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Abstract. The last proposal for Java closures, as emerged in JSR 000335, is
mainly innovative in: (1)Use of nominal types, SAM types, for closures; (2) In-
troduction of target types and compatibility for a contextual typing of closures;
(3) Need for a type inference that reconstructs the omitted type annotations of
closures and closure arguments. The paper provides a sound and complete type
system, with nominal types, for such a type inference and discusses role and
formalization of targeting and of compatibility in the designed inference process.

1 Introduction

The paper provides a type inference system, with nominal types, for closures that are
typed with SAM types (hence, the name of SAM typed closures), that: 1) it is sound
and complete; 2) given a program, it checks for the existence of an assignment of types
to the omitted type annotations that make the resulting program, correctly typed; 3)
if an assignment exists, it results in the most general assignment of the program. 4)
it works with nominal types. Nominal types have both an external structure, i.e. the
name of the type, and an internal structure, i.e. the type expression defining form and
components of the type. Hence, type inference with nominal types: i) must provide
the usual mechanism that reconstructs the (internal) structure that the omitted type
annotations must have; ii) requires an additional mechanism to select, among all the
nominal types whose internal structure matches the found one, the type that must be
considered the most general correct type.

JSR 000335 [BS11a,BS11b] shares with the other previous, proposals [BO11,Ope12]
the idea of introducing closures as expressions defining shortenings for anonymous, single
method, objects, but it is innovative in many fundamental aspects.

Closure Definition. Closures are introduced, in a program, by a special form of ex-
pressions (lambda expressions). The syntax of a closure definition consists of the the
generic types (if any), the argument name list (possibly, empty), and the closure
body.

Type Inference. The closure definition does not require a type annotation [Pie02] of
the defined closure and also, the type annotations of the arguments can be omit-
ted: Strong typing and omitted type annotations require a type system capable to
perform type inference. A failure during the inference process, causes a type failure.

SAM Types. Interface types with a single method, named functional interfaces (SAM
types [BLB06]), are the types of the closures. As all Java reference types, SAM



types are nominal types, i.e they are different types if they have different names
even though they have the same internal structure. For this reason, a closure can
be assigned to (i.e. is compatible with) many different types.

Generic Types. Generics may be introduced in a closure definition and must be the
same, after renaming and permutation, of the generics that have been introduced in
the closure SAM type. A problem arises: How can such a SAM type be found when
the closure type annotation was omitted?

Target Types. The solution adopted is to assign to each closure the target type, that
is the expected type in the specific context in which the closure is used. The target
type becomes the type if it is compatible with the closure.

Closure Contexts. The possible contexts in which a closure can appear are:
1. Variable declaration
2. Assignment
3. Return statement
4. Array initializer
5. Method or constructor argument
6. Lambda expression body
7. Conditional expression
8. Cast expression

Type Compatibility. The conditions which must hold for a closure to be compatible
with a type are: i) The type must be a functional interface: Let m be its single
method. ii) Number and types of the closure arguments must be the same as those
of m. iii) Return types of the closure and of m must be compatible. iv) Exceptions
thrown by the closure body must be allowed in the throws clause of m.

Closure Invocation. There is no ad hoc syntax for closure invocation. The user has
to specify, hence know and remember, the name that has been chosen for the single
method of the functional interface.

Non-local Variables. Any name used but not declared in the closure, must be either
declared final or effectively final. The concept of effectively final variables, already
introduced in Java SE 7, is now broadened, to mitigate the restriction on variables
updating. An effectively final variable is a variable which is not declared final but
its value is not modified.

Variable Shadowing. As for blocks the local variables or formal parameters of a clo-
sure cannot shadow already declared names.

Meaning of this. The self reference this in a closure refers to the object whose
method is enclosing the closure definition and not to the defined closure (this
transparency), thus disallowing recursive definitions through this. To define a re-
cursive closure, it’s necessary to associate a name to the closure, for instance through
variable declaration and initialization or assignment.

For space reason we limit the definition of the type inference system to a significative
kernel of Java with closures: It includes the field initialization but leaves out variables
and assignment, includes interfaces and hierarchies of classes but leaves out hierarchies
of interfaces, includes method overriding but leaves out method overloading.

We assume the reader already has some familiarity with the algebraic framework
of Featherweight Java, introduced in [IPW01], in particular with its main technicali-
ties and motivations for their use. Then, the paper organization is as follows: We start
defining a reduction semantics and declarative typing system for a kernel of Java, FGJ
[IPW01], extended with SAM typed closures, FGATCJ. The term ”declarative” is in



order to emphasize that the closures that we initially consider, in FGATCJ, are SAM
typed closures that have type annotations of the defined closure and of all the closure
arguments. The typing system is then, studied to provide soundness and to formalize
various notions of the proposal, including the type targeting and type compatibility.
Then, we extend FGATCJ in FGATCJ• that differs because of its type structure and
of its typing system. The type structure includes a (denumerable) set of a new kind of
variables, called d-variables. Programs of FGATCJ• are considered as the counterpart of
programs of FGATCJ where some type annotations, in the program closure definitions,
are omitted and replaced by d-variables. The typing system of FGATCJ• is in effect,
a type inference system: The system introduces constrained judgements that are essen-
tially the judgements of the declarative typing system, extended with the constraints of
a suitable constraint system. A constrain solver, based on ordinary, first order unifica-
tion, is then, defined: It computes the most general solution. We prove that the inference
system is sound and complete, and we show how, given a program, it computes the most
general assignment of d-variable to types, that makes the resulting program correctly
typed, provided that one such an assignment exists.

Section 2 contains a brief presentation of the Java kernel language FGJ. Section 3
introduces the kernel language FGATCJ and its reduction semantics. Section 4 contains
the (declarative) typing system of FGATCJ and proves the type soundness. Section 5 in-
troduces the kernel language FGATCJ•, the type inference system and proves soundness
and completeness. Section 6 concludes the paper and eventually, Appendix A contains
the proofs.

2 Featherweight Generic Java

A program in FGJ [IPW01] consists of a collection of generic class definitions and of an
expression to be evaluated using such classes. The expression corresponds to the body
of the 0-arguments main method of ordinary Java.

A complete definition of the abstract syntax of FGJ consists of the grammar rules
in Table 1 that are labelled by the defined grammatical category indexed by FGJ.
Symbols C and ↑ are a notational shorthands for Java keyword extends and return.
For syntactic regularity, (a) classes always specify the super class, possibly Object, and
have exactly one constructor definition; (b) class constructors have one parameter for
each class field with the same name as the field, invoke the super constructor on the fields
of the super class and initialize the remaining fields to the corresponding parameters;
(c) field access always specifies the receiver (object), possibly this. This results in the
stylized form of the constructors. Both classes and methods may have generic type
parameters.

FGJ has no side effects. Hence, sequencing and assignment are strictly confined to
constructor bodies. In particular, method bodies have always the form return, followed
by an expression. The lack of Java constructs for sequencing control and for store up-
dating (along with that of concurrency, and reflection) is the main advantage of the
calculus in studying language properties that are not affected by side effects. In this
way the calculus is, as much as possible, compact and takes advantage of the referential
transparency. The latter one provides a simple reduction semantics which is crucial for
rigorous, easy to derive, proofs of the language properties [FF87]. About compactness,
FGJ has only five forms of expressions (see definition of category e in Table 1): One



for variables1, another for field access, and one for Object Creation. The remaining two
forms are method invocation and cast.

The presence of cast in FGJ is justified by its fundamental role in compiling generic
classes. The reduction semantics of FGJ consists of the first three rules that appear in
Table 2: Computation, and deal with term evaluation, and of the first five rules in
Table 2: Congruence, that deal with the redex selection. The remaining 20 rules of
the semantics of FGJ deal with the type system and with term well-formedness. The
rules of FGJ have labels that are indexed by FGJ in Tables 2, 4, 5.

3 Featherweight GATCJ

The calculus defined in this paper is obtained as an extension of the calculus FGAJ[BO12],
which is in turn an extension of FGJ, with interfaces, anonymous classes and conse-
quently objects from anonymous classes creation. FGATCJ extends FGAJ with the
closures defined in [BS11a]. The issue concerned with non-local variables in closures,
has no meaning since all the variables of FGJ can be considered effectively final. Simi-
larly, it is about variable shadowing, since FGJ programs are, in effect, abstract syntax
terms (i.e. modulo variable renaming).

