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Abstract

We propose a model that uses a small set of quite simple parameters to
devise a proper partitioning–between CPU and GPU cores–of the tasks de-
riving from structured data parallel patterns/algorithmic skeletons. The
model takes into account both hardware related and application depen-
dent parameters. It eventually computes the percentage of tasks to be
executed on CPU and GPU cores such that both kind of cores are ex-
ploited and performance figures are optimized. Different experimental
results on state-of-the-art CPU/GPU architectures are shown that assess
the model properties.

Keywords: data parallelism, parallel design patterns, multicore, GPU.

1 Introduction

Current computing devices are characterized by the ubiquitous presence of mul-
tiple cores and of at least one GPU. Mobile phones currently sport quad cores
with an integrated GPU, while, at the other end of the computer scenario,
Top500 installations use nodes build out of multiple multicore CPUs paired
with one or more GPUs [21].

Efficient programming of these computing devices poses new challenges: fo-
cus in program design shifts from “sequential efficiency” to “efficient parallelism
exploitation”, the available parallelism exacerbates the problems related to Von-
Neumann bottleneck management, efficient programming of heterogeneous core
mixes turns out to be quite hard to design and low level co-processor (GPU or
many core) code and data management becomes a major source of errors and
inefficiencies.

Several programming models have been recently proposed to target these
new, highly parallel architectures, with the aim of providing the application
programmers with more and more efficient and expressive tools and therefore of
reducing the time-to-deploy of new parallel applications. POSIX threads, either
explicit [8] or masked through annotations managed by proper compiling tools
[9], libraries [20] and languages [7], as well as low level co-processor manage-
ment languages [18, 17] and, more recently, co-processor related annotations and
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compiling tools [16] have been used to program CPU/GPU mixes and currently
represent state-of-the-art tools to program parallel applications exploiting CPU
cores as well as the huge number of cores available on (GPU or many core) co-
processors. The amount of target architecture and mechanism knowledge and
the abilities required to application programmers to efficiently manage paral-
lelism exploitation vary, depending on the tools used. At the very bottom–from
the programmer productivity viewpoint–OpenCL/CUDA tools provide the finer
and more efficient control mechanisms but also require a lot of expertise. At the
high end of the scale, Cilk only requires application programmers to identify the
precise structure of the divide&conquer (fork/join) algorithm used within an ap-
plication while its compiler/run time system takes care of most of the low level
details related to parallelism exploitation. However, in case of Cilk, no specific
support is provided to target GPUs or other kind of many core co-processors.

Recently, parallel design patterns have been recognized to be a useful ab-
straction to decouple application programmer duties from hardware targeting
responsibilities in the new parallel computing scenario [6] and parallel program-
ming frameworks designed following the parallel design pattern concepts [14]
and exploiting the large experience in the algorithmic skeletons field [11, 13]
have been designed [2, 10, 12]. In these parallel programming frameworks, the
parallel structure of the application is somehow “declared” by the application
programmer by means of proper design pattern (or algorithmic skeleton) com-
position, while the actual parallel implementation–the one efficiently targeting
the parallel architecture at hand–is dealt with by the programming tools (com-
piler, libraries, run time systems). The complete information available in these
programming frameworks relative to the high level parallel pattern(s) used to
exploit parallelism allows the system programmer to devise proper parallelism
exploitation strategies, also in case of CPU/GPU core mixes.

In this work, we discuss how general purpose data parallel patterns may be
compiled to a mix of CPU and GPU threads such that the overall completion
time of the pattern is minimized. The main contribution of this work consists
therefore in

• a model–based on both architectural and application specific parameters–
suitable to compute the ratio between the number of tasks to be executed
on CPU and GPU cores to optimize the completion time, and

• the design of a prototype implementing the classical map and reduce pat-
terns which uses CPU and GPU cores according to the ratio computed by
the model.

Experimental results on state-of-the-art architectures demonstrate the feasibil-
ity and the efficiency of our approach.

2 Evaluating the CPU/GPU tradeoff

When implementing data parallel applications targeting architectures with mul-
ticore CPUs paired with one or more GPU, we are faced to a couple of rather
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different problems.
First of all, we have to decide whether the application parallelism is suited

to be exploited on GPUs. Data parallel exploitation patterns are in general
suitable to be exploited–stream parallel patterns are not suitable, instead–but
the some patterns are more suitable than others, depending on the “computation
intensity”, that is on the amount of computation needed to process a single data
item fetched from the memory sub-system.

