagrangian functions of a “simple” convex program. This allows to use exact models of these
components by basically just copying the corresponding constraints in the formulation of the
master problem, instead of iteratively approximating them by inner linearization. From the
primal viewpoint, this amounts to performing a stabilized partial Dantzig-Wolfe decomposition
where not all the polyhedra whose Cartesian product forms the feasible region are reformulated
by extreme points and iteratively inner approximated. This enlarges the initial size of the master
problem, but not necessarily the average size since the exact model does not grow in size with the
iterations like classical ones do. Furthermore, it provides the algorithm with a better—indeed,
“perfect”—knowledge of the corresponding fk, thereby possibly improving the convergence
speed. On the other hand, this destroys the standard structure of the master problem upon
which specialized approaches [20] rely, thereby requiring the use of general-purpose solvers for
the master problem solution. This in turn strongly favors the use of piecewise-linear stabilizing
terms (cf. (24) below), as opposed to the usual quadratic ones, which unfortunately may have
an adverse effect on the convergence speed of the algorithm [6, 11, 24]. However, we show that
the new approach leads to a very substantial reduction of the overall running time in at least one
relevant application: the computation of tight lower bounds for Fixed-Charge Multicommodity
Min-Cost Flow problems (FC-MMCF).


The structure of the paper is as follows. In Section 2 we present the application motivating
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our development, FC-MMCF, and discuss different possible variants of Dantzig-Wolfe decom-
position for the problem highlighting the potential for improvements w.r.t. “näıve” approaches.
Then, in Section 3 we first provide an overview of (generalized) bundle methods, and then we
discuss how “exact” models of “easy” components can be inserted into the master problem.
Finally, in Section 4 the computational results obtained with FC-MMCF are presented and
discussed, and in Section 5 conclusions are drawn.


Throughout the paper the following standard notation is used. B(ε, p) = {x : ||x||p ≤ ε }
is the ball of radius ε in the p-norm. For a set X, IX(x) = 0 if x ∈ X (and +∞ otherwise) is its
indicator function, σX(z) = sup{ zx : x ∈ X } is its support function, cl X is its closure, and
co X is its convex hull. For a convex function f , epi f = { (v, x) : v ≥ f(x) } is its epigraph
and dom f = {x : f(x) < ∞} is its domain. For a problem (P ) inf[sup]{ f(x) : x ∈ X },
v(P ) denotes its optimal value; X = ∅ ⇒ v(P ) = +[−]∞.


2 Motivation: decomposition approaches for FC-MMCF
The Fixed-Charge Multicommodity Min-Cost Flow problem (FC-MMCF) is as follows. Given
a directed network G = (N,A), where N is the set of nodes and A is the set of arcs, we must
satisfy the demands of a set of commodities K. Each commodity k ∈ K is characterized by a
deficit vector bk = [bki ]i∈N indicating the net amount of flow required by the node: nodes with
negative deficit are sources, nodes with positive deficits are sinks, and nodes with zero deficits
are transshipment. In many (but not all) applications a commodity is an origin-destination
pair (sk, tk) with an associated demand dk > 0 that must flow between sk and tk, i.e., bki = −dk
if i = sk, b


k
i = dk if i = tk, and bki = 0 otherwise. Each arc (i, j) in the network can only be


used if the corresponding fixed cost fij > 0 is paid; in this case it has a mutual capacity uij > 0.
Also, individual arc capacities ukij are defined for the maximum amount of flow of commodity
k on arc (i, j). These may either come from the real application modeled by the problem, or
be introduced to strengthen the model; for instance, in the origin-destination case one may
set ukij = dk, which is useful if dk � uij. Furthermore, a routing cost ckij has to be paid for
each unit of commodity k moving through (i, j). The problem consists in satisfying demand
requirements and capacity constraints at minimal total cost. Defining arc flow variables wkij
for the amount of commodity k flowing on arc (i, j) ∈ A and binary design variables yij which
define whether or not the arc (i, j) has been paid for, the (weak) arc flow formulation of the
problem is


min
∑


k∈K
∑


(i,j)∈A c
k
ijw


k
ij +


∑
(i,j)∈A fijyij (5)∑


(j,i)∈Aw
k
ji −


∑
(i,j)∈Aw


k
ij = bki i ∈ N , k ∈ K (6)∑


k∈K w
k
ij ≤ uijyij (i, j) ∈ A (7)


0 ≤ wkij ≤ ukij (i, j) ∈ A , k ∈ K (8)


yij ∈ {0, 1} (i, j) ∈ A (9)


2.1 Decomposition approaches
FC-MMCF has the form (3), and therefore Lagrangian techniques can be used for computing
lower bounds that can then be effectively incorporated into either heuristic [14, 29, 30] or exact
[35, 41] approaches. Indeed, the multicommodity flow structure has always been a favorite
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target for Lagrangian approaches [12, 13, 23, 24, 28, 36, 44]. Here we consider the Lagrangian
relaxation of constraints (7) with multipliers α = [ αij ](i,j)∈A ≥ 0, which gives the (concave)
Lagrangian function


f(α) =


{
min


∑
k∈K


∑
(i,j)∈A(ckij + αij)w


k
ij +


∑
(i,j)∈A(fij − αijuij)yij


(6) , (8) , (9)


whose computation is easy due to separability. In fact, the feasible region is (w, y) ∈ W × Y ,
where in turn W =


⊗
k∈K W k, with each W k ⊂ R|A| being defined by∑


(j,i)∈Aw
k
ji −


∑
(i,j)∈Aw


k
ij = bki i ∈ N , 0 ≤ wkij ≤ ukij (i, j) ∈ A ,


i.e., the classical (single-commodity) min-cost flow structure, for which plenty of efficient so-
lution algorithms exist [26, 28]. Also, linear optimization on the unitary hypercube Y is very
easy; actually, Y itself is the cartesian product of the |A| sets Y ij = {0, 1}, each one concerning
the single variable yij. Thus, computation of f(α) (and its subgradients) is quite easy. The
well-known downside [22] is that the lower bound is then the same as that of the continuous
relaxation, as all subproblems have the integrality property. It is also well-known [22] that
solving the corresponding Lagrangian Dual via Kelley’s Cutting Plane method is equivalent to
the celebrated Dantzig-Wolfe decomposition approach, which is nothing but a huge-scale refor-
mulation of the problem solved by column generation. In particular, denoting by S the set
of (the indices of) all possible extreme points [w̄1,s, . . . , w̄k,s, ȳs] of W × Y , the Dantzig-Wolfe
reformulation of (the continuous relaxation of) FC-MMCF is


min
∑


s∈S
( ∑


k∈K
∑


(i,j)∈A c
k
ijw̄


k,s
ij +


∑
(i,j)∈A fij ȳ


s
ij


)
θs (10)∑


s∈S
( ∑


k∈K w̄
k,s
ij − uij ȳsij


)
θs ≤ 0 (i, j) ∈ A (11)∑


s∈S θs = 1 , θs ≥ 0 s ∈ S (12)


Since |S| is huge, (10)–(12) can only be solved by column generation: select a (small) subset B
of S, form the master problem with only the columns s ∈ B, and then use the dual variables of
the linking constraints (11) as Lagrangian multipliers in f(α) to compute a new useful extreme
point, or prove that none exists.


It is well-known [36] that disaggregating the master problem, exploiting the separability of
the feasible region, can pay off significantly. The idea is simply to individually consider all the
constituents w̄1,s, . . . , w̄k,s, ȳs of produced vertices and assign a separate variable in the master
problem to each. This is particularly revealing in FC-MMCF when commodities are origin-
destination pairs, since then the extreme points of each W k correspond to elements p ∈ Pk of
the set of all sk–tk paths. Hence, defining path flow variables fp for each p ∈ P = ∪k∈K Pk
and denoting by H the set of all (indices of the) 2|A| vertices ȳh of Y , we obtain that the
disaggregated version of (10)–(12) corresponds to the path flow formulation


min
∑


p∈P cpfp +
∑


h∈H
(∑


(i,j)∈A fij ȳ
h
ij


)
θh (13)∑


p∈P : (i,j)∈p fp ≤
∑


h∈H
(
uij ȳ


h
ij


)
θh (i, j) ∈ A (14)∑


p∈Pk fp = dk k ∈ K (15)


fp ≥ 0 p ∈ P (16)∑
h∈H θh = 1 , θh ≥ 0 (i, j) ∈ A (17)
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where cp is the cost of the path p (sum of the costs of its arcs). Even cursory examination
of (13)–(17) shows that something weird has happened: one has taken the very simple set
Y , representable by |A| variables and 2|A| constraints, and has expressed it by means of 2|A|


variables. Thus, a “blatantly wrong” (arguably the worst possible one) reformulation has taken
place for the Y -part of the problem. This is not necessary: one could have considered instead
the partial Dantzig-Wolfe decomposition


min
∑


p∈P cpfp +
∑


(i,j)∈A fijyij (18)∑
p∈P : (i,j)∈p fp ≤ uijyij (i, j) ∈ A (19)


(15) , (16) (20)


yij ∈ [0, 1] (i, j) ∈ A (21)


where only theW -part has been reformulated, but not the Y -part. Of course, one then generates
extreme points (paths) of the W k components, but not of the Y one. Note that an analogous
treatment could have done to the aggregated master problem (10)–(12).