3.1 Notation and General Conventions

In this paper we adopt the notation used in [IPW01], accordingly f is a shorthand for a
possibly empty sequence f1, . . . , fn (and similarly for T, x, etc.) and M is a shorthand for
M1 . . . Mn (with no commas) where n is the size |f|, respectively |M|, i.e. the number of
terms of the sequence. The empty sequence is ◦ and symbol ”,” denotes concatenation
of sequences. Operations on pairs of sequences are abbreviated in the obvious way C f

is C1 f1, . . . , Cn fn and similarly C f; is C1 f1; . . . Cn fn; and this.f = f; is a shorthand
for this.f1 = f1; . . . this.fn = fn;. Sequences of field declarations, parameters and
method declaration cannot contain duplications. Cast, ( ) , and closure definition, → ,
have lower precedence than other operators, and cast precedes closure definition. Hence
() → (this.invoke()) can be written as () → this.invoke(). The, possibly indexed
and/or primed, metavariables T, V, U, S, W range over type expressions; X, Y, Z range
over type variables; N, P, Q range over class types; C, D, E range over class names; I
ranges over interface names; f, g range over field names; e, v, d range over expressions;
x, y range over variable names and M, K, L, H and m range respectively, over methods,
constructors, classes and interfaces, method headers, and method names. [x/y]e denotes
the result of replacing y by x in e. FV (T) denotes the set of free type variables in T.
Eventually, following the notation adopted in [IPW01], symbol ”=” is used in formulas
both as an abbreviation for let ∆ = X<:N, . . . and as a constraint if X = FV (T): The
context solves any ambiguity.

3.2 Syntax

A program in FGATCJ consists of a collection of generic, class and interface definitions
and of an expression to be evaluated using such classes and interfaces. The syntax is
formally, given in Table 1 by emphasizing the extensions of which FGATCJ is composed

1 Variables include parameters and this, see rule GR-Invk, Table 2.



starting from the kernel language: At the top of the table is reported FGJ, below the
first extension IA (that involves extensions on both types and expressions), finally the
last extension TC that introduces the closures. The table concludes with a view of the
various involved, languages.

Besides interfaces and anonymous classes already provided in FGAJ and FGACJ
in [BO12], in FGATCJ it is possible to define SAM typed closures. The syntax of the
expressions that define SAM closures is given in Table 1. Such expressions have form
a :T, where: T is the type annotation of the defined closure and specifies the type that
the defined closure is supposed to have. Moreover, the form of a is 〈X C N〉(T x)→ e

where: 〈X C N〉 is the possibly empty, sequence of the closure generics, whilst e is the
closure body. Eventually, T x is the possibly empty, argument sequence of the closure,
where: each argument xi has associated its type annotation Ti that specifies the type
that the defined closure assumes for the argument xi.

Table 1 : Syntax

FGJ

T ::= X | N (TFGJ)
N ::= C〈T〉 (NFGJ)
L ::= class C〈X C N〉 C N {T f; K M} (LFGJ)
K ::= C(T f){super(f); this.f = f; } (KFGJ)
M ::= 〈X C N〉T m(T x){↑ e; } (MFGJ)
e ::= x | e.f | new N(e) | e.m〈T〉(e) | (N)e (eFGJ)

IA: Extensions for Interfaces and Anonymous Class Objects

T ::= I〈T〉 (TFGAJ)
L ::= interface I〈X C N〉{H} (LFGAJ)
H ::= 〈X C N〉T m(T x) (HFGAJ)
e ::= new I〈T〉() {M} (eFGAJ)

TC: Extensions for SAM Typed Closures

e ::= a : T | (I〈T〉)e (eFGATCJ)
a ::= 〈X C N〉(T x)→ e (aFGATCJ)

FGAJ = FGJ + IA
FGATCJ = FGJ + IA + TC

Actually, these closures differ from the ones in [BS11a] because they always require
type annotations for both the defined closure and the closure arguments. In effect, the
aim of FGATCJ is to provide the right (language) structure to design a type system for
SAM typed closure, study the nominal properties of SAM types and prove the soundness
of the system. In this respect, the types of the defined closures as well as those of
closure arguments are explicitly given and the proposed type system is designed only
for checking the type correctness of the programs. The type system of FGATCJ is a
sort of declarative type system for a language, later on called FGATCJ•, in which type
annotations can be omitted as in the closures of [BS11a], hence the name used in Section
4 and in Table 4DN: In particular, the programs of FGATCJ are those of FGATCJ•

where the omitted type annotations are replaced with types and the resulting programs
are then checked for type correctness.

The possibility to omit types in FGATCJ• is dealt with in Section 5 where, the
type correctness of programs of FGATCJ• becomes the existence of a suitable type
assignment for the omitted type annotations, whilst checking for type correctness leads
to design a type inference for asking about such a type assignment. The type inference
will be obtained from the declarative type system through a suitable re-design of the
judgments introduced in Section 5.1.

For space convenience, the reduction rules of the semantics as well as the typing
rules are not given in separate tables for each calculus. In fact, since compositionality
of the semantics (we use), the rules of the various constructs are the same in all calculi



containing such a construct. However, for the reader convenience, in all tables, but
Table 3, the rules for each calculus, FGJ, FGAJ and FGATCJ, have a label which is
indexed by the name of the minimal calculus including the construct, involved in the
rule. Note that C〈T〉 includes Object(since T may be the empty sequence and C may be
Object) hence generic variables in classes and methods can be instantiated with types
T that include interfaces.

3.3 Semantics: Reduction

Table 2: Computation

Computation
fields(N) = T f

(new N(e)).fi  ei

(GR-FieldFGJ)

mbody(m〈V〉, N) = x.e

(new N(e)).m〈V〉(d)  [d/x, new N(e)/this]e
(GR-InvkFGJ)

∅ ` N<:P

(P)(new N(e))  new N(e)
(GR-CastFGJ)

mbody(m〈V〉, new I〈T〉(){M}) = x.e

(new I〈T〉(){M}).m〈V〉(d)  [d/x, new I〈T〉(){M}/this]e
(GR-Invk-AnonymFGAJ)

(〈X C N〉(T x)→ e : T).m〈S〉(d)  [d/x]e (GR-Clos-Inv-TypeFGATCJ)

(T) a : T  a : T (GR-CCastFGATCJ)

Congruence

e0  e
′
0

e0.f  e
′
0.f

(GRC-FieldFGJ)

e0  e
′
0

e0.m〈T〉(e)  e
′
0.m〈T〉(e)

(GRC-T-InvFGJ)

ei  e
′
i

e0.m〈T〉(. . . , ei, . . .)  e0.m〈T〉(. . . , e
′
i . . .)

(GRC-Inv-ArgFGJ)

ei  e
′
i

new N(. . . , ei, . . .)  new N(. . . , e
′
i, . . .)

(GRC-NewFGJ)

e  e
′

(N)e  (N)e
′ (GRC-CastFGJ)

e  e
′

(I〈T〉)e  (I〈T〉)e′
(GRC-CCastFGATCJ)

The reduction semantics is given through the inference rules in Table 2, which define
the relation e  e′ that says that “expression e reduces to expression e′ in one step”.
The computation may diverge or otherwise, terminate, possibly resulting into a value.
The values of FGATCJ are either named or anonymous class objects and closures. The
syntactic category V defines the form of the expressions representing such values:

V ::= new N(V)
| new I〈T〉(){M}
| 〈XC N〉(T x)→e : T

These expressions are normal forms (i.e. cannot be further reduced) of the reduction
relation , as it was expected. However, the converse does not hold since expressions as
they result from the grammar in Table 1 may contain unproper uses of field accesses, or
of method invocations, or of type casts: The type system discussed in the next sections,
aims to recognize programs that contain such expressions.



The structure of values results from the reduction rules of the calculus. The rules
indexed by FGJ in Table 2 are the same as those of calculus FGJ [IPW01], and the one
indexed by FGAJ is the same of FGAJ [BO12]. The rules use auxiliary functions (mbody,
fields) and notation that are introduced in Table 3, which collects all the auxiliary
definitions. The rule GR-Invk-AnonymFGAJ defines the semantics of invocation with
anonymous class objects, in a way quite similar to the one of method invocation with
objects of named classes. The new rules indexed FGATCJ include invocation for closures
and a rule to cast closures to SAM types. Also one congruence rule for casting is added.