Second, in case a pattern demonstrates to be suitable for GPU execution,
we have to decide how to use the CPU while the GPU is computing, that is,
we have to decide if we can use the CPU to compute part of the tasks that
in principle may be offloaded to the GPU. This is a kind of Achilles and the
tortoise problem: on suitable problems, the GPU is much faster than the CPU,
but the “waiting”, slower CPU may be used to compute some tasks in such a
way the GPU work is somehow shortened (even if by a relatively small amount)
and therefore the overall execution time–that is the time needed to compute the
“ensemble” of the tasks–is shortened.

The first problem may be solved by looking at only those parallelism ex-
ploitation patterns that somehow fit the GPU execution model, that is consid-
ering data parallel patterns only. In this work we concentrate on the second
problem, actually.

We therefore concentrate on the study of a suitable “cost model” that will
allow us to predict the performance of a data-parallel computation that utilizes
both the CPU and the GPU together in the perspective of using such cost model
to devise the amount of tasks of a data parallel computation to be directed to
CPU and GPU cores in order to minimize the execution time.

2.1 Assumptions

Any discussion about a cost model, especially one involving several different
components operating in parallel, becomes a too large task to tackle unless
some simplifying assumptions are made. These assumptions are enough for us
to be able to easily reason about what is going on, without being too restrictive
such that they prohibit the utilization of the cost model in practice.

The first, huge but necessary assumption, is that the computations we are
going to execute on CPU and GPU cores are expressed through parallel design
patters/algorithmic skeletons. This is necessary to be able to clearly identify all
the “parameters” characterizing the application, namely:

• The input data and the decomposition strategy leading to the “bag of
tasks” that have to executed in parallel.

• The output data and the re-composition strategy building up the overall
result of the data parallel computation out of the results relative to the
single task computation.

• The code computing the single task.
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It is worth pointing out that these information could be available through differ-
ent formalisms. In case the data parallel application is expressed/programmed
using parallel patterns/skeletons, it is immediately available. In case the com-
putation is programmed using other, lower level programming frameworks (e.g.
OpenMP), it can be still derived through a moderately more complex analysis,
at least in certain cases.

Another set of simple assumptions are the needed to be able to provide a
suitable formalization of the data parallel process on CPU and GPU core mixes.
These further assumptions may be stated as follows:

• The single system is viewed as a distributed system with two nodes: one
composed of the CPU and the main memory and another one composed
of the GPU and the GPU memory.

• The first system is the one initially owning the data, part of which must
be sent explicitly to the second system for processing, followed by retrieval
of results.

• For data copy operations between main memory and GPU memory, we
assume a two-step process: setup and effective data transmission.

• We will deal mainly with a computation that takes N elements in input,
performs a computation of O(N) and produces N elements in output. The
non-linear case will be briefly discussed in a dedicated section.

• We assume that measuring the computation speed for one core of the CPU
allows us to generalize the measurement for K cores.

• Finally, we assume that the system on which the computations run is ded-
icated i.e. it does not have other processes in the background competing
for CPU/GPU time.

2.2 CPU/GPU abstract execution model

The typical flow of a computation involving the GPU and using the CUDA
programming model is as follows (see Fig. 1): the main program thread running
on the CPU invokes the CUDA kernel (after copying the appropriate data to the
GPU memory), which executes in parallel on the GPU. The CPU thread then
continues execution until it calls either cudaThreadSynchronize() (API call that
forces the host code to block until the pending GPU computations complete)
or initiates a blocking memory copy operation from the GPU memory. Both
these operations block until the previously launched GPU kernels have finished
executing. Figure 1 clearly suggests that the computation allocated to the CPU
cannot start until the data copy to the GPU has finished. However, we should
not forget that we can always delegate this task to an additional I/O thread
which does not really impact on the overall performance or use asynchronous
memory operations. We can thus begin to compute data on the CPU as soon
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Figure 1: Execution model: CPU offloading tasks to GPU

as the data transfer to the GPU was initiated and up to the point when the
transfer back of the GPU-computed chunk has finished.

2.3 Cost model

In this section we outline how suitable cost models may be developed such that
in case of map-like (Sec. 2.3.1) and in case of reduce-like (Sec. 2.4 data parallel
computations, an estimate of the percentage of tasks to be executed on GPU or
on CPU cores may be devised.

2.3.1 Map cost model

In order to estimate the cost of the execution of tasks from data parallel patterns
on CPUs and GPUs, we assume to use the parameters shown in Tab. 1

We also assume that our data parallel computation computes the same func-
tion f over all items of a data structure x. If f has type

f : α→ β

then
map f : α∗ → β∗

where the ∗ in the types denotes any kind of compound data structure. It is
worth pointing out the data structure is preserved by the map functional, that
is an input vector generates in output a vector (possibly of a different base type,
e.g. vector(floats) → vector(ints)) and an input array generates in output an
array. We can intuitively describe how the computation will take place. The
proportion Q of data that will be processed by the GPU needs to be copied
to the GPU memory, then the kernel invocation takes place and finally, when
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Name Description
D The total amount of tasks to process
S The size of each task (bytes).
P The proportion of D processed by the CPU (0 ≤ P ≤ 1).
Q The proportion of D processed by the GPU (1− P ).
C The number of CPU cores available.
G The number of GPU cores available.
Tr Transfer rate to / from the GPU memory (in bytes/sec).
Ts Data transfer setup time (CPU to/from GPU) (secs).
Tf1 CPU time to compute one task(secs).
Tf2 GPU time to compute one task (secs).

Table 1: Parameters of our cost model

the kernels finish executing, the output must be copied back to main memory.
While this takes place, the CPU will process its own allocated part of the input
(P).

Let us now express the CPU and GPU processing times as functions of the
parameters in Tab. 1. First, for the data processed by the CPU, we have that
the total execution time is:

T1 =
D × P × Tf1

C

that is, the sequential time needed to process the data divided by the number of
cores. In parallel, we have two data transfers (back and forth) and a computation
on the GPU. Each data transfer accounts for a:

ts +
size

Tr

that is for a setup time for the trasfer plus the actual transfer time, while the
computation on the GPU may be evaluated with a time:

tasks× Tf2
G

thus leading to a total time of:

T2 = 2× (Ts +
D × S ×Q

Tr
) +

D ×Q× Tf2
G

(1)

Since the computation is considered finished only when both the CPU and
GPU have finished their assigned chunks, the cost model tells us that the total
execution time will be

max{T1, T2} (2)
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This estimation would be reasonably accurate under the assumption that
the computation takes an input of size N, performs a computation of complex-
ity O(N) and produces an output of size N. A simplified formula is possible if we
do not make the distinction between the speed of the CPU and the speed of the
GPU, considering them to be equal. This, however, almost never holds simply
because the CPU and GPU have totally different architectures. Furthermore,
the GPU does not have to deal with context switches like the CPU does. All
thread blocks run until completion and each thread has a separate set of reg-
isters. The CPU on the other hand has to do heavy context-switching and, on
non-dedicated hardware that runs other processes in the background, this may
have a severe impact on performance [15]. Therefore, it is safe to assume that
the GPU is much faster than the CPU for raw number crunching. An accurate
estimation needs to take into account the relative speeds of the GPU and CPU
cores. We can now turn our attention towards determining the ideal P in order
to maximize performance. From formula 2 it becomes clear that the optimal P
is achieved when T1 and T2 are equal, that is:

D × P × Tf1
C

= 2× Ts ×
2×D × S ×Q

Tr
× D ×Q× Tf2

G
(3)

where Q = 1− P . Solving the Eq. 3 we get:

P =
2×Ts

D + 2×S
Tr

+
Tf2

G
Tf1

C + 2×S
Tr

+
Tf2

G

(4)

This is the percentage of tasks to be computed on the CPU according to our
simplified model.

Going back to our N → O(N)→ N computation assumption, let us see what
happens in the case that it does not hold. For instance, squaring all the numbers
of an array fits this pattern. However, a computation like matrix multiplication
takes in input 2N2 elements, has O(N3) complexity, and produces N2 elements
in output. Therefore, to better reflect this distinction in formula 2 , we should
introduce two different terms to represent the amount of data that is received
in input and the amount of data that is produced as output.

Obviously, each particular computation will have a slightly different version
of the formula we are considering here. For example, for (square) matrix mul-
tiplication, let us denote by N the number of elements on one dimension of the
three matrices (A, B and C, where C = A ∗ B). In this case, the completion
time would look like:

T = max {N
3×P×Tf1

C ,

2Ts + 2×N2×S×Q×N2×S
Tr

+
N3×Q×Tf2

G }
(5)

leading to a percentage of tasks to be executed on the CPU:

P =
2×Ts

N2 + 3×S
Tr

+
N×Tf2

G
N×Tf1

C + 2×S
TR

+
N×Tf2

G

(6)
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2.4 Reduce cost model

With similar kind of reasoning, we may develop a cost model for “reduce” data
parallel computations as well.

The cost of a reduce executed on the CPU may be evaluated as:

T1 =
D × P × Tf1

C
+ C × Tf1

Intuitively, C cores compute a sub tree of the reduction tree1 and then one node
“reduces” the sub tree results sequentially.

The cost of a reduce executed on the GPU includes the times needed to
transfer input data and results to and from the GPU:

T2 = (Ts +
D ×Q× S

Tr
+ Ts) + (

D ×Q× Tf2
G

+ log(D)× Tf2)

As for the map case, we should look for the

T = max{T1, T2}

The formula does not have an immediate, reasonable solution, but after some
simplification2 we eventually find as a solution:

P =

2×Ts+Tf1×C+log(D)×Tf2

D + S
Tr

+
Tf2

G
Tf1

C + S
Tr

+
Tf2

G

(7)

2.5 Cost model assessment

We have pointed out that each particular data parallel computation corresponds
to a different formula. Different types of maps produced different models. Re-
duce produced a model eventually different from the ones derived when maps
were taken into account, which is a fairly reasonable result. However, the kind
of process used to derive P in the different cases clearly identifies a general
methodology to derive the P formula, once the base parameters of the applica-
tion (data parallel pattern) and architecture (CPU and GPU) are known. We
therefore expect other kind of data parallel computations may be modelled with
negligible additional complexity.

3 Experimental results

In order to assess the models discussed in Sec. 2 we used three different systems
equipped with GPUs, whose features are summarised in Tab. 2.

1we assume the reduce operator to be associative and commutative, here, as it usually
happens

2see [19] for the complete discussion regarding the solution
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CPU GHz #core GPU #core
S1 Xeon E5400 2.70 2 Geforce GTX285 240
S2 i3 2310M 2.10 2+2 (HT) Geforce GT540 96
S3 AMD Opteron 6176 0.8 24 Tesla C2050 448

Table 2: Configuration of the systems used for the experiments

3.1 Map

We tested the efficiency of our P estimate model using two different benchmarks:

B1 is a simple benchmark computing a map(sq) over a matrix, that is com-
puting the matrix whose elements are the square of the corresponding ele-
ments in the input matrix. In this case P is computed according to Eq. 4,
sq : float→ float and map(sq) : float matrix→ float matrix.

B2 is the simplest matrix multiplication algorithm (three nested loops, no
blocking, no further optimization). In this case P is computed according
to Eq. 6 and the computation happens to be a map applying the inner
product function (ip) to all the pairs made of a row of the first matrix
and of a column of the second one. In other words, our computation is
a map(ip) and ip : float vector × float vector → float. The
generation of the vector pairs and the re-construction of the result matrix
is made using proper loop indexes, and in fact it does not impact the
map(ip) complexity.

The two benchmarks differ in their “computational intensity”, i.e. in the
ratio among the memory size of the data and the amount of computation per-
formed. In B1, the amount of data is N2 and the amount of computation is N2

and therefore the computational intensity is 1. In B2, however, the amount of
data is N2 and the computation performed is N3, thus leading to a computa-
tional intensity of N . This means the data transfer overhead in B2 is negligible
with respect to the same overhead measured in B1.

In fact, out model estimates P as shown in Fig. 2. In case of benchmark
B1 (left plot) we get values indicating that is will be convenient to execute part
of the tasks on the CPU while the GPU is handling the rest of the tasks. In
case of benchmark B2, however, the values indicate that possibly it is not worth
executing tasks on the CPU.

Fig. 3 plot the completion times relative to execution of benchmark B1 and
B2, respectively, on different target systems. While B1 plot clearly evidences
the fact we achieved a decent speedup using CPU cores while running tasks on
the GPU ones, the B2 plot clearly shows it is not worth using CPU cores at all.

3.2 Reduce

In order to assess the reduce cost model, we used two benchmarks, differing in
the reduce operator. We choose fine grain operators, such as sum (benchmark
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Figure 2: Model assessment: P values for different benchmarks (map(square),
left, matrix multiplication, left) and target architectures (right) (Sx plots in the
two graphs)

R1) and minimum (benchmark R2).
The kind of results achieved are shown in Fig. 4.

4 Exploiting results: a FastFlow CPU/GPU map
module

After verifying that our simple model was actually producing good results, we
pick up a state-of-the-art structured parallel programming framework and we
integrated in in the framework a data parallel algorithmic skeleton that uses
our model(s) to properly schedule data parallel tasks to CPU/GPU core mixes.
As a framework, we choose FastFlow, which is being developed by Computer
Science departments at our university and at the university of Torino [5, 4,
1]. The prototype implementation we are going to discuss in this Section has
been developed in the perspective of investigating the feasibility of a completely
transparent and efficient usage of GPU and CPU cores once the data parallel
pattern used in the application has been clearly qualitatively identified by the
application programmer.

According to the description of FastFlow written by its authors [1]

FastFlow is a parallel programming framework for multi-core plat-
forms based upon non-blocking lock-free/fence-free synchronization
mechanisms. The framework is composed of a stack of layers that
progressively abstracts out the programming of shared-memory par-
allel applications. The goal of the stack is twofold: to ease the
development of applications and make them very fast and scalable.
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Figure 5: Intelligent FastFlow map (reduce) module: logical (top) and actual
(bottom) implementation schema

FastFlow is particularly targeted to the development of streaming
applications.

In particular, the FastFlow programming framework provides the application
programmers with a pipeline and a task farm skeleton, that can be used, alone
or in combination, to model the stream parallel structure of the application at
hand.

Thinking to our map and reduce patterns and to their cost models, we
decided to use the FastFlow pipeline to implement a map and a reduce skeleton
where (see Fig. 5):

• A first stage (the Scheduling stage) computes the cost models, after a
specific profile phase, and schedules task sets to either the second or the
third stage.

• The second stage (the CPU stage, either map or reduce) computes the P
portion of the tasks. This stage is a parallel stage, targeting CPU cores
through OpenMP.

• The third stage (the GPU stage, either map or reduce) computes the Q
portion of the tasks. This stage ia actually a front-end for the GPU.

• The fourth stage (the Collecting stage) rebuilds the map (or reduce) results
out of the results computed on CPU and GPU cores.

The resulting pipeline looks like a little bit odd, with the CPU stage not
communicating directly to the following stage, i.e. the GPU one. In reality
what happens is that the communications of the scheduling stage to the GPU
stage happen through CPU stage, and communications of the CPU stage to the
collecting stage happen through the GPU stage. This because what we move
are shared memory pointers rather than actual data exploiting the ultra-efficient
FastFlow communication infrastructure that succeeds moving a message in close
to nano second time [3].

While implementing the schema in Fig. 5, we solved different problems:
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#define define_map_gpu(func_name, out_type, in_type, arg_name) \
__device__ out_type func_name(in_type arg_name); \
__global__ void map_kernel(in_type *input, out_type *output, \

size_t size) { \
int blockId = blockIdx.y * gridDim.x + blockIdx.x; \
int k = blockId * blockDim.x * blockDim.y + threadIdx.y \

* blockD im.x + threadIdx.x; \
if(k < size) output[k] = func_name(input[k]); } \

out_type* func_name(in_type* input, size_t size) { \
const int CHUNK_SIZE = 128 * 1024 * 1024;\
out_type* output = new out_type[size]; \
int num_items = CHUNK_SIZE / sizeof(in_type); \
int chunks = (size + num_items - 1) / num_items; \
dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE); \
int threadsPerBlockTotal = BLOCK_SIZE * BLOCK_SIZE; \
int numBlocksX = 256; \
int numBlocksY = (num_items + threadsPerBlockTotal * \

num BlocksX - 1) / (threadsPerBlockTotal

* numBlocksX); \
dim3 dimGrid(numBlocksX, numBlocksY); \
in_type *d_input;\
out_type *d_output;\
cudaMalloc(&d_input, num_items * sizeof(in_type)); \
cudaMalloc(&d_output, num_items * sizeof(out_type)); \
for(int ind = 0; ind < chunks; ind++) {\

if(ind == chunks - 1) {\
int remains = size % num_items;\
cudaMemcpy(d_input, input + num_items * \
ind, remains * sizeof(in_type), \
cudaMemcpyHostToDevice);\
map_kernel<<<dimGrid, dimBlock>>>(d_input, \

d_output, remains);\
cudaThreadSynchronize();\
cudaMemcpy(output + num_items * ind, d_output, \

remains * sizeof(out_type), \
cudaMemcpyDeviceToHost);\

} else { \
cudaMemcpy(d_input, input + num_items * \

ind, num_items * sizeof(in_type), \
cudaMemcpyHostToDevice);\

map_kernel<<<dimGrid, dimBlock>>>(d_input, \
d_output, num_items);\

cudaThreadSynchronize();\
cudaMemcpy(output + num_items * ind, d_output, \

num_items * sizeof(out_type), \
cudaMemcpyDeviceToHost);\

}\
}\
cudaFree(d_input); cudaFree(d_output); \
cudaError_t error = cudaGetLastError();\
const char* lerror = cudaGetErrorString(error);\
cout << lerror << endl;\
return output; \

} \

__device__ out_type func_name(in_type arg_name)

Figure 6: Sample CUDA code for the map template14



• We managed to use a small fraction of the data parallel tasks to profile
an estimate of the Tf1 and Tf2 parameters. This phase computes ac-
tual results contributing to the overall result of the data parallel skeleton.
However, the tasks are computed on both CPU and GPU to figure out
the Tfx estimate.

• We implemented the pipeline in such a way the Scheduling stage flags
messages directed to the CPU stage as either “cpu tasks” or “gpu tasks”.
The CPU stage computes the “cpu tasks” and simply passes “gpu tasks”
to the next stage. Similarly, CPU stage generates “result” messages that
are simply routed to the Collecting stage by the GPU stage.

• CPU stage uses OpenMP to compute tasks. Tasks are usually made of a
sequence of data items such as 〈x1, . . . , xn〉 which are subject to a com-
putation such as ∀i ∈ [1, n] yi = f(xi) or ∀i ∈ [1, n] sum = sum ⊕ f(xi)
The two loops are parallelized through a #pragma omp parallel for.
Similarly, the GPU stage uses CUDA kernels on the GPU to execute tasks.

• In order to be able to use the same “business code” for f and ⊕ in the two
cases (CPU/OpenMP and GPU/CUDA kernel), we ask the programmer to
write f as a standard C function. CPU OpenMP code simply invokes the
f code, while in order to execute (bunch of) f computation on the GPU,
the f code is prefixed with the __device__ keyword (which tells the
compiler to make the code available/compiled on the GPU) and eventually
the “map” computation is executed using a code such as the one shown
in Fig. 6.

4.1 Experimental validation

Our FastFlow module implementation had been tested on the target architecture
S3 (see Tab. 2). We run two experiments, one applying a map of a function
computing 8K trigonometric functions out of each element of a float vector, and
the other one findind the minimum of a float vector. Fig. 7 shows the results
achieved, that are fully in line with those discussed in Sec. 3.

5 Conclusions

Considering the theoretical and practical results highlighted in the previous
sections, we can conclude that we have an encouraging start towards developing
a cost model that can accurately predict the way computations should occur
on system having both a CPU and a GPU. Although not entirely accurate, the
model we have so far is good enough to predict potential running time reductions
by additionally using the GPU. It can, of course, be improved in several ways,
including by taking into account the behavior of the memory hierarchy as well
as a more detailed analysis of the GPU execution model. Having said this,
there may be immediate practical benefits resulting from this model, especially
applicable to streaming data-parallel computations:
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Figure 7: FastFlow module assessment: map(sin8K) (left) and reduce(min)
(right) results

• Firstly, we can, of course, use the GPU to improve the execution time
of a single work task. After receiving a data-parallel computation from
the stream, a specialized module (with or without memory of previously
executed computations) can calculate the value of P and determine how
to best exploit the system (see Sec. 4).

• Secondly, if actually splitting the computation is too much trouble or in-
curs too much overhead, the value of P can be used in a more transparent
manner simply as an “affinity index (since sometimes it tends to be in-
accurate) linking a particular computation to a particular execution unit
(GPU or CPU). Thus, if the value of P is closer to 1, we should run the
computation on the CPU and if it is closer to 0 we should run it on the
GPU. An intelligent scheduler can be implemented to make this decision.
For example, in the matrix multiplication case the GPU is very well suited
to handle the entire computation, as P was generally less than 0.1. This
of course, does not hold for any system, as a weak GPU and a stronger
CPU will give a different value of P.
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