Remarkably, (18)–(21) can also be obtained by performing a full disaggregation, where
not only W is decomposed into the |K| distinct W k, but also Y is decomposed into its |A|
components Y ij. It is easy to see that this is basically equivalent to (18)–(21): each Y ij has
only two extreme points ȳ0


ij = 0 and ȳ1
ij = 1, and assigning them multipliers θ0


ij and θ1
ij,


respectively, one is in fact performing the substitution


yij = 0 · θ0
ij + 1 · θ1


ij , θ0
ij + θ1


ij = 1 , θ0
ij ≥ 0 , θ1


ij ≥ 0


which is nothing but a convoluted way to write (21). This does not mean, however, that the
partial Dantzig-Wolfe is just a special case of, or a minor improvement upon, the standard
disaggregated master problem approach. Indeed, consider the slight variant of FC-MMCF
where one requires that at most a given number 0 < H < |A| of arcs are “opened”: this
corresponds to adding to (5)–(9) the simple extra constraint∑


(i,j)∈A yij ≤ H (22)


whose immediate effect is to kill separability of the Y set. Thus, in such a variant there can be
at most |K|+1 subproblems, and full disaggregation is no longer viable. However, doing partial
Dantzig-Wolfe for this case is straightforward: just add (22) to (18)–(21). Thus, while being
equivalent to full disaggregation for FC-MMCF, the partial Dantzig-Wolfe idea is in general
different.


It is intuitive (and it will be confirmed in §4) that the partial Dantzig-Wolfe (18)–(21)
is preferable to the standard Dantzig-Wolfe (13)–(17): the master problem contains a more
compact and “exact” representation of a part of the problem. The issue is that the Dantzig-
Wolfe approach, partial or not, in itself is often not efficient enough due to instability. In
simple words, this is the phenomenon whereby two subsequent dual iterates are very far from
each other, even when the first one happens to be “close” to the optimal solution. It has been
repeatedly shown (e.g. [11]) that stabilizing the Dantzig-Wolfe approach—and its close relatives
[6, 24]—can have a significant impact on its performances. In primal terms, stabilization can
be performed as easily as adding slack variables to the master problem to allow violation of
the linking constraints “at a cost”; since the structure of the linking constraints is completely
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immaterial to this operation, it is clearly possible to develop a stabilized partial Dantzig-Wolfe
approach as well. For instance, in (18)–(21) this could look like replacing (19) with∑


p∈P : (i,j)∈p fp − uijyij ≤ sij (23)


where a (linear or nonlinear) cost is paid if sij > 0. Properly handling all this requires an
understanding of the dual side, where one is basically employing a bundle method for a sum-
function where some of the fk are “easy” and can be dealt with in a specialized way. The next
section is devoted to the development of such an approach.


3 Bundle methods with “easy” components
We first provide a quick overview of (generalized) bundle methods. We remark that, using the
conjugate f ∗, a primal interpretation of (1) can be given even when f is any convex function
provided by an oracle, rather than the explicit dual function of (2): the interested reader is
referred to [21] for details.


3.1 A brief overview of (generalized) bundle methods
Bundle methods are best described as implementable forms of (generalized) Proximal Point
algorithms, i.e., as the combination of two different ideas:


Proximal Point. In order to choose the next iterate, one selects a current point x̄, usually
the best iterate found so far, and a stabilizing term Dt, a closed convex function with suitable
properties chosen among a family depending on the proximity parameter t > 0, and (ideally)
solves the stabilized problem


(Πx̄,t) φt(x̄) = infd
{
f(x̄+ d) +Dt(d)


}
. (24)


The role of Dt is to ensure that, for the optimal solution d∗ to (24), the next iterate x+ = x̄+d∗


is “not too far” from x̄, and t dictates how “strong” this proximity-inducing term is; under mild
assumptions on Dt the (generalized) Moreau–Yosida regularization φt has the same minima as
f but enjoys additional properties, e.g., smoothness, making it easier to construct descent
algorithms for its minimization, since f(x+) < f(x̄) unless x̄ is optimal for (1), in which case
d∗ = 0.


Approximation. Unfortunately, solving (24) with the sole help of a black box for f is, in
principle, as difficult as solving (1). Therefore, bundle methods resort to a two-level approach,
repeatedly solving instead the stabilized master problem


(ΠB,x̄,t) φB,t(x̄) = infd
{
fB(x̄+ d) +Dt(d)


}
, (25)


where fB is a model of f constructed using the information available in B, and using its readily
available optimal solution d∗—an approximation to the optimal solution of (24)—to compute
the next iterate x+. If the model is “accurate enough”, d∗ will indeed be a descent direction, i.e.,
f(x+) < f(x̄); provided that the decrease in the function value is “sizable”, x̄ can be moved to
x+ (a Serious Step) and convergence is attained as in the Proximal Point approach. Otherwise x̄
is left unchanged (a Null Step) and z+ ∈ ∂f(x+) is added to B in order to improve fB; sequences
of consecutive Null Steps are to be seen as steps of an approach for the (approximated) solution
of (24) based on iteratively refining the model fB using the information provided by the oracle.
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This approach may (at least asymptotically) provide the optimal solution of (24); however, for
the sake of efficiency it is better to stop it as soon as the obtained d∗ provides a large enough
descent, which is the reason for solving (24) in the first place.


In this process, Dt may be simply kept fixed (assuming that it has suitable properties, otherwise
one has to ensure that eventually it vanishes [21, §8]), but on-line tuning of t to suitably reflect
the actual “trust region” where fB is a “good” model of f is known to be very important for
the practical efficiency of the approach (see e.g. [42, 56]). Anyway, general rules can be given
[21] such that any t-strategy obeying them eventually constructs a minimizing sequence for (1).


The primal viewpoint of bundle methods is described by the Fenchel dual of (24)


(∆x̄,t) infz
{
f ∗(z)− x̄z +D∗t (−z) } . (26)


This complicated-looking object simplifies considerably for our dual function (3), as it is well
known that f ∗ is intimately tied with the (negative of the) value function of (2)


ν(z) = − sup
{
c(u) : b− Au = z , u ∈ U


}
; (27)


indeed, ν∗(x) = supx
{
xz + sup


{
c(u) : b− Au = z , u ∈ U


} }
= sup


{
c(u) + x(b− Au) : u ∈ U


}
= f(x)


for z can only take the value b−Au, making the sup irrelevant. Of course, this does not imply
that f ∗ = ν, as without assumptions on c and U we cannot even expect ν to be convex; rather,
f ∗ = ν∗∗, i.e., the closed convex envelope of ν. Indeed, it is well known that v(Π) − v(Ω) =
ν(0) − ν∗∗(0), i.e., the duality gap between the original problem and its Lagrangian dual, if
any, is entirely captured by the difference between ν and its convex envelope in 0 [42]. Thus,
for f ∗ = ν to hold one has first to assume that (Ω) is convex in the first place—c is concave
and U is convex—plus some technical assumptions that will be discussed later on. When this
happens, plugging f ∗ = ν into (26) gives


(Ωx̄,t) sup
{
c(u) + x̄(b− Au)−D∗t (Au− b) : u ∈ U


}
i.e., a generalized Augmented Lagrangian of (2). For a fixed z̄, it is clearly well-defined a ū
that solves (27) with z = z̄. Indeed, while (27) is a “difficult” problem (for z = 0 it is (2)),
its relaxation (3) is “easy”: for any given x, its optimal solution ū is a posteriori also optimal
to (27) for z̄ = b − Aū. In other words, B can be re-interpreted as a set of optimal solutions
ū ∈ U of the pricing problem (3). This allows to give an all-primal interpretation to (the dual
of) (25), in particular when fB is the cutting plane model (4), whose Fenchel’s conjugate is


f̂ ∗B(z) = inf
{ ∑


ū∈B c(ū)θū :
∑


ū∈B(b− Aū)θū = z , θ ∈ Θ
}


,


where Θ = {
∑


ū∈B θū = 1 , θ ≥ 0 }. Plugging this in (26) with f̂ ∗B replacing f ∗ yields


(ΩB,x̄,t) inf
{
−
∑


ū∈B c(ū)θū − x̄z +D∗t (−z) : A
(∑


ū∈B ūθū
)
− b = z , θ ∈ Θ


}
which if furthermore c is also affine gives


(ΩB,x̄,t) sup
{
c(u) + x̄(b− Au)−D∗t (Au− b) : u ∈ co B = UB


}
. (28)
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Thus, from the primal viewpoint (generalized) bundle methods combine a (generalized) aug-
mented Lagrangian scheme for solving (2) with an inner linearization approach where U is
substituted by its approximation UB, the convex hull of the solutions of the pricing problem
(3) collected so far. The optimal solution of (28) in the u-space, u∗ =


∑
ū∈B ūθ


∗
ū where θ∗ is its


optimal solution in the θ-space, can be shown, under mild conditions, to converge to a solution
of (2). If c is not concave and/or U is not convex, f is nonetheless a convex function and (1)
is equivalent to (and, therefore, bundle methods solve) the “close-convexified version” of (2)


(Ω̃) sup
{
c̃(u) : Au = b


}
(29)


where c̃ = (c + IU)∗∗ [45]. When c is linear, for instance, this simply amounts to replacing U
with co U in (2) (to see that, just select a large enough B in (28) so that co B = co U). These
results immediately extend to inequality constraints Au ≤ b, yielding sign constraints x ≥ 0 in
(1); conversely, the generic nonlinear case A(u) ≤ b is considerably more complex, even in the
convex case [45].