Table 3: Classes and Interfaces

Subclassing

C E C
C E D D E E

C E E

class C〈X C N〉 C D {S f; K M}

C E D

Auxiliary functions
fields(Object) = ◦ (F-Object)

class C〈X C N〉 C N {S f; K M} fields([T/X]N) = U g

fields(C〈T〉) = U g, [T/X]S f
(F-Class)

class C〈X C N〉 C N {S f; K M} 〈Y C P〉U m (U x){↑ e; } ∈ M

mtype(m, C〈T〉) = [T/X](〈Y C P〉U 7→ U)
(MT-Class)

class C〈X C N〉 C N {S f; K M} m 6∈ M

mtype(m, C〈T〉) = mtype(m, [T/X]N)
(MT-Super)

interface I〈X C N〉 {H} 〈Y C P〉U m(U x) ∈ H

mtype(m, I〈T〉) = [T/X](〈Y C P〉U 7→ U)
(MT-Interface)

class C〈X C N〉 C N {S f; K M} 〈Y C P〉U m (U x){↑ e; } ∈ M

mbody(m〈V〉, C〈T〉) = x.[T/X, V/Y]e
(MB-Class)

class C〈X C N〉 C N {S f; K M} m 6∈ M

mbody(m〈V〉, C〈T〉) = mbody(m〈V〉, [T/X]N)
(MB-Super)

interface I〈X C N〉 {...} 〈Y C P〉U m (U x){↑ e; } ∈ M

mbody(m〈V〉, new I〈T〉(){M}) = x.[T/X, V/Y]e
(MB-Interface)

interface I〈X C N〉 {H} |H| = 1 ∆ ` V<:[V/X]N 〈Y C P〉U m (U x) = H

∆ ` met(I〈V〉) = 〈Y C [V/X]P〉[V/X]U m ([V/X]U x)
(Method)

Auxiliary predicates
override(m, Object, 〈Y C P〉T 7→ T0) (Over-Object)

mtype(m, N) = 〈Z C Q〉U 7→ U0 implies

((P, T) = [Y/Z](Q, U) and Y<:P ` T0<:[Y/Z]U0)

override(m, N, 〈Y C P〉T 7→ T0)
(Over)

interface I〈X C N〉 {H} ∆ ` V<:[V/X]N |H| = 1

∆ ` Fun(I〈V〉)
(Fun)

DCast

dcast(C, D) dcast(D, E)

dcast(C, E)

class C〈X C N〉 C D〈T〉 {. . .} X = FV (T)

dcast(C, D)
(DCast)

4 Declarative Typing

The declarative typing extends the typing rules of [IPW01], uses the same two environ-
ments ∆ and Γ , and eight different typing judgements (two more than [IPW01]’s ones):
One judgment for each different term structure of the language. A type environment ∆
is a mapping from type variables to types. It is written as a list of X<:T (with at most
one binding for each type variable X), meaning that type variable X must be bound to
a subtype of type T. Hence, using functional notation, we have that ∆(X) = T holds if
and only if ∆ contains X<:T. An environment Γ is a mapping from variables to types
written as a list of x : T (with at most one binding for each value variable x), meaning
that “x has type T”.



1. The judgement for a (generic) type T (see Table 5) has the form ∆ ` T ok meaning
that “T is a well-formed type in the type environment ∆”.

2. The judgement for sub-typing (see Table 5) has the form ∆ ` S<:T meaning that
“S is a subtype of T in ∆”.

3. The judgement for classes (see rule GT-ClassFGJ in Table 4DNb) has the form
C OK meaning that “C is well typed”.

4. Similarly, the judgement for interfaces (see rule GT-InterfFGAJ in Table 4DNb)
has the form I OK meaning that “I is well typed”.

Table 4DN: Declarative Typing Rules

∆;Γ1, x : T, Γ2 ` x : T (GT-VarFGJ)

∆;Γ ` e0 : T0 fields(bound∆(T0)) = T f

∆;Γ ` e0.fi : Ti

(GT-FieldFGJ)

mtype(m, bound∆(T0)) = 〈Y C P〉U 7→ U

∆;Γ ` e0 : T0 ∆ ` V ok ∆ ` V<:[V/Y]P
∆;Γ ` e : S ∆ ` S<:[V/Y]U

∆;Γ ` e0.m〈V〉(e) : [V/Y]U
(GT-InvFGJ)

∆ ` N ok fields(N) = T f

∆;Γ ` e : S ∆ ` S<:T

∆;Γ ` new N(e) : N
(GT-NewFGJ)

∆;Γ ` e : T ∆ ` bound∆(T)<:N

∆;Γ ` (N)e : N
(GT-UCastFGJ)

∆;Γ ` e : T ∆ ` N ok ∆ ` N<:bound∆(T)
N = C〈T〉 bound∆(T) = D〈U〉 dcast(C, D)

∆;Γ ` (N)e : N
(GT-DCastFGJ)

∆;Γ ` e : T ∆ ` N ok

N = C〈T〉 bound∆(T) = D〈U〉 C 6ED D 6EC

∆;Γ ` (N)e : N
(GT-SCastFGJ)

∆ ` I〈T〉 ok ∆;Γ ` M OK IN I〈T〉

∆;Γ ` new I〈T〉(){M} : I〈T〉
(GT-AnonymNewFGAJ)

∆;Γ ` a ↓ T e = a : T

∆;Γ ` e : T
(GT-ClosureFGATCJ)

T = I〈T〉 ∆;Γ ` e : T

∆;Γ ` (T)e : T
(GT-CCastFGATCJ)

Table 4DNa: Declarative Typing Rule - target compatibility

Closure compatibility

bound∆(T) = I〈V〉 ∆ ` Fun(I〈V〉) a = 〈X C N〉(T x)→ e

∆ ` met(I〈V〉) = 〈Y C P〉U m(S w) N = [X/Y]P
∆ ` [X/Y]S<:T ∆;Γ, x : T ` e : Z ∆ ` Z<:[X/Y]U

∆;Γ ` a ↓ T
(Comp.TFGATCJ)

Table 4DNb: Typing Rules

Classes, Interfaces, Methods

∆ = X<:N, Y<:P ∆ ` T, T, P ok

∆; x : T, this : C〈X〉 ` e0 : S ∆ ` S<:T
class C〈X C N〉 C N{...} override(m, N, 〈Y C P〉T 7→ T)

〈Y C P〉T m(T x){↑ e0; } OK IN C〈X C N〉
(GT-MethodFGJ)

Y<:P, X<:N ` T, T, P ok

〈Y C P〉T m(T x) OK IN I〈X C N〉
(GT-HeaderFGAJ)

∆
′
= ∆, Y<:P ∆

′ ` T, T, P ok

∆
′
;Γ, x : T, this : I〈V〉 ` e0 : S P

′
= [Y
′
/Y][V/X]P ∆

′ ` S<:T
interface I〈X C N〉{H} ∆ ` V<:[V/X]N 〈Y C P〉T m(T x) ∈ H

∆;Γ ` 〈Y′ C P
′〉T m(T x){↑ e0; } OK IN I〈V〉

(GT-AnonymFGAJ)

X <: N ` N, N, T ok M OK IN C〈X C N〉
fields(N) = U g K = C(U g, T f){super(g); this.f = f; }

class C〈X C N〉 C N {T f; K M} OK
(GT-ClassFGJ)

X <: N ` N ok H OK IN I〈X C N〉

interface I〈X C N〉{H} OK
(GT-InterfFGAJ)



Table 5: Subtypes

Subtypes
bound∆(X) = ∆(X) (B-VarFGJ)

bound∆(N) = N (B-ClassFGJ)

bound∆(I〈V〉) = I〈V〉 (B-InterfaceFGJ)

∆ ` T <: T (S-ReflFGJ)

∆ ` S <:T ∆ ` T<:U

∆ ` S <: U
(S-TransFGJ)

∆ ` X<:∆(X) (S-VarFGJ)

class C〈X C N〉 C N{. . .}

∆ ` C〈T〉 <: [T/X]N
(S-ClassFGJ)

Well-formed types
∆ ` Object ok (WF-ObjectFGJ)

X ∈ dom(∆)

∆ ` X ok
(WF-VarFGJ)

class C〈X C N〉 C N{. . .} ∆ ` T ok ∆ ` T<:[T/X]N

∆ ` C〈T〉 ok
(WF-ClassFGJ)

interface I〈X C N〉{. . .} ∆ ` T ok ∆ ` T<:[T/X]N

∆ ` I〈T〉 ok
(WF-InterfFGAJ)

5. The judgement for class methods (see GT-MethodFGJ in Table 4DNb) has the
form M OK IN C meaning that “M is well typed when its declaration occurs in class
C”. The same judgement is used for method signatures in interfaces (see GT-
HeaderFGAJ in Table 4DNb) where H OK IN I means that “H is a well typed
signature in interface I”.

6. The judgement for methods of interface instances is ∆;Γ ` M OK IN I〈V〉 meaning
that “M is well typed when its declaration occurs in interface instance I〈V〉 which
is a well typed anonymous class instance in the context of environments ∆ and Γ”
(see GT-AnonymFGAJ in Table 4DNb).

7. The judgement for expressions (see the rules of Table 4DN) has the form ∆;Γ `
e : T meaning that expression “e has type T in the context of environments ∆ and
Γ”.

8. The judgment for SAM typed closures (see the rule of Table 4DNa) has the form
∆;Γ ` a ↓ T meaning that closure “a is compatible with SAM type T in the context
of environments ∆ and Γ”.

The typing rules are contained in Table 4DN and extend those of FGJ [IPW01],
and those of FGAJ [BO12]. The new rules define the type for closures and casting on
closures. They are very simple, the first one says that a closure a : T has type T provided
that ∆;Γ ` a ↓ T. The second one says that the type of the closure must be the same
as the type to which the closure is cast.

4.1 Properties of the Type System

We prove the soundness of the declarative type system of FGATCJ: It guarantees that
programs that are well-typed have computations that if terminate then either result into
a value or get stuck at a failing type cast. Analogously to [IPW01], we prove the sub-
ject reduction theorem and the progress theorem first, the type soundness immediately
follows. For space problems, the complete theorem proofs are deferred to the appendix
A.



Theorem 1 (Subject reduction). If ∆;Γ ` e : T and e e′ then ∆;Γ ` e′ : T′, for
some T′ such that ∆ ` T′<:T. �

Proof. By induction on the reduction e e′, with a case analysis on the reduction rule
used. The proof of the corresponding theorem for FGJ (pp. 426-428, [IPW01]), has been
extended to include rules GR-Clos-Inv-Type and GR-CCast �

Let e be an expression. Then, e is a well-typed expression if and only if ∆,Γ, T exist
such that: ∆;Γ ` e : T. Moreover, e is a closed, well-typed, expression when, in addition,
∆ = ∅, Γ = ∅. A class C, respectively an interface I, is well-typed if and only if C ok,
respectively I ok holds. A program is well-typed if and only if its classes, interfaces, and
expressions are all well-typed.

Theorem 2 (Progress). Suppose e is well-typed. If e includes as a subexpression:
1. new N(e).f then fields(N) = T f, for some T and f, and f ∈ f.
2. new N(e).m〈V〉(d) then mbody(m〈V〉, N) = x.e0, for some x and e0, and |x| = |d|.
3. (〈XC N〉(T x)→e0 : T).m〈S〉(d) then |x| = |d| = |T| for some T, x and e0.

Proof. The proof is based on the analysis of all well-typed expressions and concludes
that either are normal forms or they fall in one of the above three cases �

Theorem 3 (Type Soundness). If ∅; ∅ ` e : T and e  ∗ e′ with e′ a normal form,
then e′ either is a value v ∈ V with ∅; ∅ ` v : S and ∅ ` S<:T, or an expression containing
(P)(new N(e)) with N 6<:P

Proof. By Theorem 2, if e is well-typed then either it is a normal form expression or it
is not. In the last case, e (contains a sub-expression) that can be reduced and results
into an expression e′ that, by Theorem 1, is a well-typed expression, again. In the first
case, we observe that either e = e′ ∈ V, or e is stuck in a type cast, since they are the
only well typed, closed, normal form, expressions �

5 Type Inference

In this case the program concrete syntax may omit to specify, in closure definitions, the
following type annotations:

(a) all or some parameter types;
(b) the closure type;

Hence, the aim of type inference is to find a type assignment for the omitted annotations,
that guarantees the correct type checking of the resulting program. In order to do it,
the program abstract syntax replaces the omitted annotations with a special class of
types. Hence, we need to extend typing in two ways. Firstly, we need a new kind of
variable for types. This kind of type variable will be called dotted variable (d-variable,
for short), it will be denoted by a variable identifier, X, preceded by •, and differs from
generic variables because it is used as a placeholder for those type annotations that are
omitted in the program.

Table 4INR - Types, Type Constraints and FGATCJ•

Types Type Constraints

TR ::= T | • X R ::= TR = TR | TR<•TR | R ∪ R
T ::= X | C〈T〉 | I〈T〉

TC•: Targeted Closures with omitted type annotations
e ::= a : TR | (I〈T〉)e
a ::= 〈X C N〉(TR x)→ e

FGATCJ•=FGJ + IA + TC•



The second extension is concerned with the constraints that are generated by the type
inference system, when it collects the requirements that the omitted type annotations
should satisfy. This is reported in Table 4INR: The syntax TR of types which extends T,
and the syntax R of constraints. For notational convenience, R1∪ ...∪Rn is represented
by (and called) a constraint sequence R.

Let ST, respectively STR , be the set of terms (types) of T, respectively TR. Let SX•
be the denumerable set of d-variables, and FGATCJ• be the set of all the terms of the
language FGATCJ extended by allowing d-variables in the type annotations. The type
inference system consists of a set of rules defining constrained judgements. The new rules
are contained in tables Table 4IN, 4INa and 4INb. Each rule in Table 4IN (and sim-
ilarly for the other two) has a corresponding rule in Table 4DN (4DNa, 4DNb) and
uses the corresponding constrained judgement. For instance, the constrained judgement
for expressions has the form ∆;Γ`inf e : T |R meaning that expression e has type T in
the context ∆ and Γ , provided that all constraints in R are satisfied (by an assignment
of types to d-variables)

5.1 Constrained Judgements

Table 4IN: Inference Typing Rules

∆;Γ1, x : T, Γ2`inf x : T| ∅ (IGT-VarFGJ)

∆;Γ`inf e0 : T0| R fields(bound∆(T0)) = T f

∆;Γ`inf e0.fi : Ti| R
(IGT-FieldFGJ)

∆;Γ`inf e0 : T0| R0 ∆ ` V ok

mtype(m, bound∆(T0)) = 〈Y C P〉U 7→ U ∆ ` V<:[V/Y]P

∆;Γ`inf e : S| Re ∆ ` S<:[V/Y]U

R = {S<•[V/Y]U} ∪ R0 ∪ Re

∆;Γ`inf e0.m〈V〉(e) : [V/Y]U| R
(IGT-InvFGJ)

∆ ` N ok fields(N) = T f

∆;Γ`inf e : S| Re ∆ ` S<:T

R = {S<•T} ∪ Re

∆;Γ`inf new N(e) : N| R
(IGT-NewFGJ)

∆;Γ`inf e : T| Re ∆ ` bound∆(T)<:N

∆;Γ`inf (N)e : N| Re

(IGT-UCastFGJ)

∆;Γ`inf e : T| Re ∆ ` N ok ∆ ` N<:bound∆(T)
N = C〈T〉 bound∆(T) = D〈U〉 dcast(C, D)

∆;Γ`inf (N)e : N| Re

(IGT-DCastFGJ)

∆;Γ`inf e : T| Re ∆ ` N ok

N = C〈T〉 bound∆(T) = D〈U〉 C 6ED D 6EC

∆;Γ`inf (N)e : N| Re

(IGT-SCastFGJ)

∆ ` I〈T〉 ok ∆;Γ ` M OK IN I〈T〉

∆;Γ`inf new I〈T〉(){M} : I〈T〉| ∅
(IGT-AnonymNewFGAJ)

e = a : Ta ∆;Γ`inf a ↓ T| Ra
R = {Ta = T} ∪ Ra

∆;Γ`inf e : T | R
(IGT-ClosureFGATCJ)

T = I〈T〉 ∆;Γ`inf e : T| Re

∆;Γ`inf (T)e : T | Re

(IGT-CCastFGATCJ)

Constrained judgments are essentially the judgements of the declarative typing system,
extended with the constraints of a suitable constraint system (Σ,A,X ,L)2 [Kir99],
or more simply, of a unification problem (Σ,X , E) [CK01,BS01], where the logic L is

2 Σ = {X0, Cn, In| n ∈ ℵ}3 is the signature of type constructors; A = ST is the constraint

computation domain; X = SX• is the set of variables; L is the set of the admitted formulas.



replaced by an algebra E, having a possibly complete, rewriting system which conve-
niently, provides the core of the constraint system solver. However, the algebra E results
uselessly tricky in order to deal with constraints T1<•T2. Hence, we prefer treating the
constraint system as an ordinary, first-order unification [Ede85] on STR , where: Con-
straint T1 = T2 is asserting that T1 and T2 must be unified, whilst T1<•T2 is asserting
that T1 and T2 must be unified, only if one of the two is bound to a d-variable. In fact,
constraints of the form T1<•T2 come from the presence of subtyping in the declarative
type system. This treatment of such constraints reflects the simplificative choice, of
keeping the subtyping rules outside the type inference.