A final clarifying step comes from considering specific realizations of Dt. For our computa-
tional results we will restrict to the two simple choices


Dt(d) =
1


2t
|| d ||22 D∗t (z) =


1


2
t|| z ||22 , (30)


Dt(d) = IB(1/t,∞)(d) (that is, constraints ||d||∞ ≤ 1/t) D∗t (z) = t|| z ||1 . (31)


With these forms, all the above results become simple applications of quadratic/linear duality.
For instance, (28) with (31) is the Linear Program


sup c
( ∑


ū∈B ūθū
)
− x̄(z+ − z−)− t(z+ + z−)


A
( ∑


ū∈B ūθū
)
− b = z+ − z− , θ ∈ Θ


(32)


that is, “just Dantzig-Wolfe decomposition with slacks” (cf. (23)). In general, the arguments
in this paper would apply as well to the other stabilizing functions proposed in the literature,
such as piecewise-quadratic or exponential (cf. [21] and the references therein), entropic [38],
piecewise-linear with more than one piece [6] (which still result in LPs), and/or depending on
multiple parameters instead of the single t [3, 6].


As previously remarked, when f is a sum-function it is better to construct independent
models for each component; the corresponding disaggregated master problem


(ΠB,x̄,t) infd
{ ∑


k∈K f
k
B(x̄+ d) +Dt(d)


}
, (33)


in our dual setting (3), is easily seen to have as dual


(∆B,x̄,t) sup
{ ∑


k∈K(ck − x̄Ak)uk −D∗t
(∑


k∈KA
kuk − b


)
: uk ∈ Uk


B k ∈ K
}


where Uk
B = co Bk; that is, to each component Uk of the feasible region (whose cartesian


product makes U) is separately inner-approximated, as in (13)–(17). As we have seen in (18)–
(21), however, for some type of sets Uk inner-approximation is not an efficient representation.
We will in fact concentrate on sets where there is no need of approximating anything, because
a “compact” representation exists and is known (cf. Y in (21)) that can be directly added to
the master problem.
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3.2 Exact models of “easy” components: the basic case
We now consider the special case of (1) with K = {1, 2} and


f 2(x) = sup
{
c2(u2)− (xA2)u2 : u2 ∈ U2


}
(34)


where c2 is concave and U2 = { u2 : G(u2) ≤ g } is an “easy” convex set; say, the convex
constraint function G : Rn → Rm is explicitly known and m is “small” (think Y in §2.1). On
the other hand, the other component is only available by the standard “very opaque black box”;
of course, one case where this happens is (2)


(Ω) sup
{
c1u1 + c2(u2) : u1 ∈ U1 , u2 ∈ U2 , A1u1 + A2u2 = b


}
where the first Lagrangian subproblem


f 1(x) = sup
{


(c1 − xA1)u1 : u1 ∈ U1
}


admits a “reasonably efficient” (linear) optimization oracle, however exotic it may be (e.g. [25]).
The linearity of c1 is not even necessary, and it is kept only for simplifying the results; also,
the proposed method immediately extends to more than two components, as well as to other
situations that will be explicitly discussed in the following.


The standard approach up to now has been to treat both components in exactly the same
way: develop two (different) “black box” solvers, one for each component, compute a pair
(ū1, ū2) at each iteration by invoking both, and add each to the respective bundle B1 and B2,
thereby inner-approximating both U1 (actually, its convex hull) and U2. As we have seen in
§2, however, this is something we do not want to do for U2, since its “compact” representation
via G and g is preferable. The solution is, on the outset, simple: form (33) where only f 1 is
approximated by some (e.g., cutting plane) model f 1


B, while f 2 is just kept as is, yielding the
dual pair


(ΠB,x̄,t) infd
{


(x̄+ d)b+ f 1
B(x̄+ d) + f 2(x̄+ d) +Dt(d)


}
(35)


(∆B,x̄,t) inf
z1,z2


{
(f 1
B)∗(z1) + (f 2)∗(z2)− x̄


(
z1 + z2 + b


)
+D∗t


(
− b− z1 − z2


) }
. (36)


Note in the above derivation that the Lagrangian function actually has three terms: f 1, f 2,
and f 0(x) = xb. So, one has a z0 besides z1 and z2 in the dual, and an extra term (f 0)∗(z0) in
the objective function: however, the conjugate of the linear function xb is I{ b }, and this, via
z0 = b, gives (36). This passage, that we have purposely not discussed in the general derivation
of §3.1, is interesting here because it shows that also in the normal development (and even with
a non-sum f) one typically has at least one “very easy” component that is not approximated
in the master problem. To make (36) implementable one has to choose an appropriate model
f 1
B, e.g. the cutting plane one. Also, by the very same development as in (27) for the whole of


(Ω), one has
(f 2)∗(z2) = − sup


{
c2(u2) : z2 = −A2u2 , G(u2) ≤ g


}
(37)


under the technical assumptions ensuring no gap between the u2-problem and its Lagrangian
dual. These are very mild, and range from simple compactness of the feasible set, to the Slater
constraint qualification, to “regular enough” G(u2) ≤ g constraints, such as linear, (convex)
quadratic or semidefinite [42, Theorem 22]. Plugging (37) into (36) for f 1


B = f̂ 1
B gives the


implementable form
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(∆B,x̄,t)
sup c1


(∑
ū1∈B ū1θū1


)
+ c2(u2) + x̄z −D∗t (−z)


z = b− A1


(∑
ū1∈B ū1θū1


)
− A2u2 , G(u2) ≤ g , θ ∈ Θ


(38)


with the corresponding “abstract form” (for U1
B = co B1)


(ΩB,x̄,t)
sup c1u1 + c2(u2) + x̄z −D∗t (−z)


z = b− A1u1 − A2u2 , u1 ∈ U1
B , u2 ∈ U2


.


So, in primal terms the idea is quite straightforward: because U2 is an “easy” set, one just
uses its representation in the master problem (cf. again (18)–(21)), while keeping all the rest of
the (approximated generalized augmented) Lagrangian approach unchanged. If U2 and c2 are
“nice enough”, the dual of (38) can be easily written: in the linear case, for instance, one has


(ΠB,x̄,t)


infd,ω (x̄+ d)b+ v + gω +Dt(d)


v ≥
(
c1 − (x̄+ d)A1


)
ū1 ū1 ∈ B


ωG = c2 − (x̄+ d)A2 , ω ≥ 0


(39)


where ω are the dual variables of the Gu2 ≤ g constraints in (34). Similar results hold whenever
c2 and G allow for closed-form duals, such as those expressible as SOCPs or SDPs [7]. Under
(30) or (31), (38) and (39) are just linear or quadratic problems, for which it is easy to extract
all useful primal-dual relationships: d∗ and f 1


B(x̄ + d∗) are the dual optimal multipliers of
constraints z = b − A1


( ∑
ū1∈B ū1θū1


)
− A2u2 and


∑
ū1∈B θū1 = 1, respectively, z∗2 = −A2u


∗
2,


(f 2)∗(z∗2) = −c2(u∗2), and so on.


Clearly, little changes in the standard convergence theory of bundle methods. Only a few
simple properties are required to models fkB—basically not to overestimate fk and to be “tight
enough” at points where the function is computed [21, §5]—and the real function fk cannot
but satisfy those requirements. Usually, the crucial difference between fk and fkB is that the
former is either unknown or too complex to use, while the latter is efficiently implementable.
As this is no longer true for “easy” components, it makes sense to use the original fk as a
model. Because the objective f = f 0 + f 1 + f 2 is overall a “difficult” function that needs
to be approximated by fB = f 0 + f 1


B + f 2, all the machinery of the bundle approach still is
required, and not much actually changes in the outlook of the algorithm. Only, because some
of the components are exactly known, the algorithm is provided with better information on the
function to be minimized, and one expects faster convergence in practice.