Table 4INa: Inference Typing Rule - target compatibility

Closure compatibility

bound∆(T) = I〈V〉 a = 〈X C N〉(T x)→ e

∆ ` met(I〈V〉) = 〈Y C P〉U m(S w) N = [X/Y]P ∆ ` Fun(I〈V〉)
∆ ` [X/Y]S<:T ∆;Γ, x : T`inf e : Te | Re ∆ ` Te<:[X/Y]U

R = {[X/Y]S<•T; Te<•[X/Y]U} ∪ Re

∆;Γ`inf a ↓ T | R
(IComp.TFGATCJ)

Table 4INb: Typing Rules

Classes, Interfaces, Methods

∆ = X<:N, Y<:P ∆ ` T, T, P ok

∆; x : T, this : C〈X〉`inf e0 : S| R solved(R) ∆ ` S<:T
class C〈X C N〉 C N{...} override(m, N, 〈Y C P〉T 7→ T)

〈Y C P〉T m(T x){↑ e0; } OK IN C〈X C N〉
(GT-MethodFGJ)

Y<:P, X<:N ` T, T, P ok

〈Y C P〉T m(T x) OK IN I〈X C N〉
(GT-HeaderFGAJ)

∆
′
= ∆, Y<:P ∆

′ ` T, T, P ok

∆
′
;Γ, x : T, this : I〈V〉`inf e0 : S| R solved(R) P

′
= [Y
′
/Y][V/X]P

∆
′ ` S<:T interface I〈X C N〉{H} 〈Y C P〉T m(T x) ∈ H

∆;Γ ` 〈Y′ C P
′〉T m(T x){↑ e0; } OK IN I〈V〉

(GT-AnonymFGAJ)

X <: N ` N, N, T ok M OK IN C〈X C N〉
fields(N) = U g K = C(U g, T f){super(g); this.f = f; }

class C〈X C N〉 C N {T f; K M} OK
(GT-ClassFGJ)

X <: N ` N ok H OK IN I〈X C N〉

interface I〈X C N〉{H} OK
(GT-InterfFGAJ)

Auxiliary predicates

Sols(R) 6= {}

solved(R)
(R-Solver)

5.2 Properties of the Type Inference System

For all terms u ∈ FGATCJ•, dVar(u) is the set of d-variables that are in u. A (idem-

potent4. Hence, we consider only idempotent substitutions) substitution ρ, on STR is

a (idempotent) function from d-variables into STR , that maps identically except for a
finite set of d-variables, called the domain of ρ and denoted by dom(ρ). The set Im(ρ),
is the image set of ρ and, the set dVar(ρ), is the set of all d-variables occurring in the

image set of ρ. Each substitution ρ on STR ⊂ FGATCJ• is uniquely, extended to a en-
domorphism ρE on FGATCJ•: For each u ∈ FGATCJ•, ρE(u) is the term of FGATCJ•

resulting by replacing, in u, •X with ρ(•X), for all d-variables. Let Subs(STR) be the

set of all the substitutions on STR . Subs(STR) contains the identity substitution ε, it is

closed under function composition ◦, i.e. ρ ◦ σ ∈ Subs(STR) for all ρ, σ ∈ Subs(STR), it

4 We consider here, only idempotent substitutions that furnish a compact and simple, algebraic
framework [Ede85], for term unification and constraint solving on terms



has a partial ordering � having ε at the bottom. Identity is an idempotent substitution
and has dom(ε) = Im(ε) = dVar(ε) since all are the emptyset.

Definition 1 (dom, Im, dVar, ε,�).
- dom(ρ) = {•X|ρ(•X) 6= •X};
- Im(ρ) = {ρ(•X)| •X ∈ dom(ρ)};
- dVar(ρ) =

⋃
u∈Im(ρ) dVar(u);

- ε(•X) = •X,∀ • X ∈ S•X;
- ρ � σ if and only if σ = δ ◦ ρ for some δ.

To each R corresponds a finite set of finite sets of terms M(R) such that a solution of
R is any unifier 5 ρ ofM(R). Hence, the solution set Sols(R) of a constraint sequence
R is the set of all the unifiers ofM(R). Let mgu be the most general unifier 6 of a set of

sets of terms on STR , the most general solver ρ[R], if any, of a sequence R of constraints,
is such that ρ[R] = mgu(M(R)).

Definition 2 (M, ρ[R], Sols).

- M(R) = {{T1, T2}|T1 = T2 ∈ R} ∪ {{T1, T2}|T1<• T2 ∈ R and {T1, T2} ∩ S•X 6= {}};
- ρ[R] = mgu(M(R));

- Sols(R) = {σ ◦ ρ[R] | σ ∈ Subs(STR)}.

Theorem 4 (Soundness). For all ∆,Γ, e, T,R, If:
- ∆;Γ`inf e : T| R and,
- ρ ∈ Sols(R) and,
- dVar(T) ∪ dVar(e) ⊆ dom(ρ) and,
- dVar(ρ) = {}

Then, (*) ∆; ρE(Γ ) ` ρE(e) : ρE(T).

Proof. By induction on the size of expression e, measured as the maximum of the sub-
term nesting level and case analysis on the last rule used in the inference ∆;Γ`inf e :
T| R. �

Let e• ∈ FGATCJ• be an expression. A type assignments for e• is any substitution
ρ ∈ Subs(STR) such that: ρ(e•) ∈ FGATCJ ⊂ FGATCJ• and ρ(e•) is correctly typed,
i.e.: ∆;Γ ` ρ(e•) : T holds for a type T and well defined ∆ and Γ .

Theorem 5 (Completeness). For all ∆,Γ, e, T, If:
- ∆;Γ ` e : T and,
- e = ρ(e•), for some ρ ∈ Subs(STR), e• ∈ FGATCJ•.

Then, (**) ∆;Γ •`inf e• : T• | R and ρ(Γ •) = Γ and ρ(T•) = T.

Proof. By induction on size of expressions e, measured as the maximum of the subterm
nesting level and case analysis on the last rule used in the inference ∆;Γ ` e : T. �

5.3 Example

Consider a program with three interfaces that define three SAM types. In particular, I0
and I2 are such that their closures are compatible both with I0 and I2 and consequently
they can have both type I0 and I2. This is due to the nominal nature of SAM types.

5 A unifier [Ede85] is any substitution that makes identical the terms in each term set of M(R)
6 The most general unifier is the lower bound of unifier set, [Ede85] definition 4.7



interface I0{Integer invoke()}; interface I1{I0 invoke(Integer x)};
interface I2{Integer invoke()}

We now show how the system infers a unique type for the closure a = ()→ 3 when
it occurs in a program, for instance the following: ((I1)((x) → () → 3)).invoke(2).
We start adding dotted variables when needed, hence the expression is rewritten as
follows:((I1)((•X1 x)→(()→3 : •X2) : •X3)).invoke(2). The computation is below.

1 ∅; ∅ `inf ((I1)((•X1 x)→(()→3) : •X2) : •X3)).invoke(2) : T |R by IGT-Inv

1.1 ∅; ∅`inf (I1)((•X1 x)→(()→3) : •X2) : •X3) : T0| R0

1.2 mtype(invoke, I1) = Integer→ I0 with T = I0
1.3 ∅; ∅`inf 2 : Integer |Re with Re = {} since the additional axioms on

primitive data

1.4 R = {Integer<•Integer} ∪ R0 ∪Re
From 1.1, by IGT-CCast with T0 = I1
1.1.1 ∅; ∅`inf ((•X1 x)→(()→3) : •X2) : •X3) : I1|Re1

with R0 = Re1 by IGT-Closure

1.1.1.1 ∅; ∅`inf ((•X1 x)→(()→3) : •X2) ↓ I1 |Ra
with Re1 = {•X3 = I1} ∪ Ra by IComp.T

1.1.1.1.1 ∅ ` I1<:I1
1.1.1.1.2 ∅ ` Fun(I1)
1.1.1.1.3 ∅ ` met(I1) = I0 invoke(Integer x)
1.1.1.1.4 ∅ ` Te1<:I0
1.1.1.1.5 ∅; x : •X1`inf ()→3 : •X2 : Te1 |Re2

with Ra = {Integer<: • X1, Te1<•I0} ∪ Re2 by IGT-Closure

1.1.1.1.5.1 ∅; x : •X1`inf ()→3 ↓ Te1 |Re3 with Re2 = {•X2 = Te1} ∪ Re3
By contstraint solving, meta-variable Te1 is replaced by

•X2 then, •X2 is replaced by I0: Hence 1.1.1.1.5.1 becomes

∅; x : •X1`inf ()→3 ↓ I0|Re3 by IComp.T

1.1.1.1.5.1.1 bound(I0) = I0
1.1.1.1.5.1.2 ∅ ` met(I0) = Integer invoke()
1.1.1.1.5.1.3 ∅ ` Fun(I0)
1.1.1.1.5.1.4 ∅ ` Te2<:Integer
1.1.1.1.5.1.5 ∅; x : •X1`inf 3 : Integer|Re4 with Re4 = {} since the

additional axiom on primitive data

1.1.1.1.5.1.6 Re3 = {Integer<•Integer} ∪ Re4

Re2 = Re3 = {Integer<•Integer}
Ra = {Integer<: • X1, •X2<•I0, Integer<•Integer}
Re1 = {•X3 = I1, Integer<: • X1, •X2<•I0, Integer<•Integer}
R0 = Re1 = {•X3 = I1, Integer<: • X1, •X2<•I0, Integer<•Integer}
R = {•X3 = I1, Integer<: • X1, •X2<•I0, Integer<•Integer}

Hence, the type of the initial expression results by 1.2: T = I0, and R is satisfied by the
assignment of types to d-variables, R = {•X3 = I1, •X1 = Integer, •X2 = I0} that is
obtained by constraint solving.



6 Conclusions

We have provided a type inference system for Java SAM typed closures [BS11a]. It deals
with nominal types and furnishes the most general assignment, if one exists, of types to
the omitted type annotations of the program. The system has been proved sound and
complete. Due to space limitation, the system ignored the mechanism of the interface
hierarchy and that of method overloading. However, the approach we have followed is
structured enough to allow an easy inclusion of the (computation and typing) rules
for the additional mechanisms. Eventually, a type inference algorithm for FGATCJ• is
a program transformation that accepts programs of FGATCJ• and returns the same
program with all expressions annotated with their types, if any, or otherwise, it signals
type error. The definition of such an algorithm was out of the scope of the paper, however
it has the constrained rules system, introduced in Tables 4IN, as its central core, but it
needs in addition, to implement a strategy to apply in a deterministic, possibly efficient,
way such rules.
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A Lemmas and theorem proofs

Many lemmas are the same as those in [IPW01] in such case the number in [IPW01]
of the lemma is reported in the name. Furthermore, proofs are omitted when already



contained or easy extensions of those contained in [IPW01] and eventually, the names
of the rules are shortened by omitting the subscripts, if any.

Lemma 1 (A.2.1 (ok)). Suppose ∆, X<:N ` N ok and ∆ ` T, T ok

1. If ∆ ` S<:T, then ∆, X<:N ` S<:T
2. If ∆ ` S ok, then ∆, X<:N ` S ok

3. If ∆;Γ ` e : T, then ∆;Γ, x : T ` e : T and ∆, X<:N;Γ ` e : T

Lemma 2 (A.2.2. (ok)). If ∆ ` E〈V〉<:D〈U〉 and D 6EC and C 6ED then E 6EC and C 6EE.

Lemma 3 (A.2.3. (ok)). Suppose dcast(C, D) and ∆ ` C〈T〉<: D〈U〉. If ∆ ` C〈T′〉<: D〈U〉
then T

′
= T.

Lemma 4 (A.2.4. (ok)). If dcast(C, E) and CE DE E with C 6= D 6= E, then dcast(C, D)
and dcast(D, E).

Lemma 5 (A.2.5.(ok)). If ∆1, X<:N, ∆2 ` S<:T and ∆1 ` U<:[U/X]N with ∆1 ` U ok

and none X appearing in ∆1, then ∆1, [U/X]∆2 ` [U/X]S<:[U/X]T.

Lemma 6 (A.2.6. (ok)). If ∆1, X<:N, ∆2 ` T ok and ∆1 ` U<:[U/X]N with ∆1 ` U ok

and none of X appearing in ∆1 then ∆1, [U/X]∆2 ` [U/X]T ok

Lemma 7 (A.2.7. (ok)). Suppose ∆1, X<:N, ∆2 ` T ok and ∆1 ` U<:[U/X]N with ∆1 `
U ok and none of X appearing in ∆1 then,

∆1, [U/X]∆2 ` bound∆1,[U/X]∆2
([U/X]T)<:[U/X](bound

∆1,X<:N,∆2
(T))

Lemma 8 (A.2.8. (ok)). If ∆ ` S<:T and fields(bound∆(T)) = T f, then
fields(bound∆(S)) = S g and Si = Ti and gi = fi for all i ≤ |f|.

Lemma 9 (A.2.9. (modified)). If ∆ ` T ok and mtype(m, bound∆(T)) = 〈YC P〉T7→U

then for any S such that ∆ ` S<:T and ∆ ` S ok, we have mtype(m, bound∆(S)) =
〈YC P〉T 7→U′ and ∆, Y<:P ` U′<:U

Proof. Case T = I〈V〉. Its is immediate since ∆ ` S<:T ⇐⇒ S = T �

Lemma 10 (A.2.10. (modified)). If ∆1, X<:N, ∆2;Γ ` e : T and ∆1 ` U<:[U/X]N
where ∆1 ` U ok and none of X appears in ∆1, then ∆1, [U/X]∆2; [U/X]Γ ` [U/X]e : S for
some S such that ∆1, [U/X]∆2 ` S<:[U/X]T

Proof. As in [IPW01], the proof is given by case analysis and induction on the derivation
of ∆1, [U/X]∆2;Γ ` e : T. The new cases are GT-Closure and GT-CCast.
Case GT-Closure e = a : T ∆;Γ ` a ↓ T
Trivially by Lemma 15 ∆1, [U/X]∆2; [U/X]Γ ` [U/X]a ↓ S for ∆1, [U/X]∆2 ` S<:T
Case GT-CCast e = (I〈T〉)e0 ∆;Γ ` e0 : I〈T〉 T = I〈T〉
By induction ∆1[U/X]∆2; [U/X]Γ ` [U/X]e0 : [U/X]I〈T〉, and by rule GT-CCast

∆1[U/X]∆2; [U/X]Γ ` ([U/X]I〈T〉) [U/X]e0 : [U/X]I〈T〉
Letting S = [U/X]I〈T〉 finishes the case and the proof �

Lemma 11 (A.2.11. (modified)). If ∆;Γ, x : T ` e : T and ∆;Γ ` d : S where
∆ ` S<:T, then ∆;Γ ` [d/x]e : S for some S such that ∆ ` S<:T



Proof. As in [IPW01], the proof is given by induction on the derivation of ∆;Γ, x : T `
e : T and case analysis. We specify only the new cases.
Case GT-Closure e = a : T ∆;Γ, x : T ` a ↓ T
By Lemma 16 ∆;Γ ` [d/x]a ↓ T, and by rule GT-Closure: ∆;Γ ` [d/x]a : T : T.
Case GT-CCast Trivial since Java type system �

Lemma 12 (A.2.12. (ok) ). If mtype(m, C〈T〉) = 〈YCP〉U 7→U and mbody(m〈V〉, C〈T〉) =
x.e0 where ∆ ` C〈T〉 ok) and ∆ ` V ok and ∆ ` V<:[V/Y]P, then there exist some N and
S such that ∆ ` C〈T〉<:N and ∆ ` S<:[V/Y]U and ∆ ` S ok and ∆; x : [V/Y]U, this : N `
e0 : S.