An interesting observation is that, provided that the function value is only computed at
x+ = x̄ + d∗, one can entirely avoid the oracle for the easy components. Indeed, once f 1(x+)
is known, the value of f(x+) can be computed since f 2(x+) is obtained “for free” as a by-
product of the solution of (39). This requires doing away with line—or curved [56]—searches;
yet this is what happens anyway in most practical implementations, and the convergence theory
requires computing f(x+) at least “frequently enough” [21]. A minor issue with this approach
is that at the very first iteration—when (39) has never been solved yet—the value of f(x̄) is
not known, and therefore the descent condition cannot be checked; however, there are several
easy workarounds for this, as the convergence theory allows to skip the descent test entirely
“from time to time” [21].


Another relevant feature of bundle methods, aggregation, is not impacted at all from the
use of easy components. This is based on the fact that the optimal solution u∗ of (28) “has just
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the right form to be added to B”; under appropriate conditions on Dt [21], doing so allows to
prune down the bundle to any fixed size—downto B = {u∗}—without impairing convergence.
A milder way to attain the same result is to keep in B all the ū such that θ∗ū > 0. Both
these techniques can be easily adapted here: simply, one only aggregates on the “difficult”
components—e.g., u∗1 =


∑
ū1∈B ū1θ


∗
ū1


in (38)—and prunes their bundles after having inserted
the aggregated solution—downto B = {u∗1}—in (38). Clearly, no aggregation is possible and
needed for the “easy” components. Yet, this allows to keep the maximum size of the master
problems bounded, as the “easy” components result in a constant number of variables and
constraints.


This basic idea readily extends to all the typical variants and tricks of standard bundle
methods, as discussed below.


3.3 The constrained case
Bundle methods easily cope with constraints, provided the set X is known and (closed) convex,
by simply inserting full knowledge about X into (25), i.e., solving


(ΠB,x̄,t) inf
{
fB(x̄+ d) +Dt(d) : (x̄+ d) ∈ X


}
(40)


which is nothing but (25) using the model fX,B = fB+IX of the essential objective fX = f+IX .
Its rather abstract dual


(∆B,x̄,t) inf
{
f ∗B(z) + σX(w)− x̄(z + w) +D∗t (−z − w)


}
becomes a lot more comfortable e.g. for polyhedral X = { x ∈ Rn : Hx ≤ h }:


(∆B,x̄,t) infz,ω
{
f ∗B(z) + ωh− x̄(z + ωH) +D∗t (−z − ωH) : ω ≥ 0


}
(ω being the dual variables of the optimization subproblem implicit in the definition of σX).
For f 1


B = f̂ 1
B this finally gives a fully implementable master problem


(∆B,x̄,t)


sup c1


(∑
ū1∈B ū1θū1


)
+ c2(u2) + ωh+ x̄z −D∗t (−z)


z = b+ ωH − A1


(∑
ū1∈B ū1θū1


)
− A2u2


G(u2) ≤ g , θ ∈ Θ , ω ≥ 0


. (41)


For instance, sign constraints x ≥ 0, associated to inequality constraints in (Ω), simply give rise
to slack variables ω in the constraint defining z. The dual of (41), when it is easily written (cf.
(39)), simply contains the explicit constraint Hd ≤ h − Hx̄. Clearly, handling constraints in
this way is nothing but another case of “easy” component, since one is simply using a suitable
“exact” model of IX in the stabilized primal master problem. This requires a specific (minor)
update of the convergence theory only because IX is not finite-valued, as opposed to the fks
[21, §9.1]. Actually, whenever the set of defining inequalities of X is finite, it is not even
required that all of them be inserted in the master problem in advance: when an unfeasible x
is probed, the black box should just return f(x) = +∞ and some of the violated inequalities.
This is useful e.g. in applications to combinatorial optimization if some of the sets Uk are not
compact, and therefore the Lagrangian functions can indeed evaluate to +∞. However, with
Xk = dom fk for k ∈ K, f(x) = +∞ at any point x outside X = ∩k∈K Xk, no matter which
and how many of the Xk it fails to belong to. Thus, there is no reason to “disaggregate X”,
too: constraints are “global” in nature, although in practice one may want to keep track of
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which component has generated a specific constraint, as the associated multipliers are those of
rays of some Uk that may be needed to reconstruct the solution in the u-space. The inherent
finiteness of the underlying representation makes it easy to ensure that the algorithm remains
convergent, provided that minimal care is exercised in not removing information “too quickly”
(the extreme, obvious case being never removing anything); see e.g. [24] for a similar situation.


Interestingly, for “simple” sets X an alternative approach has been proposed to lessen the
cost of the master problem. The Proximal-Projection idea [39] is to exploit aggregation to
replace the solution of the master problem with just one (or possibly more) step(s) of a block-
descent approach. In a nutshell, the observation—in the notation of (41)—is that the “crucial”
optimal aggregated subgradient z∗ is given by z∗ = s∗0 + s∗X + s∗1 + s∗2, where s∗0 = b, s∗X = ω∗H,
s∗1 = −A1u


∗
1 (with u∗1 obtained by θ∗) and s∗2 = −A2u


∗
2 are (approximated) subgradients of


the four components f 0, IX , f 1 and f 2, respectively. What one does is to alternatively replace
some of the components with the linearizations provided by these (approximated) subgradients,
just as aggregation does; except that aggregation is “permanent”, while in this approach the
original data is later restored. To mirror the approach of [39], one could first solve a master
problem where the constraints (x̄+d) ∈ X in (40) are replaced by a linearization using s∗X from
the previous iteration. Then, a second master problem is solved where IX is restored, but all
the other components are replaced by their linearizations (s∗1 and s∗2) resulting from the first
master problem (this does nothing to f 0, of course). This provides an approximated solution
of the “true” master problem (40), which corresponds to one round of a block-Gauss-Seidel
approach to (41) where first ω is kept fixed (to the optimal value ω∗ of the previous iteration)
and θ, u are allowed to vary, then θ, u are kept fixed and ω is allowed to vary. Since the results
of [39] hold when f is a sum-function and the disaggregated model is used, they a fortiori
hold if some components of f are “easy” and our approach is employed. This suggests that
the Proximal-Projection approach could be extended to a specialized handling of the “easy”
components in case they have an appropriate structure. In particular, assume that (41) with ω
and θ fixed is easily solved with specialized approaches due to the structure of U2 (which may
be an “easy” set, think Y in §2.1). Then, one could envision a three-step block-Gauss-Seidel
approach where at each step only one among θ, ω and u2 is allowed to vary, the other two being
fixed. Note that the same idea (called Alternating Linearization) has been applied already for
yet another notion of “simple” component in [40], so convergence of such an approach could be
relatively easy to obtain; this is however out of the scope of the present paper and it is left for
future developments, especially since our computational results seem to present a strong case
against approximation of the master problem (cf. §4.1).


3.4 Exploiting lower bounds
In practice, it may be the case that global lower bounds are known, either on some of the
components (−∞ < lk ≤ fk), or on the whole objective function (−∞ < l ≤ f); it is then
desirable to incorporate this valuable information in the master problems. For individual lower
bounds, this is pretty straightforward. Of course, this is only relevant for the “difficult” f 1, since
for the “easy” f 2 the bound is implicit anyway in the (already available) complete description
of the function. Then, inserting l1 in the model simply requires adding 0 (with (f 1)∗(0) = l1)
to B1; with f 1


B = f̂ 1
B, for instance, this simply results in a new constraint v ≥ l1 in (39), and


thus in a new variable ρ1 in (38), with cost l1, that does not appear in the definition of z but it
does in the constraint


∑
ū1∈B θū1 + ρ1 = 1. An analogous trick works if all components of f are
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difficult: the constraint v1 + v2 ≥ l does the job, corresponding to a null subgradient belonging
to both B1 and B2 (a unique ρ variable, distinct from the “individual” ρ1 and ρ2, participating
in both constraints


∑
ūk∈Bk θūk = 1 for k = 1, 2).


Matters are more complex when f 2 is “easy”, as one than needs a model of the bounded
function f̄(x) = max{ f(x) , l }, whose conjugate (consult e.g. [34]) is


epi f̄ ∗ = cl co
(
epi f ∗ , epi l∗


)
, where l∗(z) = I{ −l }(z) .


Thus, the epigraph of f̄ ∗ can be constructed by taking all points (in the epigraphical space)
(f ∗(z), z) and computing their convex hull with the point (0,−l); the function value is then the
inf over all these possibilities for a fixed z, i.e.,


f̄ ∗(z) = infρ,z′
{
ρf ∗(z′)− l(1− ρ) : z = ρz′ , ρ ∈ [0, 1]


}
. (42)


Note that we are assuming l ≤ inf f , thus f ∗(0) ≥ −l: (0,−l) is outside (or at most on the
frontier of) epi f ∗. Hence, (36) becomes


(∆B,x̄,t) infρ,z′
{
ρf ∗(z′)− l(1− ρ)− x̄(ρz′) +D∗t (−ρz′) : ρ ∈ [0, 1]


}
where we have substituted the original variable z with ρz′, giving rise to nasty bilinear terms.
Analogously, our disaggregate case with an easy component is


(∆B,x̄,t)
inf ρ(f 1


B)∗(z′1) + ρ(f 2)∗(z′2)− l(1− ρ)− x̄z +D∗t (−z)


z = ρ (b+ z′1 + z′2) , ρ ∈ [0, 1]
(43)


where we prefer keeping track of the original variable z (not that this spares us with the
bilinear term, though). Using the cutting plane model for the first component and the compact
representation for the second component one has


ρ(f 1
B)∗(z′1) = − sup


{
ρc1


∑
ū1∈B ū1θū1 :


∑
ū1∈B ū1θū1 = z′1 , θ ∈ Θ


}
ρ(f 2)∗(z′2) = − sup


{
ρc2(u2) : z′2 = −A2u2 , G(u2) ≤ g


}
which in turn yields


(∆B,x̄,t)


sup ρc1


∑
ū1∈B ū1θū1 + ρc2(u2)− l(1− ρ) + x̄z −D∗t (−z)


z = ρ
(
b− A1


∑
ū1∈B ū1θū1 − A2u2


)
G(u2) ≤ g , θ ∈ Θ , ρ ∈ [0, 1]


.


This can be brought to a fully implementable master problem if U2 is compact. The idea is to
eliminate the bilinear terms by the change of variables θ′ = ρθ and u′2 = ρu2. This results in the
term c̄2(u′2, ρ) = ρc2(u′2/ρ) in the objective function and in the constraint G(u′2/ρ) ≤ g, which
can typically be efficiently dealt with whenever this is possible (as we assume) for the original
c2 and G. Indeed, c̄2 is the perspective of c2, which is well-known to be convex. Similarly,
boundedness of U2 implies the existence of g and ḡ such that g ≤ u2 ≤ ḡ for all u2 ∈ U2


(these are usually readily available): one can then impose the constraint ρg ≤ u′2 ≤ ρḡ, which
ensures ρ = 0 ⇒ u′2 = 0, and rewrite G(u2) ≤ g as ρG(u′2/ρ) ≤ ρg, i.e., a constraint using
the perspective of the original constraint function G. Fortunately, the perspective of a convex
function is typically readily representable as soon as the original function is: for instance, the
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perspective of a SOCP-representable function is SOCP-representable [7]. The same technique
could then be applied to the case where f 1


B is not polyhedral but has a SOCP [1] or SDP [33, 51]
representation. The linear case is particularly simple in that the perspective of a liner function
is the function itself: this gives


(∆B,x̄,t)


sup c1


∑
ū1∈B ū1θ


′
ū1


+ c2u
′
2 − l(1− ρ) + x̄z −D∗t (−z)


z = ρb− A1


∑
ū1∈B ū1θ


′
ū1
− A2u


′
2 , ρ =


∑
ū1∈B θ


′
ū1


Gu′2 ≤ ρg , θ′ ≥ 0 , ρ ∈ [0, 1]


(note that ρ = 0 ⇒ u′2 = 0 since { u′2 : Gu′2 ≤ 0 } = { 0 } by compactness of U2), whose
dual is


(ΠB,x̄,t)


−l + inf v +Dt(d)


v1 ≥
(
c1 − (x̄+ d)A1


)
ū1 ū1 ∈ B


v ≥ (x̄+ d)b+ v1 + gy , v ≥ l


yG = c2 − (x̄+ d)A2 , y ≥ 0 .


Incorporating individual bounds f 1
B ≥ l1 in the above development is straightforward.


4 Computational results


We now apply the developed approach to FC-MMCF. Actually, we do this for two different
variants of the formulation; other than the weak formulation (5)–(8) we also consider the strong
formulation obtained by replacing (8) with


0 ≤ wkij ≤ ukijyij (i, j) ∈ A , k ∈ K (44)


which is well-known to significantly improve the lower bound [13] at the cost of |A| · |K|
extra constraints. In the Lagrangian approach the constraints (44) need also be relaxed with
multipliers β = [ βkij ](i,j)∈A , k∈K ≥ 0, yielding


f(α, β) =


 min
∑


(i,j)∈A


( ∑
k∈K


(ckij + αij + βkij)w
k
ij + (fij − αijuij −


∑
k∈K


βkiju
k
ij)yij


)
(6) , (8) , (9)


(note that the constraints (8), redundant when (44) are present, are used to tighten up the
relaxation). The corresponding (much) better lower bound is then paid with a (much) larger
dual space which, as we will see, very significantly impacts on the computational cost of the
problem.


For both functions, several possibilities exist when solving the corresponding maximization
problem via a bundle method. These do not impact on how the function is computed, but
rather on how the information produced by the computation is used in the master problem. In
particular, one can have:


• a fully aggregated (FA) version a-la (10)–(12), where the sun-structure is ignored;


• a partly disaggregated with easy y (PDE) version, where f is the sum of two functions,
one for W and the other for Y , the latter being treated as an “easy” one;
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• a disaggregated with difficult y (DD) version a-la (13)–(17), with |K|+ 1 functions, all of
them “difficult”, one for each W k and a single one for Y ;


• a disaggregated with easy y (DE) version a-la (18)–(21), which is the same as the above
but with the Y component treated as an “easy” one.


Note that a Fully Disaggregated version would exist that is analogous to DD except for the
fact that Y is disaggregated as well; as discussed in §2.1 this is however basically the same as
DE, and therefore it has not been tested.


4.1 Computational setting
We have implemented the proposed approach within a general-purpose C++ bundle code devel-
oped by the first author and already used with success in several other applications [10, 13, 27].
The structure of the code allows to solve the Lagrangian dual with different approaches, such as
Kelley’s Cutting Plane method, several “quick and dirty” subgradient-like methods [4, 15], and
the bundle method. The latter in particular is “generalized” in the sense that the solution of
the master problem is delegated to a separate software component under an abstract interface;
this allows to test different solution algorithms, and different stabilizing terms, without affect-
ing the main logic of the bundle approach. For our experiments we have used the specialized
quadratic solver described in [20] for (30), which however only supports Fully Aggregated mas-
ter problems. Therefore, all other options have been tested with the “boxstep” stabilization
(31); all the LPs have been solved with CPLEX 12.2, while the Lagrangian relaxations have
been solved with efficient Min-Cost Flow solvers from the MCFClass project (cf. e.g. [28]). All
the algorithms have been coded in C++, compiled with GNU g++ 4.4.5 (with -O3 optimization
option) and ran single-threaded on a server with multiple Opteron 6174 processors (“Magny-
Cours”, 12 cores, 2.2 GHz) each with with 32 GB of RAM, under a i686 GNU/Linux (Ubuntu
10.10 server). The computation of the Lagrangian function could have been easily parallelized
[12], but, as the results will show, this would have hardly—if at all—improved the running
times.


The experiments have been performed on 48 randomly generated problem instances. The
random generator is the one already employed in several studies (e..g. [13]), but due to the
remarkable effectiveness of the new approach we were able to tackle much larger instances than
previously possible. In particular, we generated 12 groups of 4 instances each as follows. The
number of nodes and arcs were chosen in the set {(20, 300), (30, 600), (50, 1200)}. For each of
these, the number of commodities was chosen in the set {100, 200, 400, 800}. Then, each of
the four instances with the same size differs for the parameters which control how “tight” the
capacities are, and how “large” the fixed costs are. The characteristics of the 12 groups are
summarized in Table 4.1; the instances can be freely downloaded from


http://www.di.unipi.it/optimize/Data/MMCF.html#Canad .


For the largest instances, the formulation has 960000 continuous variables and 1200 binary
ones, 40000 equality constraints, and 962400 inequality constraints (not counting the sign re-
strictions). Of the latter, in the weak formulation 960000 are simple bound restrictions, whereas
in the strong one they are the strong forcing constraints (44). While these are only slightly
denser than bound restrictions, their impact on the bound computation time is quite dramatic,
as the following results will show.
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group 1 2 3 4 5 6 7 8 9 10 11 12
|N | 20 20 20 20 30 30 30 30 50 50 50 50
|A| 300 300 300 300 600 600 600 600 1200 1200 1200 1200
|K| 100 200 400 800 100 200 400 800 100 200 400 800


Table 1: Description of the instances


4.2 Results for the weak formulation
The results for the different approaches are presented in Table 2. In particular, the columns
“FA-2” report results for the FA approach with (30), where the master problem is solved
with the specialized quadratic solver of [20], while columns “FA-1” report results for the same
approach with (31), where the master problem is solved with Cplex, as for all the other cases.
For all the approaches, a maximum running time of 1000 seconds has been set, and the total
running time (in seconds) is reported in column “time”. The stopping criterion was set to a
relative accuracy of 1e-6, a rather high call for this kind of algorithms; this is implemented by
asking that


c(u∗) + x̄(b− Au∗)−D∗t̄ (Au∗ − b) ≤ εf(x̄) (45)


where ε = 1e-6 and t̄ is chosen large enough to ensure that f(x̄)−v(Π) ≤ εf(x̄) whenever (45)
holds, which has been verified “ex post” in our experiments. To account for the case where such
an accuracy is not reached within the allotted time, the final relative gap w.r.t. the “exact”
lower bound computed with Cplex is reported in column “gap”. The value is not reported if it is
lower than 1e-12, the default accuracy for the simplex-type algorithms in Cplex; if this always
happens (as is the case with DE), the whole column is avoided. Column “iter” reports the
number of iterations (computations of the Lagrangian function and master problem solutions).
Finally, column “f” reports the total running time spent in the computation of the Lagrangian
function; almost all the remaining time, which usually amounts to the vast majority, is spent
in the master problem solution. The order of the rows in Table 2 is the same as that of the
columns in Table 1, thus we avoid to report again the size of the instances in order to save on
space; the results in each row are averaged among the four instances of the same group. The
algorithmic parameters were tuned for all individual approaches, but uniformly on all instances;
furthermore, the chosen sets of algorithmic parameters were, quite naturally, very similar to
each other.


DE PDE DD FA-1 FA-2
time f iter time f iter gap time f iter gap time f iter gap time f iter gap
0.04 0.00 5 0.03 0.01 6 557 2.54 6200 1e-7 979 3.97 9105 1e-3 7.64 0.75 2383 1e-7
0.08 0.01 6 0.08 0.01 12 772 2.94 3153 6e-3 1000 4.43 4772 3e-2 14.24 1.37 1931 6e-9
0.25 0.01 7 0.57 0.12 52 1e-7 739 2.79 1365 2e-7 862 10.57 5579 3e-3 12.66 1.99 1117 5e-7
0.64 0.03 7 1.06 0.23 50 3e-7 1000 2.27 482 9e-3 1000 14.49 3201 8e-3 42.38 7.74 1714 7e-7
0.10 0.01 7 0.30 0.03 39 665 4.92 5799 4e-3 945 6.15 7538 8e-3 4.12 0.50 834 3e-7
0.25 0.02 10 1.81 0.21 122 498 3.37 1899 7e-8 808 9.76 5599 3e-3 6.36 1.06 664 1e-6
0.45 0.04 8 20.56 1.93 483 2e-7 1000 1.81 415 2e-2 1000 2.58 638 5e-2 134.49 15.00 3795 6e-7
1.10 0.08 9 5.17 1.09 120 1e-7 1000 3.48 378 2e-2 1000 10.08 1134 4e-2 126.29 26.19 2905 8e-7
0.34 0.02 11 34.80 0.78 449 5e-9 1000 1.39 746 5e-3 1000 2.23 1205 4e-2 28.92 2.77 1630 1e-6
0.42 0.05 9 2.39 0.26 89 1000 6.23 1647 3e-2 1000 8.51 2343 5e-2 32.77 5.26 1414 8e-7
0.99 0.10 11 16.03 2.34 271 1e-7 1000 6.18 717 2e-2 1000 11.31 1321 4e-2 80.05 16.48 1848 8e-7
2.19 0.18 10 124.38 13.95 811 6e-7 1000 5.05 278 2e-2 1000 14.63 838 6e-2 233.40 50.47 2851 8e-7


Table 2: Results for the weak formulation


Comparing FA-2 with FA-1, it is clear that the proximal stabilization (30) is in general
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largely preferable to the trust-region one (31). This has been reported several times over in
different applications [6, 11, 24], and it just proves true once again here. Part of the result is
due to the (still) more effective quadratic Master Problem solver of [20] w.r.t. general-purpose
LP technology, as testified by the lower cost per iteration; however, the largest part of the
improvement comes from faster convergence. Disaggregating X (DD) has surprisingly little
effect; this is likely due to the fact that the master problem cost is way higher (as testified by the
yet higher iteration cost), without a sufficient effect on convergence speed to counterbalance it.
Remarkably, “disaggregating Y alone” (PDE) has a far larger impact, being most often better
than FA-2 despite the disadvantage of the trust-region stabilization. Yet, the decomposition
method really shines when both X is disaggregated and Y is treated as an easy component
(DE); this ends up being about two orders of magnitude faster than the best of the other
approaches for the largest instances.


To put these results in the context of alternative available solution methods, in Table 3 we
compare the running times of DE and FA-2 with these obtained by the several applicable LP
algorithms in Cplex. These usually attain the much higher accuracy of 1e-12, except barrier
which usually falls more towards 1e-10, and while DE (but not FA-2) actually obtains solution
of comparable quality even when run with an accuracy of 1e-6, there is a difference between
reaching a solution with a given tolerance and being able to certify it. The latter typically
involves producing a high-quality feasible primal solution (cf. (45)), which is therefore relevant
to applications. Thus, for both Lagrangian approaches we report the running time required to
stop when the accuracy is set to both 1e-6 and 1e-12. The rows of the Table are arranged as
those in Table 2.


Cplex DE FA-2
primal dual barrier p.net. d.net. auto 1e-6 1e-12 1e-6 1e-12


0.30 0.13 8.73 0.18 0.23 0.36 0.04 0.04 7.64 7.74
0.89 0.90 21.25 0.58 1.95 2.40 0.08 0.08 14.24 14.37
3.04 10.22 76.24 2.24 16.32 25.44 0.25 0.26 12.66 13.13
8.21 16.56 151.14 4.62 27.58 44.79 0.64 0.64 42.38 49.18
1.09 4.98 42.57 0.74 6.88 10.62 0.10 0.10 4.12 4.19
3.28 24.68 135.57 2.77 29.46 69.86 0.25 0.26 6.36 7.94


53.25 22.58 417.10 8.96 51.45 55.86 0.45 0.45 134.49 137.41
18.74 67.24 1115.22 10.56 99.96 177.40 1.10 1.10 126.29 163.88
19.98 84.33 303.29 3.92 112.71 187.37 0.34 0.35 28.92 42.71
7.89 82.64 583.52 18.60 259.65 309.74 0.42 0.42 32.77 40.60


38.09 230.79 1952.75 15.85 325.33 690.30 0.99 0.99 80.05 108.94
586.07 459.49 3586.63 51.71 738.23 1266.87 2.19 2.19 233.40 1789.08


Table 3: Comparison with Cplex for the weak formulation


The Table shows that, unlike what reported in [13], even at the lower accuracy setting
FA-2 is not competitive with the best that Cplex offers, which is the primal network algorithm
(somewhat surprisingly this is not automatically chosen, cf. the column “auto”); note that
this refers to the fact that Cplex detects the partial network structure and solves a restricted
network problem to provide a warm-start for the overall solution process, a strategy that can be
extremely effective [23]. Furthermore, although the time required to obtain a very-high-accuracy
solution of 1e-12 is usually not much different from that required to reach 1e-6, there are cases
where the difference is significant. It is not much surprising that the results of [13] are outdated
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now due to the giant strides in general-purpose LP technology since then; yet, said giant strides
can be exploited with DE, whose master problem—which is where the vast majority of the time
is spent—is solved with a general-purpose LP solver. Unlike the original formulation (5)–(9), the
master problem is rather “unstructured”, so that the specialized network-exploiting algorithms
that make such a difference for Cplex are not poised to make any substantial contribution;
indeed, Cplex algorithms perform much more similarly on the master problem than on the
original formulation, with the “auto” setting now being perfectly appropriate. Yet, requiring
the very-high accuracy of 1e-12 to DE hardly changes the required running time; thus, not only
a high-quality solution is obtained efficiently, but also its quality can be certified in basically
the same time. Such high-quality solutions are obtained at least one order of magnitude faster
than the best Cplex option, and several orders of magnitude faster than the others, on all but
the smallest instances.


4.3 Results for the strong formulation
Due to the huge number of constraints (44), tackling the problem directly, either with a decom-
position approach or with a LP solver, is not advisable. Rather, since one can expect that only
a relatively small fraction of these constraints be actually active at optimality, one should resort
to dynamic generation, whereby the constraints are only inserted in the formulation when they
are found to be necessary. For Cplex, this is actually very simple: one only has to declare
these as lazy constraints, and the solver then takes the entire burden of deciding how and when
checking for their violation. One minor technical consequence is that the problem has to be
declared as a Mixed-Integer Linear Program even if one only wants to solve the continuous
relaxation, i.e., one does not declare the y variables to be integer. In fact, Cplex checks viola-
tion of lazy constraints only when an “integral” solution is generated, that is, a solution where
all variables declared as integer actually have integer values; in our case, this means just any
feasible solution. A similar approach can be used for the decomposition approach, and it has
already shown to be very effective [23, 27] for very-large-scale Lagrangian optimization. This
is true here as well, as demonstrated by Table 4 which compares the running time of the static
version with that of the dynamic version for both Cplex and DE (similar results hold for all the
other ones). The results are only limited to the first four, smaller groups of instances (the first
four columns in Table 1), and of course compare between identical settings for both approaches
(the “auto” setting for Cplex), save for static vs. dynamic generation of the constraints.


Cplex DE
static dynamic static dynamic
53.68 9.94 44.23 31.69


315.26 53.63 232.56 47.53
1539.23 113.91 1234.08 28.98
2788.91 458.01 2227.04 65.31


Table 4: Comparison of static and dynamic constraint handling


As the Table shows, the impact of dynamic generation is already very large for Cplex,
reaching one order of magnitude; for the decomposition approach it is even more humongous,
being close to two orders of magnitude (and actually far surpassing it for larger instances not
shown here). Thus, in the following we will always use dynamic generation.


Due to the previous results, we should expect that not all the decomposition approaches
be capable of solving the strong formulation efficiently enough. This is indeed the case, as
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shown in Table 5 again only for the four groups of smaller instances (things only get worse
as size increases). The meaning of the rows and columns (where applicable) is the same as in
Table 2. In order to try to compensate for the increase in size of the problem as the number of
commodities grows—which now heavily impacts the number of Lagrangian multipliers, instead
as “only” the cost of computing the Lagrangian function and possibly the number of columns
in the master problem—the maximum running time is now dependent on |K|; in particular, it
is fixed to 1000, 3000, 9000 and 27000 seconds when |K| is 100, 200, 400 and 800, respectively.


DE PDE DD FA-1 FA-2
time iter gap time iter gap time iter gap time iter gap time iter gap


31.69 77 1e-7 1000 2980 2e-2 1000 2714 2e-1 1000 1990 2e-1 410.30 14880 9e-7
47.53 30 3e-7 3000 2896 6e-2 3000 3720 7e-2 3000 7351 2e-1 1854.97 11141 3e-6
28.98 24 2e-7 9000 8370 2e-2 9000 5061 5e-2 9000 10918 1e-1 1254.21 9035 2e-6
65.31 20 3e-8 27000 5618 3e-2 27000 2148 4e-2 27000 5293 8e-2 1732.17 12940 1e-6


Table 5: (Partial) results for the strong formulation


As the Table shows, even allowing for such long computing times most decomposition ap-
proaches do not even come close to the required 1e-6 precision. FA-2 actually succeeds almost
always, failing to reach the required precision (and not by much) in only one of the 16 in-
stances. This is due to two advantages: the quadratic stabilizing term which provides much
better convergence, and the specialized master problem solver which allows it to perform many
more iterations in the same time, thus giving it far better chances to get near to a good dual
solution. Yet, DE is again by far the best approach, delivering solutions with the prescribed
accuracy in a tiny fraction of the allotted time. Furthermore, DE can efficiently solve all the
instances to much higher precision. This is shown in Table 6; since (as it could be expected
by Table 5) getting to 1e-12 is more difficult than in the weak formulation case, we report the
behavior of the algorithm for the four settings 1e-6, 1e-8, 1e-10 and 1e-12. The meaning
of the rows and columns is the same as in Table 2, except for the extra columns “add” which
report the time required to dynamically check the violation of constraints (44). As in Table 2,
“ex-post” gaps smaller than 1e-12 are not reported; since this always happens for 1e-12, the
corresponding column is avoided entirely. Also, columns “f” and “add” are avoided for the
middle precisions to improve the readability of the Table; the trends closely follows these for
the two extreme precisions.


The picture painted by Table 6, albeit not spectacular as that of the corresponding Table
3 for the weak formulation, is still quite good: doubling the certified precision from 1e-6 to
1e-12 requires no more than doubling the running time, and much often far less. Note that
e.g. for bounding purposes within an enumerative algorithm, 1e-6 is typically more than enough
already.


Remarkably, in order to obtain these results it is instrumental to “let information accumu-
late”. In particular, the best algorithmic settings for DE are:


• the maximum size of the bundle is set to 50 · |K|, and subgradients are only removed if
their multiplier θ is zero for 40 consecutive iterations;


• constraint violation is checked at every iteration of the bundle algorithm, and constraints
whose Lagrangian multiplier is zero are never removed.
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1e-6 1e-8 1e-10 1e-12


time f add iter gap time iter gap time iter gap time f add iter
31.69 0.05 0.96 77 1e-7 57.73 143 4e-9 62.07 170 3e-11 63.78 0.11 1.10 181
47.53 0.04 2.04 30 3e-7 51.22 33 2e-9 51.37 33 51.38 0.05 2.06 33
28.98 0.07 2.70 24 2e-7 29.15 25 29.15 25 29.16 0.07 2.74 25
65.31 0.14 6.58 20 3e-8 65.67 21 65.68 21 65.69 0.15 6.61 21
25.93 0.04 0.89 47 8e-8 28.28 51 3e-9 32.00 57 32.00 0.06 0.93 57
27.97 0.09 1.48 36 4e-7 55.43 51 4e-10 56.01 52 1e-11 56.28 0.12 1.60 52
20.80 0.09 1.80 21 2e-8 20.84 21 2e-9 25.69 24 25.69 0.11 1.84 24


132.60 0.24 10.03 23 8e-8 132.74 23 132.76 23 132.78 0.24 10.09 23
2.47 0.06 0.48 26 2e-10 2.47 26 2e-10 2.57 27 3e-12 2.66 0.06 0.49 27


245.91 0.26 4.18 59 1e-7 295.56 72 4e-9 333.22 84 2e-11 337.38 0.39 4.54 86
283.71 0.43 7.24 39 7e-8 442.56 55 2e-9 506.83 63 5e-12 507.52 0.71 7.78 63
241.84 0.52 11.85 24 2e-11 241.88 24 2e-11 241.92 24 2e-11 253.59 0.55 11.98 25


Table 6: Results for DE with varying precision


These are pretty “extreme” settings which surprised us. The bundle size of 40000 in the largest
instances would be absolutely unmanageable for the standard quadratic programming solvers
[20] often used (not without a certain success, cf. FA-1 vs. FA-2 in Table 2 and 5) in bundle
methods, and clearly requires access to state-of-the-art LP technology to be viable. Checking
violation every iteration is also uncommon; as a result, the time required for performing this
function (“add” in Table 6) is rather large, actually much larger than that required to compute
the Lagrangian function and as much as 10% of the total running time in some cases. However,
the time for solving the Lagrangian function is itself a very small fraction of the total time, that
is largely dominated by the master problem time, even more so than in the weak case; thus,
the overall impact on performances is by far compensated by the very consistent improvement
in the convergence speed. This is confirmed by Table 7, where we show the effect of even
“slight” changes in these parameters on the performances of DE for the first four groups of
instances (as in Table 5, and with the same maximum time). In particular, columns “opt” are
the best settings used for the results in Table 5 and 6, columns “20 · |K|” are relative to setting
the maximum size of the bundle to 20 · |K|, columns “Rmv = 20” are relative to removing
subgradients if their multiplier θ is zero for 20 (as opposed to 40) consecutive iterations, and
columns “Sep = 10” are relative to performing separation of constraints (44) every 10 iterations
(as opposed to every iteration).


opt 20 · |K| Rmv = 20 Sep = 10
time add iter gap time add iter gap time add iter gap time add iter gap


31.69 0.96 77 1e-7 289.41 2.27 841 7e-7 104.60 1.20 218 2e-7 72.96 1.35 194 1e-6
47.53 2.04 30 3e-7 3000.76 7.67 1585 3e-4 1564.82 4.99 803 4e-5 363.67 4.12 159 3e-7
28.98 2.70 24 2e-7 1125.93 6.73 726 4e-7 2585.05 7.82 796 1e-6 141.61 5.51 65 1e-6
65.31 6.58 20 3e-8 81.33 6.68 20 3e-8 17415.68 28.00 2121 8e-5 669.34 18.82 78 5e-7


Table 7: Effect of different algorithmic parameters settings on DE


The Table shows that curtailing information accumulation has in general dire consequences,
although the details differ for the different parameters. For instance, requiring |B| ≤ 20 · |K|
has little effect when |K| = 800, indicating that the optimal bundle dimension is likely to be
somewhat sublinear in |K|, although the size of the master problem is linear in |K|. Conversely,
the effect of “early removal” of subgradients (Rem = 20) grows dramatically as |K| increases.
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Of course, it is likely that a tipping point exist after which disaggregation and aggressive
accumulation of information becomes counterproductive, as the cost of the master problem
increases faster than the improvement in convergence speed can compensate. This is well-known
for instance in stochastic programming, even if the tipping point may be higher than what the
folklore estimates [9] owing to improvement in LP technology. The same phenomenon is likely
to occur for multicommodity problems, e.g. for the instances related to telecommunication
problems where |K| ∈ O(|N |2). However, no sign of this even starting to happen has been
detected in our test bed, even for |K| = 800.


To put again these performances in context, in Table 8 we compare DE (at the two accura-
cies 1e-6 and 1e-12) with the various LP algorithms in Cplex, FA-2 and the FA model solved
with the Volume algorithm (FA-V) [4]; subgradient-type approaches have often been found
competitive with bundle ones for the approximate solution of difficult large-scale problems
[13, 27]. As a minor note, since the problem to be solved is now “formally” a MILP (to allow
use of lazy constraints), there is no longer a way to specify primal or dual network simplex,
but only a generic “network simplex”. This does not look to be an issue, as in this case Cplex


is much better at actually picking the best solver: the automatic choice invariably reverts on
the dual simplex (and thus need not be reported), which is indeed appropriate. Anyhow, the
performances of the different approaches are much more similar than in the case of the weak for-
mulation (a factor of two rather than more than an order of magnitude). We also mention that
we experimented using the Volume algorithm to “warm-start” the bundle method, a trick that
sometimes pays surprisingly good dividends [24]; unfortunately (but perhaps unsurprisingly),
this was not one of these cases.


Cplex DE FA-2 FA-V
primal dual net. barr. 1e-6 1e-12 time f add iter gap time f add iter gap


12 10 11 15 31.69 63.78 410 12 7 14880 9e-7 2.50 0.47 0.45 875 9e-3
64 53 61 71 47.53 51.38 1855 19 16 11141 3e-6 5.83 1.15 1.15 842 2e-2


139 114 132 157 28.98 29.16 1254 32 20 9035 1e-6 11.91 2.28 2.24 796 3e-2
559 456 531 587 65.31 65.69 1732 100 67 12940 1e-6 25.76 5.07 4.96 760 4e-2
46 39 43 60 25.93 32.00 322 12 10 10320 1e-6 5.53 0.88 1.13 871 8e-3


147 132 144 209 27.97 56.28 294 15 9 5300 1e-6 11.88 2.13 2.38 831 9e-3
509 301 478 648 20.80 25.69 5033 169 155 27231 1e-6 25.91 4.50 5.37 794 3e-3


2329 1930 2302 2590 132.60 132.78 3122 192 169 14547 1e-6 51.35 8.58 10.63 760 4e-2
196 131 156 304 2.47 2.66 344 20 12 7169 1e-6 11.61 1.99 2.30 827 3e-3
926 708 862 1174 245.91 337.38 2256 111 118 17034 2e-5 28.50 4.95 6.08 869 1e-2


2706 2167 2542 3272 283.71 507.52 5475 192 249 15061 3e-6 57.86 9.23 13.00 817 2e-2
11156 8908 11675 11683 241.84 253.59 11863 349 413 13953 1e-6 108.75 16.78 24.07 765 2e-2


Table 8: Comparison with Cplex and Volume for the strong formulation


The Table shows that FA-2 is capable of reaching a reasonably high accuracy of 1e-6


in almost all instances—but 5 out of 48, where anyway the ex-post accuracy is not too far
from the desired target—within the allotted timeframe. This improves on [13], where bundle
methods could only work with a very small maximum bundle size (|B| ≈ 10), and however could
not produce very accurate solutions. The difference is to be mostly attributed to the dynamic
generation of constraints, that was not implemented (except in a very primitive fashion) in [13].
The Volume algorithm used here is remarkably more “robust” than the subgradient algorithms
employed in [13]—bundle methods were found preferable mostly because much less dependent
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on fine-tuning of the algorithmic parameters—but, try as we might, we have never been able
to have it attain more than 3e-3 precision. It is interesting to remark that for FA-2 separation
is performed every 100 iterations. The Table clearly shows why this is necessary: even with
this setting, the separation time (“add”) is comparable to the function evaluation time (“f”).
More frequent separation, say every 10 iterations, would render it far too costly. Remarkably,
separation every 10 iteration is instead the best setting for the Volume algorithm, obtaining a
reasonably low “add” time. This is due to the fact that the aggregated primal solution used
to perform separation is obtained by the convex combination of only two solutions for FA-V,
while many more solutions are used in FA-2; thus, computing the aggregated solution, rather
than separation proper, is the costly operation. However, the FA methods are not competitive
with Cplex: FA-V is faster than Cplex but obtains unacceptably coarse bounds, FA-2 is slower
than Cplex while obtaining lower-quality bounds. Conversely, the DE bundle method obtains
(extremely) accurate solutions much faster than Cplex, except for the smallest instances.


Qualitatively, the results can be described by saying that decomposition algorithms can
work in “two different regimes”. If enough information is collected and retained, they attain
accurate optimal solutions in a few iterations, although with a high master problem cost (DE). If
information is either aggregated (FA-2, FA-V) or withdrawn (Table 7), they tail-off rapidly, thus
requiring many more iterations (and, usually, time) to reach the same precision. This shows that
decomposition approaches highly benefit from—indeed, require—very large master problems,
which in turn call for appropriate solution technology. However, size is not the only factor at
play here, as Table 5 clearly show, for otherwise DD should be roughly as successful as DE. The
structure of the master problem, under the form of the appropriate compact representation (as
opposed to the “entirely inappropriate” representation by its vertices) of the “easy” set Y , is
at least as important. Thus, the “easy component” idea seems to be a key enabler, at least as
far as the application considered in this paper goes.


5 Conclusions
Exploiting structure of the different components of the function to be minimized is crucial
to construct efficient solution algorithms. This has repeatedly been shown in many contexts
[47, 48, 49], and it appears to be a significant trend in the research about bundle-type methods
for nondifferentiable optimization [2, 24, 33, 39, 40, 44, 55], delivering very promising results
especially for Lagrangian relaxations of large-scale, highly structured problems. This work
examines one form of structure which appears to be both quite general and widespread; hence,
we expect several other (hopefully, successful) applications. Two possibilities come from two
other staples of Lagrangian optimization: the hydro-thermal Unit Commitment problem in
electrical power production and large-scale multistage stochastic programming problems. For
the former, while thermal units require complex combinatorial oracles [25], hydro units—at
least with some widely accepted simplifications—are just small-scale continuous flow problems,
and therefore amenable to the “easy components” treatment to improve the performances of
(already successful) Lagrangian approaches [3, 10]. The latter also admits efficient Lagrangian
approaches solved with subgradient [46], (inexact) bundle [18, 50], or augmented Lagrangian
[54] methods: these could offer different targets to the “easy components” treatment, depending
on which constraints are relaxed, such as the (usually) relatively few first-stage variables that
play an analogous role to the design variables in FC-MMCF.
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Our results also suggest several possible directions for future research. An interesting ob-
servation is that while these approaches can be very efficient, they require extremely large
master problems which can be very costly to solve with general-purpose (even if state-of-the-
art) LP technology. Besides, the cost for linear stabilization—at least with “simple” stabilizing
functions, the story could be different with “complex” multi-pieces ones [6]—is a consider-
able decrease in the convergence speed w.r..t. quadratic stabilization. Thus, research should
probably be resumed on specialized quadratic programming solvers capable of exploiting the
structure of the master problems to substantially improve the performances; that the 15-years-
old implementation of [20] is still effective nowadays is comforting in this respect, showing just
how powerful appropriate structure exploitation can be. Yet, for the approach proposed in this
paper one would require an oxymoronic “generic-specialized” solver that on one hand exploits
the standard structure of the master problem as [20], but on the other hand be able to deal
with as many structures of the easy components as possible. The Alternating Linearizaton
approach (cf. §3.3) may be a direction to explore, but the task may call for the development of
some entirely new solution methodologies for structured quadratic programming.
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[32] J. Gondzio, P. González-Brevis, and P. Munari. New Developments in the Primal-dual
Column Generation Technique. Technical Report ERGO-11-001, School of Mathematics,
The University of Edinburgh, 2011.


[33] C. Helmberg and F. Rendl. A Spectral Bundle Method for Semidefinite Programming.
SIAM Journal on Optimization, 10(3):673–696, 2000.
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[44] C. Lemaréchal, A. Ouorou, and G. Petrou. A Bundle-type Algorithm for Routing
in Telecommunication Data Networks. Computational Optimization and Applications,
44(3):385–409, 2009.
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