Lemma 13 (Type substitution preserves Fun (new)). If ∆1, X<:N, ∆2;` Fun(I〈V〉)
and ∆1 ` U<:[U/X]N where ∆1 ` U ok and none of X appears in ∆1, then ∆1, [U/X]∆2 `
Fun(I〈[U/X]V〉)

Proof. By rule Fun, we have interface I〈YCN〉 {H} ∆ ` V<:[V/Y]N |H| = 1. By Lemma
5 [U/X]V<:[[U/X]V/Y][U/X]N. Hence by rule Fun we have ∆1, [U/X]∆2;` Fun(I〈[U/X]V〉) �

Lemma 14 (Type substitution preserves met (new)). If ∆1, X<:N, ∆2 ` met(I〈V〉 =
〈YC P〉U m(S w) and ∆1 ` U<:[U/X]N where ∆1 ` U ok and none of X appears in ∆1, then
∆1, [U/X]∆2;` met(I〈[U/X]V〉) = 〈YC [U/X]P〉[U/X]U m([U/X]S w)

Proof. By rule Method, we have interface I〈ZC N〉 {H} |H| = 1 ∆ ` V<:[V/Z]N 〈YC
P〉U m (U x) = H. By Lemma 5 [U/X]V<:[[U/X]V/Z][U/X]N. Hence by rule Method we have
∆1, [U/X]∆2;` met(I〈[U/X]V〉) = 〈YC [U/X]P〉[U/X]U m([U/X]S w) �

Lemma 15 (Type substitution preserves Compatibility (new)). Let a = 〈Z C
Q〉(T x) → e. If ∆1, X<:N, ∆2;Γ ` a ↓ T and ∆1 ` U<:[U/X]N where ∆1 ` U ok and
none of X appears in ∆1, then ∆1, [U/X]∆2; [U/X]Γ ` [U/X]a ↓ S for some S such that
∆1, [U/X]∆2 ` S<:[U/X]T

Proof. Let ∆ = ∆1, X<:N, ∆2;. By Compatibility, we have that:
bound∆(T) = I〈V〉 ∆ ` Fun(I〈V〉)

∆ ` met(I〈V〉) = 〈YC P〉 U m(S w) eq(Q, [Z/Y]P)
∆ ` S<:[Z/Y]T ∆;Γ, x : [Z/Y]T ` e : Z ∆ ` Z<:[Z/Y]U

By Lemma 13,∆1, [U/X]∆2 ` Fun(I〈[U/X]V〉). By Lemma 14,∆1, [U/X]∆2 ` met(I〈[U/X]V〉) =
〈Y C [U/X]P〉 [U/X]U m([U/X]S w). By Lemma 10 ∆1, [U/X]∆2; [U/X]Γ, x : [U/X][Z/Y]S `
[U/X]e : Z′ and Z′<:[U/X]Z, by Lemma 5, ∆1, [U/X]∆2 ` [U/X]Z<:[U/X]([Z/Y]U) and by
transitivity Z′<:[U/X]([Z/Y]U). Hence by Compatibility ∆1, [U/X]∆2; [U/X]Γ ` 〈Z C
[U/X]Q〉(x)→ [U/X]e ↓ I〈[U/X]V〉. Letting S = I〈[U/X]V〉 finishes the case and the proof �

Lemma 16 (Term substitution preserves compatibility (new)). Let a = 〈Z C
Q〉(T x) → e. If ∆;Γ, y : Ty ` a ↓ T and ∆;Γ ` d : Sy for ∆ ` Sy<:Ty then ∆;Γ `
[d/y]a ↓ T

Proof. Let Γ1 = Γ, y : Ty By Compatibility we have
bound∆(T) = I〈V〉 ∆ ` met(I〈V〉) = 〈YC P〉 U m(S w)

∆ ` Fun(I〈V〉) ∆ ` S<:[Z/Y]T eq(Q, [Z/Y]P)
∆;Γ1, x : [Z/Y]T ` e : Z ∆ ` Z<:[Z/Y]U

Without loss of generality, we can assume x ∩ y = ∅. By Lemma 11 ∆;Γ, x : [Z/Y]T `
[d/y]e : Z′ for ∆ ` Z′<:Z and by trans, ∆ ` Z′<:[Z/Y]U. Hence, the application of rule
Compatibility finishes the case �



Lemma 17 (Type implies Compatibility (new)). Let a = 〈Z C Q〉(T x) → e. If
∆;Γ ` a : T then ∆;Γ ` e ↓ T

Proof. Trivial �

Theorem 1 (Subject Reduction). If ∆;Γ ` e : T and e e′ then ∆;Γ ` e′ : T′, for
some T′ such that ∆ ` T′<:T

Proof. By induction on the reduction e e′, with a case analysis on the reduction rule
used. The proof of the corresponding theorem for FGJ (pp. 426-428, [IPW01]), must be
extended for GR-Clos-Inv-Type and GR-CCast, the last one is is trivial.
Case GR-Clos-Inv-Type e = (〈ZC Q〉(x)→ eb : Ta).m〈V〉(e) e′ = [e/x]eb
By rule GT-Inv:

(1) ∆;Γ ` (〈ZC Q〉(x)→ eb : Ta) : T0 ∆ ` V ok

mtype(m, bound∆(Ta)) = 〈YC P〉 U7→U ∆ ` V<:[V/Y]P
∆;Γ ` e : T ∆ ` T<:[V/Y]U T = [V/Y]U

From (1), by GT-Closure we have T0 = Ta and (2)∆;Γ ` 〈Z C Q〉(x) → eb ↓ Ta . By
Compatibility:

bound∆(Ta) = Ia〈Va〉 ∆ ` Fun(Ia(Va))
∆ ` met(Ia〈Va〉) = 〈YC P〉 U m(U w)
(3) ∆;Γ, x : [V/Y]U ` eb : Z ∆ ` Z<:[V/Y]U

From (3), by Lemma 11, ∆;Γ ` [e/x]eb : Z′ for ∆ ` Z′<:Z and by S-Trans, ∆ `
Z′<:[V/Y]U. Letting T′ = Z′ finishes the case and the proof �

Lemma 18. Let R1, R2 be two possibly distinct, constraint sequences and, R = R1 ∪
R2. If R has solution then ρ[R] is solution of R1 and of R2 separately, i.e.: ρ[R] ∈
Sols(R1) ∩ Sols(R2), or equally, ρ[R1], ρ[R2] � ρ[R].

Proof. Immediate from Proposition 4.8 [Ede85] �

Lemma 19. Let R be a constraint sequence with most general solution σ = ρ[R]. Then:
(a) σ is unique up to variable renaming;
(b) If dVar(σ) = {} then σ is the unique most general solution of R

Proof. (a) Immediate from Lemma 2.10 [Ede85]. (b) It is a consequence of point (a),
since dVar(σ) = {} implies that any variable renaming leaves σ unchanged �

Theorem 4 (Soundness) For all ∆,Γ, e, T,R, If:
- ∆;Γ`inf e : T| R and,
- ρ ∈ Sols(R) 6= {} and,
- dVar(T) ∪ dVar(e) ⊆ dom(ρ) and,
- dVar(ρ) = {}

Then, (*) ∆; ρE(Γ ) ` ρE(e) : ρE(T).

Proof. By induction on the size of expression e, measured as the maximum of the sub-
term nesting level and case analysis on the last rule used in the inference ∆;Γ`inf e :
T| R.
Case IGT-Var: e = x T = T R = ∅
Then, ρ = ε and: T = ε(T), ε(Γ ) = Γ , ε(x) = x. Moreover T ∈ ST, since dVar(ρ) = {},
and by rule GT-Var, (*) follows and ends the case.
Case IGT-Field: e = e0.fi T = Ti R = R



∆;Γ`inf e0 : T0| R fields(bound∆(T0)) = T f

By induction hypothesis, let ∆; ρE(Γ ) ` ρE(e0) : ρE(T0). Moreover, type ρE(T0) = T0
(possibly, for some T0 = ρE(•X) and •X in dVar(e0)) because bound∆ applies only to
types of T. Hence, by rule GT-Field, (*) follows and ends the case.
Case IGT-Inv e = e0.m〈V〉(e) T = [V/Y]U R = {S<•[V/Y]U} ∪ R0 ∪Re

∆;Γ`inf e0 : T0| R0 ∆ ` V ok

mtype(m, bound∆(T0)) = 〈YC P〉U 7→ U ∆ ` V<:[V/Y]P
∆;Γ`inf e : S| Re ∆ ` S<:[V/Y]U

By induction hypothesis, let ∆; ρE(Γ ) ` ρE(e0) : ρE(T0), and ∆; ρE(Γ ) ` ρE(e) : ρE(S),
since ρE ∈ Sols(R0) ∩ Sols(Re) by Lemma 18. Type ρE(T0) = T0 (possibly, for some

T0 = ρE(•X) and •X in dVar(e0)) because bound∆ applies only to types of the set ST.
Similarly, the type sequence ρE(S) = S (possibly, for Si = ρE(•Xi) and •Xi in dVar(e),

for some 1 ≤ i ≤ |S|) because [V/Y]U is a sequence of types in ST. Hence, S<:[V/Y]U hold

only if each type in the sequence S is a type of the set ST. By rule GT-Inv, (*) follows
and ends the case.
Case IGT-New e = new N(e) T = N R = {S<•T} ∪ Re

∆ ` N ok fields(N) = T f ∆;Γ`inf e : S| Re ∆ ` S<:T
By induction hypothesis, let ∆; ρE(Γ ) ` ρE(e) : ρE(S), since ρE ∈ Sols(Re) by Lemma
18. The type sequence ρE(S) = S (possibly, for Si = ρE(•Xi) and •Xi ∈ dVar(e), for

some 1 ≤ i ≤ |S|) because T is a sequence of types in ST. Hence S<:T applies only if

each type in the sequence S is a type of the set ST. By rule GT-New, (*) follows and
ends the case.
Case IGT-UCast e = (N)e0 T = N R = Re

∆;Γ`inf e0 : T0| Re ∆ ` bound∆(T0)<:N
By induction hypothesis, let ∆; ρE(Γ ) ` ρE(e0) : ρE(T0). Type ρE(T0) = T0 (possibly,
for T0 = ρE(•X) and •X ∈ dVar(e0)) because bound∆ applies only to types of the set

ST. Moreover, since N is a type of the set ST, ρE(N) = N and By rule GT-UCast, (*)
follows and ends the case.
Cases IGT-DCast, IGT-SCast can be proved similarly to IGT-UCast above. In
particular, also in these cases, type ρE(T0) = T0 because the rule requires a checking on

bound∆(T0) and bound applies only to types in ST.
Case IGT-AnonymNew e = new I〈T〉(){M} T = I〈T〉 R = ∅
Since ρ[∅] = ε, by rule GT-AnonymNew, (*) follows and ends the case.
Case IGT-Closure e = e T = T R = {Ta = T} ∪ Ra

e = a : Ta ∆;Γ`inf a ↓ T| Ra
Let ρa = ρ[Ra]. We can prove that

(1) ∆; ρEa (Γ ) ` ρEa (a) ↓ ρEa (T) holds.
Since Ra ⊆ R, by Lemma 18, ρa � ρ[R]. Then, ∆; ρ[R]E(Γ ) ` ρ[R]E(a) ↓ ρ[R]E(T),
and ρ[R]E(Ta) = ρ[R]E(T). Hence, rule GT-Closure applies ∆, ρ[R]E(Γ ) ` ρ[R]E(e) :
ρ[R]E(Ta). Putting type T = ρ[R]E(Ta) concludes the case.
We prove (1). From ∆;Γ`inf a ↓ T| R, by rule IComp.T:

bound∆(T) = I〈V〉 a = 〈XC N〉(T x)→e ∆ ` Fun(I〈V〉)
∆ ` met(I〈V〉) = 〈YC P〉U m(S w) eq(N, [X/Y]P)

∆ ` [X/Y]S<:T ∆;Γ, x : T`inf e : Te | Re ∆ ` Te<:[X/Y]U
Let ρe = ρ[Re]. By induction, ∆; ρEe (Γ, x : T) ` ρEe (e) : ρEe (Te) holds and ∆ `
ρEe (Te)<:[X/Y]U holds too, since ∆ ` Te<:[X/Y]U (hence, ρEe (Te) = Te). Then, by rule
Comp.T we conclude (1).



Case IGT-CCast e = (T)e T = T R = {Te = T} ∪ Re
e = a : Ta ∆;Γ`inf e : Te| Re

Let ρe = ρ[Re]. By induction hypothesis, let∆; ρEe (Γ ) ` ρEe (e) : ρEe (T). Since, ρe � ρ[R]
by Lemma 18, and ρ[R] � ρ, then ∆; ρE(Γ ) ` ρE(e) : ρE(T) and by rule GT-CCast,
(*) follows and ends the case �

Theorem 5 (Completeness) For all ∆,Γ, e, T, If:
- ∆;Γ ` e : T and,
- e = ρ(e•), for some ρ ∈ Subs(STR), e• ∈ FGATCJ•.

Then, (**) ∆;Γ •`inf e• : T• | R and ρ(Γ •) = Γ and ρ(T•) = T.

Proof. By induction on size of expressions e, measured as the maximum of the subterm
nesting level and case analysis on the last rule used in the inference ∆;Γ ` e : T.
As a notational remark: we use, possibly indexed, metavariables e• and T•, ranging
over, respectively, expressions and types possibly containing d-variables. Whilst, possibly
indexed metavariables e, T do not contain d-variables for sure.
Case GT-Var is trivial since no d-variable can appear in var declaration.
Cases GT-Field, GT-UCast, GT-DCast,GT-SCast, are easy since use induction
and constraints are not extended, hence the substitution ρ is the one computed by
induction.
Case GT-New By induction on e and since by hypothesis S<:T holds only if each type
in S and T is a type in ST, hence R = Re, hence the substitution ρ is the one computed
by induction.
Case GT-AnonymNew is trivial since premises of rule IGT-AnonymNew are the
same as rule GT-AnonymNew, furthermore, constraint set is ∅.
Case GT-Inv e = e0.m〈V〉(e)

mtype(m, bound∆(T0)) = 〈YC P〉U→ U

∆;Γ ` e0 : T0 ∆ ` V<:[V/Y]P
T = [V/Y]U ∆;Γ ` e : S ∆ ` S<:[V/Y]U

By induction hypothesis on e0 and e, we have: e0 = ρ0(e•0) for some ρ0 ∈ Subs(STR) and
e•0 ∈ FGATCJ• and ∆;Γ •`inf e•0 : T•0 | R0 and ρ0(T•0) = T0 and for each ei in e, we have

ei = ρi(e
•
i ) for some ρi ∈ Subs(STR) and e•i ∈ FGATCJ•, and ∆;Γ •`inf e•i : S•i | Ri and

ρi(S
•
i ) = Si. Hence R = {S<•[V/Y]U} ∪ R0 ∪Ri but since by hypothesis, ∆ ` S<:[V/Y]U

holds only if each type in S and [V/Y]U, is a type in ST, hence R = R0 ∪Ri and by rule
IGT-Inv ∆;Γ •`inf e• : T• | R with T• = [V/Y]U. Let ρ = sup(ρ0, ρi), by Theorem 4:
∆; ρ(Γ •) ` ρ(e•) : ρ(T•) = ρ([V/Y]U) = [V/Y]U.
Case GT-Closure e = a : T and ∆;Γ ` a ↓ T and e• = a• : T•. By Comp.T

bound∆(T) = I〈V〉 ∆ ` Fun(I〈V〉) a = 〈XC N〉(T x)→e0
∆ ` met(I〈V〉) = 〈YC P〉U m(S w) eq(N, [X/Y]P)

∆ ` [X/Y]S<:T ∆;Γ, x : T ` e0 : Te ∆ ` Te<:[X/Y]U

by induction on e0, ∆;Γ •`inf e•0 : T•e| R0 for some ρ0 ∈ Subs(STR) and ρ0(e•0) = e0 and
ρ0(T•e) = Te. By rule IComp.T, ∆;Γ •`inf a• ↓ T• | Ra, since all premises are verified.
Moreover, ∆ ` S<:[V/Y]U and ∆ ` Te<:[X/Y]U hold only if each type in S, [V/Y]U, Te
and [X/Y]U, is a type in ST. Hence Ra = {[X/Y]S<•T; Te<•[X/Y]U} ∪ R0 = R0. By rule
IGT-Closure, ∆;Γ •`inf e• : T | R0 ∪ {T = T•} and ρ = sup(ρ0,mgu({T•, T})
Case GT-CCast e = (T)e0 and ∆;Γ ` e0 : T and e0 = a : T. By induction on e0,

∆;Γ •`inf e•0 : T•| R0 for some ρ0 ∈ Subs(STR) and ρ0(e•0) = e0 and ρ0(T•) = T. Since
e0 = a : T then e•0 = a• : T•0, by IGT-Closure premises ∆;Γ •`inf a• ↓ T•0 | Ra and
R0 = {T• = T•0} ∪ Ra, hence ρ = sup(ρ0,mgu({T•, T•0}) �


