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Abstract


In this tutorial, we give an overview of two fundamental problems arising in the op-
timization of a railway system: the Train Timetabling Problem (TTP) and the Train
Platforming Problem (TPP). These problems correspond to two main phases that are
usually optimized in close sequence. First, in the TTP phase, a schedule of the trains in
a railway network is determined. A schedule consists of the arrival and departure times
of each train at each (visited) station. Second, in the TPP phase, one needs to determine
a stopping platform and a routing for each train inside each (visited) station, according
to the schedule found in the TTP phase. Due to the complexity of the two problems, an
integrated approach is generally hopeless for real-world instances. Hence, the two phases
are considered separately and optimized in sequence. Although there exist several versions
for both problems, depending on the infrastructure manager and train operators require-
ments, we do not aim at presenting all of them, but rather at introducing the reader to
the topic using small examples. We present models and solution approaches for the two
problems in a didactic way and always refer the reader to the corresponding articles for
technical details.


Keywords: Train Timetabling, Train Platforming, Integer Linear Programming, Integer
Quadratic Programming, Heuristic, Branch-and-Cut-and-Price


1 Introduction


Railway systems are packed full of challenging combinatorial optimization problems. Yet, due
to their complexity, the optimization process is usually carried out in sequence, subdividing
the full problem into several sub-problems, which are solved one after the other (i.e., the
output of a problem becomes the input of the following one). These sub-problems are NP-
hard and include (in order): Line Planning, Train Timetabling, Train Platforming, Rolling
Stock Circulation, Train Unit Shunting and Crew Planning, see e.g. [17] for an overview on
passenger railway optimization problems. In this tutorial we concentrate on two early phases,
namely Train Timetabling Problem (TTP) and Train Platforming Problem (TPP). These two
phases come right after the Line Planning Problem, hence they assume that the routes for the
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trains as well as the types and frequencies of the trains on each route have been defined. TTP
and TPP are solved in sequence and are strictly connected, i.e., the two phases are generally
iterated until both solutions are accepted by the Infrastructure Manager. The TTP is solved
for a set of trains on a given railway network to determine a feasible schedule. Then, the
TPP is solved for each station of the railway network in order to assign each train a stopping
platform and define the corresponding routing inside the station. Note that TTP is solved for
the whole network, while TPP is solved separately for each individual station in the network,
since each station is independent of the others, from a platforming point of view.


This tutorial is not meant to cover all versions nor all existing approaches of TTP and
TPP. In fact, our goal is to present the main concepts of the two problems and some well-
assessed models and algorithms. The tutorial aims at giving an overview of the two problems
in a didactic way, presenting a description of the problems through examples, Mixed Integer
Programming (MIP) models and exact as well as heuristic solution methods based on Branch-
and-Price. Apart from the direct application of such models and algorithms to the above
mentioned problems, we believe that they also represent ‘paradigms’, in the sense that some
concepts can be adapted and applied to different contexts.


The tutorial is organized into two parts, the first one devoted to TTP and the second one
to TPP. Inside each part, we present a brief review of the literature (Sections 2.1 and 3.1)
and the problem description, specifying the input, the constraints and the objective that are
taken into account (Sections 2.2 and 3.2). Then, in Section 2.4, we present two Integer Linear
Programming (ILP) models for the TTP (based on a graph representation of the problem
presented in Section 2.3). In Section 3.3, we present an Integer Quadratic Programming
(IQP) model for TPP. All the presented models are characterized by either an exponential or
a very large number of variables. Finally, we present solution methods to find optimal and
heuristic solutions to the problems (Sections 2.5 and 3.4). For each problem a set of examples
is presented.


2 The Train Timetabling Problem


2.1 Literature review


TTP has received considerable attention in the literature. We refer the reader to [7], [12], [14],
[17], [18], [27], and [38] for recent surveys. Two are the main variants of train timetabling:
one is to consider a cyclic (or periodic) schedule of the trains that is repeated every given time
period (for example every hour), and the other one is to consider a more congested network
and/or a competitive market for which a non-cyclic schedule becomes more appropriate.
Indeed, in the latter case, several Train Operators run trains on the same infrastructure and
it becomes harder to obtain effective cyclic schedules. The cyclic timetabling was introduced
by the seminal paper [46], in which a mathematical model for the periodic event scheduling
problem is proposed. Many extensions of the model have been considered in the literature,
most of them based on cycle bases (see e.g. [30], [33], [34], [36], [37], [39], [40], [41], [42] and
[45]). One of the first papers dealing with the non-cyclic TTP is presented in [47], in which a
job-shop scheduling formulation for TTP on a single track railroad is proposed. Other works
on non-cyclic TTP propose exact methods ([9], [28]) or heuristic methods ([4], [13], [19], [21],
[26]). There are works dealing with a single one-way line ([9], [10], [13], [26], [47]) or with a
general railway network ([2], [3], [11]).
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Another important classification of TTP consists in the distinction between nominal prob-
lem and robust problem. In the nominal case, the goal is to determine optimal timetables
for a set of trains providing the maximum efficiency of the railway system, e.g. scheduling as
many trains as possible on the network or obtaining the shortest travel time for the passengers
between origin and destination. In the robust case, the aim is to determine robust timetables
for the trains, i.e. to find a schedule that avoids, in case of disruptions in the railway network,
delay propagation as much as possible. Therefore the objectives of the latter variants are in
contrast and usually a trade-off between them must be achieved. The robust version of TTP
has been studied by Stochastic Programming ([29]), Light Robustness ([24], [25]), Recoverable
Robustness ([22], [32]), Delay Management ([35]), Bi-objective Methods ([8], [43], [44]).


In this tutorial, we focus on non-cyclic nominal train timetabling (from now on shortly
TTP). TTP calls for providing a timetable for a set of trains on a railway network, that satisfy
the so-called track capacity constraints. An Infrastructure Manager is in charge of handling
the railway network and receives requests from several Train Operators for scheduling trains
to be operated for a given time horizon. Each of these requests specifies a path for a train
along with the arrival and departure times for all stations along the path. Generally, these
requests are mutually incompatible. Therefore, the Infrastructure Manager has to modify the
arrival and/or departure times of some trains (and possibly to cancel some other trains), in
order to come up with a proposed feasible solution for the Train Operators. The latter may
either accept it, or come up with new proposals. The process is iterated until the solution
proposed by the Infrastructure Manager is accepted by all Train Operators.


For sake of clarity, we present the case study of TTP on a single one-way line, called main
corridor. In fact, in many cases, once the timetable for the trains on the main corridor has
been determined, it is relatively easy to find a convenient timetable for the trains on the other
lines of the network. The extension to a general railway network can easily be done (see e.g.
[11]).


2.2 Problem Description


In the following, we give a formal definition of TTP, by specifying its input, constraints and
objective.


2.2.1 Problem input: railway topology and trains timetables


In TTP one needs to specify the railway topology (in our case a single, one-way track corridor
linking two major stations, with a number of intermediate stations in between) together with
a set of trains that are candidate to be run every day of a given time horizon along the
corridor. Let S = {1, . . . , s} represent the set of stations, numbered according to the order in
which they appear along the corridor for the running direction considered, and T = {1, . . . , t}
denote the set of candidate trains. For each train j ∈ T , a first (departure) station fj and a
last (destination) station lj (lj > fj) are given. Let Sj := {fj , . . . , lj} ⊆ S be the ordered set
of stations visited by train j (j ∈ T ). A timetable defines, for each train j ∈ T , the departure
time from fj , the arrival time at lj , and the arrival and departure times for the intermediate
stations fj + 1, . . . , lj − 1. Each train is assigned by the Train Operator an ideal timetable,
representing the most desirable timetable for the train.


We present an example of a TTP instance that will be used through the TTP sections.
The railway topology that we consider is shown in Figure 1 and consists of a corridor with 5
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stations (S = {1, 2, 3, 4, 5}).


1 2 3 4 5


Figure 1: The considered corridor with 5 stations.


Let T = {A,B,C} be the set of trains. For each train, we have the following stations:
SA = {1, 2, 3}, SB = {1, 2, 3, 4, 5} and SC = {3, 4, 5}. Consequently, we have: fA = 1, lA = 3,
fB = 1, lB = 5, fC = 3, lC = 5. The ideal timetables provided on input are presented in
Table 1. For example, train A departs from station 1 at 9:00, arrives at station 2 at 9:05
where it stops until 9:07 and arrives at station 3 at 9:18. As you can see, trains can visit a
subset of stations or all of them.


Ideal Timetable A Ideal Timetable B Ideal Timetable C
Stations Arr. Time Dep. Time Arr. Time Dep. Time Arr. Time Dep. Time


1 9:00 9:00
2 9:05 9:07 9:10 9:12
3 9:18 9:30 9:35 9:33
4 10:00 10:03 10:02 10:07
5 10:20 10:24


Table 1: Example of three ideal timetables.


2.2.2 Problem constraints


The track capacity constraints impose that:


• overtaking between trains occurs only within a station (as we are dealing with a corri-
dor),


• for each station i ∈ S, a minimum time interval ai between two consecutive arrivals of
trains must be respected,


• for each station i ∈ S, a minimum time interval di between two consecutive departures
of trains must be respected.


The minimum time interval between arrivals or departures is called headway time. Let us
consider ai = 4 minutes for all stations i ∈ S\{1} and di = 2 minutes for all stations i ∈ S\{s}
in our instance. An example of violated overtaking, arrival and departure constraints is shown
in Figure 2. The two parallel lines correspond to two consecutive stations s1 and s2 of the
corridor. The nodes on the upper line (lower line resp.) correspond to time instants in which
a train departs from (arrives at resp.) station s1 (s2 resp.). The corresponding time instants
are shown in the figure (time increases from left to right). The arrows between nodes indicate
the travel of trains from station s1 to station s2. On the left picture of Figure 2, we can see
that the two trains are overtaking each other since the train that leaves at 9:00 arrives later
(at 9:09) than the train that leaves at 9:02 (which arrives at 9:05). Note that arrival and
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departure constraints are satisfied for the left picture. In the middle part of Figure 2, the
two trains are arriving at station s2 too close in time to each other (only 3 minutes instead
of 4 are in between the two arrivals). On the right picture, we can see that the two trains are
departing from station s1 too close in time: only 1 minute is in between the two departures
(instead of 2 minutes).


Figure 2: Examples of violated overtaking, arrival and departure constraints.


Besides the track capacity constraints, additional constraints can arise, such as manual
block signaling (for managing a train on a track segment between two consecutive stations),
station capacities (i.e., maximum number of trains that can be present in a station at the
same time), prescribed timetable for a subset of the trains (which is imposed when some of
the trains are already scheduled on the railway line and additional trains are to be inserted),
or maintenance operations (that keep a track segment occupied for a given period). We refer
the reader to [19] for a detailed description on how to deal with these constraints.


The ideal timetables given on input may be modified in order to satisfy the track capacity
(and eventually additional) constraints. In particular, one is allowed to modify (anticipate
or delay) the departure time of each train from its first station, and to increase (but not
decrease) the stopping time interval at the (intermediate) stations. The first change is called
shift and the latter change is called stretch. Moreover, one can cancel the train if it is not
profitable (see Section 2.2.3). We consider the version of the problem in which the travel time
of a given train between consecutive stations cannot be modified. We refer to [15] and [19]
for a comparison with the version in which this time can be increased as well. The timetable
obtained in the solution will be referred to as the actual timetable.


2.2.3 Problem objective


The objective is to change as little as possible the ideal timetables given on input. This is
obtained by defining a profit for each train and maximizing the sum of the profits of the
scheduled trains, defined as follows. The profit achieved for each train j ∈ T is given by
πj −αjνj − γjµj , i.e. the ideal profit is decreased by considering the penalties due to shift or
stretch changes, where:


• πj represents the ideal profit, that is the profit achieved if the train travels according
to its ideal timetable: it can be thought as the amount of money that the Train Oper-
ator is willing to pay if the train is scheduled according to his request, therefore it is
proportional to the importance given to the train;


• νj represents the shift, that is the absolute difference between the departure times from
station fj in the ideal and actual timetables;
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• µj represents the stretch, that is the (nonnegative) difference between the travel time
from fj to lj in the actual and ideal timetables (equal to the sum of the stopping time
increases over all intermediate stations);


• αj , γj are given nonnegative parameters.


If the profit achieved by a train becomes null or negative due to the shift and/or stretch
changes, the train is cancelled.


In Table 2, we show an example of ideal profits, and shift and stretch penalties for the
three trains of our instance. In Table 3, we show three examples of actual timetables for
train A, derived by shifting and/or stretching its ideal timetable. The profits of the actual
timetables are shown in the last row of the table. Actual Timetable1 is subject to shift of
2 minutes and therefore its profit corresponds to the ideal profit of 200, decreased by 6 ∗ 2.
Actual Timetable2 receives a stretch of 1 minute at station 2 and its profit corresponds to
200 − 10. Finally, Actual Timetable3 is shifted of 2 minutes and stretched of 2 minutes at
station 2, getting an overall profit of 200− 6 ∗ 2− 10 ∗ 2.


Train A Train B Train C


Ideal profit π 200 100 200
Shift penalty α 6 2 10


Stretch penalty γ 10 4 20


Table 2: Example of ideal profits and shift/stretch penalties.


Actual Timetable1 A Actual Timetable2 A Actual Timetable3 A
Stations Arr. Time Dep. Time Arr. Time Dep. Time Arr. Time Dep. Time


1 9:02 9:00 9:02
2 9:07 9:09 9:05 9:08 9:07 9:11
3 9:20 9:19 9:22


Actual profits 200 - 6*2 200 - 10*1 200 - 6*2 - 10 *2


Table 3: Example of actual profits corresponding to different actual timetables for train A.


2.3 Graph Representation


In this section, we outline the representation of the problem on a graph. This is a very
common way of representing the problem, which is also very convenient for deriving an ILP
model for it. Times are here discretized in minutes and expressed as integers from 1 to
q := 1440 (the number of minutes in a day), although a finer discretization would also be
possible without changing the model, the computing times and the core memory requirements
of the associated algorithms could increase considerably.


Let G = (V,A) be the (directed, acyclic) space-time multigraph in which nodes represent
arrivals/departures at/from a station in given time instants, and, for each train j ∈ T , a
path from a node associated with station fj to a node associated with station lj represents a
timetable for train j. The node set V has the form {σ, τ}∪(U2∪ . . .∪U s)∪(W 1∪ . . .∪W s−1),
where
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• σ and τ are an artificial source node and an artificial sink node, respectively;


• set U i, i ∈ S \ {1}, represents the set of time instants in which some train can arrive at
station i; the nodes in U2 ∪ . . . ∪ U s are called arrival nodes;


• set W i, i ∈ S \ {s}, represents the set of time instants in which some train can depart
from station i; the nodes in W 1 ∪ . . . ∪W s−1 are called departure nodes.


Let θ(v) be the time instant associated with a given node v ∈ V . Moreover, let ∆(u, v) :=
θ(v) − θ(u) if θ(v) ≥ θ(u), and ∆(u, v) := θ(v) − θ(u) + q otherwise. I.e., the time distance
∆(u, v) between two nodes u and v is expressed as the difference between their corresponding
time instants, taking into account the periodicity of the time horizon. It is useful to define
a precedence relation between nodes for expressing the track capacity constraints in a math-
ematical way. We say that node u precedes node v (i.e., u � v) if ∆(v, u) ≥ ∆(u, v) (i.e.,
if the cyclic time interval between θ(v) and θ(u) is not smaller than the cyclic time interval
between θ(u) and θ(v)).


Note that not all time instants correspond to possible arrivals/departures of a given train j
at a station i ∈ Sj . Accordingly, let V j ⊆ {σ, τ}∪(Ufj+1∪. . .∪U lj )∪(W fj∪. . .∪W lj−1) denote
the set of nodes associated with time instants corresponding to possible arrivals/departures
of train j in a positive-profit timetable.


The arc set A is partitioned into sets A1, . . . , At, one for each train j ∈ T . In particular,
for every train j ∈ T , Aj contains:


• a set of starting arcs (σ, v), for each v ∈W fj ∩V j , whose profit is p(σ,v) := πj −αjν(v),
with ν(v) := min{∆(v∗, v),∆(v, v∗)}, where v∗ is the node associated with the departure
of train j from station i in the ideal timetable. I.e. we associate the ideal profit minus
the possible shift penalty to the starting arcs;


• a set of segment arcs (v, u), for each i ∈ Sj \ {lj}, v ∈W i ∩ V j and u ∈ U i+1 ∩ V j such
that ∆(v, u) is equal to the travel time of train j from station i to station i+ 1, whose
profit is p(v,u) := 0;


• a set of station arcs (u, v), for each i ∈ Sj \ {fj , lj}, u ∈ U i ∩ V j and v ∈W i ∩ V j such
that ∆(u, v) is at least equal to the minimum stop time of train j in station i, whose
profit is p(u,v) := −γjµ(u, v), with µ(u, v) := ∆(u, v) −∆(u∗, v∗), where u∗ and v∗ are
the nodes associated, respectively, with the arrival and departure of train j at station i
in the ideal timetable. I.e. we associate the stretch penalty to the station arcs;


• a set of ending arcs (u, τ), for each u ∈ U lj ∩ V j , whose profit is p(u,τ) := 0.


To satisfy the track capacity constraints, one should impose that certain pairs of arcs, asso-
ciated with different trains, cannot be selected in the overall solution.


In Figure 3, we show an example of the described multigraph for a corridor of 3 stations.
For station 1 the set of departure nodes W 1 is shown. For station 2, the sets of arrival nodes
U2 and departure nodes W 2 are shown. For station 3, the set of arrival nodes U3 is shown.
The figure also shows the artificial source node σ and the artificial sink node τ , the starting,
segment, station and ending arcs corresponding to two alternative paths (timetables) for a
single train.


In Figure 4, we show a graph representation of our instance presenting the ideal timetables
for trains A, B and C. We highlight in bold the conflicts arising between the ideal timetables.
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Figure 3: Multigraph representation.


In particular, train A and B depart at the same time (9:00), therefore violating the minimum
headway of 2 minutes between two departures. Trains C and B overtake each other between
stations 3 and 4. Finally, the arrivals of trains B and C at station 4 are too close in time
(only 2 minutes apart from each other instead of at least 4 minutes).


As previously mentioned, in order to obtain a feasible solution, we can modify the ideal
timetables of the trains by shifting and/or stretching them. In Table 4 we show a feasible
solution for the described instance. Train A has been shifted earlier by 2 minutes. Train C
receives a stretch of 6 minutes in station 3 and a stretch of 2 minutes in station 4. Train B
runs according to its ideal timetable.


Actual Timetable A Actual Timetable B Actual Timetable C
Stations Arr. Time Dep. Time Arr. Time Dep. Time Arr. Time Dep. Time


1 8:58 9:00
2 9:03 9:05 9:10 9:12
3 9:16 9:30 9:41 9:33
4 10:06 10:11 10:02 10:07
5 10:28 10:24


Table 4: Example of actual feasible timetables.


In Figure 5, we show the paths corresponding to the actual timetables of Table 4.


2.4 Integer Linear Programming Models


In this section, we present two ILP models for TTP, both based on the graph representation
of the problem presented in Section 2.3. The first one uses binary variables for each arc of
the graph, while the second one uses binary variables for each path of the graph.
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Figure 4: Ideal paths of the presented example.


2.4.1 Arc Model


We present an ILP formulation for TTP using arc variables. The model was presented in [15]
and was extended to deal with a general railway network in [11]. Let us introduce for each
train j ∈ T and each arc a ∈ Aj a binary variable xa equal to 1 if, and only if, arc a is selected
in an optimal solution. Let pa be the profit associated with each arc a ∈ A, as defined in
Section 2.3. For convenience, we introduce binary variables yv equal to 1 if, and only if, node
v ∈ V is visited by any train, and binary variables zjv equal to 1 if, and only if, train j ∈ T
visits node v ∈ V . Let δ+


j (v) be the set of arcs of train j leaving node v and δ−j (v) be the set


of arcs of train j entering node v. Let rij and rik be the travel times of trains j and k (j ∈ T ,


k ∈ T , j 6= k) from station i to station i+ 1 (i, i+ 1 ∈ Sj ∩ Sk), respectively. The ILP model
reads as follows:


max
∑
a∈A


paxa (1)


subject to ∑
a∈δ+j (σ)


xa ≤ 1, j ∈ T, (2)


∑
a∈δ−j (v)


xa =
∑


a∈δ+j (v)


xa, j ∈ T, v ∈ V j \ {σ, τ} (3)
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Figure 5: Actual paths of the presented example.


zjv =
∑


a∈δ−j (v)


xa, j ∈ T, v ∈ V j \ {σ, τ} (4)


yv =
∑


j∈T :v∈V j


zjv, v ∈ V \ {σ, τ} (5)


∑
w∈U i:w�u,∆(u,w)<ai


yw ≤ 1, i ∈ S \ {1}, u ∈ U i, (6)


∑
w∈W i:w�v,∆(v,w)<di


yw ≤ 1, i ∈ S \ {s}, v ∈W i, (7)


zjv1 + zkv2 ≤ 1,


i ∈ S \ {s}, j, k ∈ T (with j 6= k; i, i+ 1 ∈ Sj ∩ Sk), rij ≥ rik,


v1, v2 ∈W i v1 � v2, v2 < v1 + rij + ai+1 − rik (8)


xa ≥ 0, a ∈ A, (9)


yv ≥ 0, v ∈ V, (10)


zjv ≥ 0, j ∈ T, v ∈ V, (11)


xa integer, a ∈ A, (12)


yv integer, v ∈ V, (13)


zjv integer, j ∈ T, v ∈ V. (14)
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The objective function (1) asks for the maximization of the profits of the arcs selected
in the solution. According to the definition of the profits, the goal is to change as little as
possible the ideal timetables. Constraints (2) require to select at most one timetable for each
train, i.e. at most one arc among the starting arcs from the source σ for train j ∈ T . Note
that we do not need equality constraints in (2) since we allow train cancellation. Constraints
(3) impose equality on the number of selected arcs, associated with a given train, entering and
leaving each arrival or departure node. As a consequence, the set of selected arcs associated
with a train can either be empty, or define a path from the source σ to the sink τ . Constraints
(4) and (5) are the linking constraints between different types of variables. In particular, zjv
assumes value 1 if there is an arc of train j entering node v. Similarly, yv assumes value
1 if there is any train j visiting node v. The arrival time constraints (6) and the departure
time constraints (7) prevent two consecutive arrivals and departures, respectively, at the same
station i to be too close in time (i.e. at least the minimum headway time must be respected).
The y variables are used to express easily these constraints. In particular, constraints (6) are
defined for each arrival node u ∈ U i at station i ∈ S \ {1} (station 1 is not considered as it is
the first station of the corridor and no arrival is considered at this station). Given an arrival
node u, consider a time window starting at u and of length < ai: only one train can arrive at
station i within this time window. In Figure 6, we show station i and a set of arrival nodes,
together with a set of arcs (of any train) arriving at station i at some of these nodes. In order
to satisfy the arrival constraints one needs to consider a node u ∈ U i, a time window shorter
than ai (e.g. 4) and the nodes belonging to it (bold nodes from u to w in the figure). Then,
the constraints impose to select at most one arc among all the ones visiting the nodes in the
time window. There must be a constraint for each node u ∈ U i (and each station i ∈ S \{1}).
In the figure, the next window will be starting in node u′ and ending in node w′.


i


u wu’ w’


Figure 6: Departure/arrival constraint.


The same holds for constraints (7): they are defined for each departure node v ∈W i from
station i ∈ S \ {s} (station s is not considered as it is the last station of the corridor and
no departure is considered from this station). Similarly to the arrival time constraints, the
departure time constraints consider a time window starting in u and of length < di: only one
train can depart from station i within this time window. Constraints (8) are the overtaking
constraints and impose not to have overtaking between pairs of trains along the corridor. The
z variables are used to express these constraints. More precisely, one needs to consider two
trains, j and k, such that rij ≥ rik, i.e. j is the “slow” train and k is the “fast” train, and
that both visit stations i and i + 1 (see Figure 7). Then, one needs to consider a departure
node v1 of the slow train and a departure node v2 of the fast train, and the two corresponding
arcs. The two trains are overtaking each other if v2 is after v1 and is before the first departure
(v1 +rij+ai+1−rik) of the fast train whose corresponding arrival is compatible with the arrival
of the slow train (dotted node in Figure 7). Indeed, recall that the travel times cannot be
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modified. The overtaking constraints (8) impose to choose at most one arc between the arc
of the slow train leaving node v1 and the arc of the fast train leaving node v2.


Figure 7: Overtaking constraint.


Constraints (8) can be strengthened by considering not only the arc of train j leaving node
v1 and the arc of train k leaving node v2, but all the arcs of train j (k resp.) that leave a node
in an interval v1-v3 (v2-v4 resp.) defined as follows. These intervals contain all incompatible
arcs of train j and k, respectively, due to either overtaking or departure or arrival constraints.
In particular, v3 is the first departure node of the slow train compatible with the departure of
the fast train, and v4 is the first departure node of the fast train whose arrival is compatible
with the arrival of the slow train (see Figure 8). The strengthened overtaking constraints can
be expressed as follows: ∑


w∈W i∩V j :v1�w≺v3


zjw +
∑


w∈W i∩V k:v2�w≺v4


zkw ≤ 1,


i ∈ S \ {s}, j, k ∈ T (with j 6= k; i, i+ 1 ∈ Sj ∩ Sk), rij ≥ rik,


v1, v2, v3, v4 ∈W i v1 � v2,


v2 < v1 + rij + ai+1 − rik, ∆(v2, v3) = di, ∆(v1, v4) = ai+1 + rij − rik, (15)


Figure 8: Strong overtaking constraint.


We wish to underline that the above ILP model would be valid also without constraints (6)
and (7), as arrival/departures too close in time are forbidden also by (15). However, including
arrival and departure time constraints leads to a stronger LP relaxation. In addition, these
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constrains are much faster to separate in practice and this helps in reducing the computing
time of the solution process. Constraints (9)-(14) impose the variables to assume positive
integer values.


2.4.2 Path Model


We next present an ILP formulation for TTP using path variables. It is a simplified version
of the one proposed in [9] and is a set packing model. For each j ∈ T , let Pj be the
collection of possible paths for train j, each associated with a path from σ to τ in G containing
only arcs in Aj (paths are seen as arc subsets) and having positive profit. Furthermore, let
P := P1 ∪ . . . ∪ Pt be the overall (multi-)collection of paths, and pP :=


∑
a∈P pa the actual


profit for path P ∈ P. Let us define a graph with one node for each feasible path P ∈ P in
the graph G from σ to τ , with associated profit pP , and one edge joining each pair of nodes
corresponding to paths that can be both selected in the solution. Then, the ILP model calls
for determining a maximum-weight clique on this graph (see [10]).


We introduce a binary variable xP , P ∈ P, for each possible path for a train, equal to 1 if,
and only if, the path is chosen in the solution. The arc variables of model (1)-(14) are related
with the path variables as follows: xa =


∑
P∈P:a∈P xP . Considering that for each train j ∈ T


the corresponding path can be shifted and/or stretched with respect to the ideal path, there
is an exponentially large number of possible paths for a train. Let Pjw ⊆ Pj be the (possibly
empty) subcollection of paths for train j that visit node w ∈ V j , and Pw := P1


w ∪ . . .∪Ptw be
the subcollection of paths that visit node w ∈ V . Let rij and rik be the travel times of trains


j and k (j ∈ T , k ∈ T , j 6= k) from station i to station i+ 1 (i, i+ 1 ∈ Sj ∩ Sk), respectively.
The ILP model is the following


max
∑
P∈P


pPxP (16)


subject to ∑
P∈Pj


xP ≤ 1, j ∈ T, (17)


∑
w∈U i:w�u,∆(u,w)<ai


∑
P∈Pw


xP ≤ 1, i ∈ S \ {1}, u ∈ U i, (18)


∑
w∈W i:w�v,∆(v,w)<di


∑
P∈Pw


xP ≤ 1, i ∈ S \ {s}, v ∈W i, (19)


∑
P∈Pj


v1


xP +
∑
P∈Pk


v2


xP ≤ 1,


i ∈ S \ {s}, j, k ∈ T (with j 6= k; i, i+ 1 ∈ Sj ∩ Sk), rij ≥ rik,


v1, v2 ∈W i v1 � v2, v2 < v1 + rij + ai+1 − rik (20)


xP ≥ 0, P ∈ P, (21)


xP integer, P ∈ P. (22)


The meaning of objective function and constraints is analogous to the one presented for
the arc model. The objective function (16) asks for the maximization of the profits of the
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paths selected in the solution. Constraints (17) require to select at most one path for each
train. The arrival time constraints (18) and the departure time constraints (19) prevent two
consecutive arrivals and departures at the same station i to be too close in time. In Figure 6,
the dotted arcs can be interpreted as arcs belonging to a set of paths (of any train) arriving
at station i at some of these nodes. The constraints impose to select at most one path among
all the ones visiting the nodes in the time window. Constraints (19) can be explained in a
similar way. Constraints (20) are the overtaking constraints and impose to have no overtaking
between pairs of trains along the corridor. One needs to consider two trains, j and k, such
that rij ≥ rik, i.e. j is the “slow” train and k is the “fast” train, and that both visit stations i
and i+ 1 (see Figure 7). The overtaking constraints (20) impose to choose at most one path
among all the ones of the slow train visiting node v1 and all the ones of the fast train visiting
node v2. Note that in the path model we have in general more than one path visiting the
same node for the same train, with respect to exactly one arc as in the arc model. Constraints
(21) and (22) impose the variables to assume positive integer values.


Constraints (20) can be strengthened with similar considerations as for the arc model, by
considering not only the paths of train j passing through node v1 and the paths of train k
passing through node v2, but all the paths of train j (k resp.) that pass through a node in
an interval v1-v3 (v2-v4 resp.). The strengthened overtaking constraints can be expressed as
follows: ∑


w∈W i∩V j :v1�w≺v3


∑
P∈Pj


w


xP +
∑


w∈W i∩V k:v2�w≺v4


∑
P∈Pk


w


xP ≤ 1,


i ∈ S \ {s}, j, k ∈ T (with j 6= k; i, i+ 1 ∈ Sj ∩ Sk), rij ≥ rik,


v1, v2, v3, v4 ∈W i v1 � v2,


v2 < v1 + rij + ai+1 − rik, ∆(v2, v3) = di, ∆(v1, v4) = ai+1 + rij − rik, (23)


As already explained for the arc model, constraints (18) and (19) are not needed but are
useful to get a stronger LP relaxation. Other ILP models for TTP, calling for a maximum-
profit collection of compatible paths in a suitable graph, are presented in [10]. These models
look for a maximum-weight clique in a(n exponentially-large) compatibility graph. We refer
the reader to [10] for an analysis of these models.


2.5 Solution Methods


In this section, we describe exact and heuristic solution methods for TTP, based on the
presented ILP models. The exact method consists of a branch-and-cut-and-price algorithm,
based on model (16)-(22) (see Section 2.5.1). This method is effective for small/medium size
real-world instances (see [9], in which instances with up to 90 trains or 50 stations are solved
to optimality). For larger size instances, heuristic approaches are more appropriate. LP-based
heuristic algorithms are presented in Section 2.5.2. A Lagrangian-based heuristic algorithm,
proposed in [15] and based on model (1)-(14), is presented in Section 2.5.3. The algorithm
presented in [15] was extended in [11] to deal with a railway network and instances with up
to 500 trains and 120 stations where heuristically solved.


2.5.1 Branch and Cut and Price Algorithm


We first of all describe how the LP-relaxation of model (16)-(22) can be solved effectively.
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LP-relaxation solution The ILP model (16)-(22) has exponentially many variables. A
commonly used technique for dealing with it consists of using column generation. The pric-
ing problem calls for determining an optimal path in the (acyclic) graph considered, i.e. a
timetable for each train with a positive reduced profit. Therefore, the pricing problem can be
solved in polynomial time and makes the approach effective. The reduced profit of a path
takes into account the original profit of the path (including shift and stretch penalties) and
the dual variables associated to the visited nodes (which are dealt with as penalties/prizes).


In addition, the ILP model has a very large number of constraints. These constraints can
be handled by separation algorithms. In particular, the separation of constraints (18), (19)
and (20) ((23) resp.) can be done by enumeration, taking into account that the variables of the
model can be fractional. The effect of adding new constraints with nonnegative dual variables
simply corresponds to changing the “penalties” of some nodes in this path computation, i.e.,
the addition of new constraints does not destroy the structure of the column generation
problem (see [10]).


The general structure of the method to solve the LP relaxation is the following:


1. Initialize a reduced LP with only the t variables associated with the ideal paths for each
train, and constraints (17) and (21);


2. Solve the reduced LP, obtaining the primal solution x∗ and the dual solution y∗;


3. Apply column generation: if variables with positive reduced profit with respect to y∗


are found, add them to the reduced LP and go to Step 2.;


4. Apply separation for constraints (18) and (19): if constraints violated by x∗ are found,
add them to the reduced LP and go to Step 2.;


5. Apply separation for constraints (20) ((23) resp.): if constraints violated by x∗ are
found, add them to the reduced LP and go to Step 2.;


6. Terminate since x∗, y∗ is an optimal primal-dual pair for the whole LP (16)–(21).


Branching Rules In the exact approach upper bounds are computed by solving the LP
relaxation by column generation and constraint separation, as described above. In order to
derive integer solutions, different branching rules can be implemented. One possibility is
to branch on the choice of the arcs of the multigraph. Indeed, branching on the choice of
the columns is complicated because the column generation process would generate again the
same columns, unless involved forbidding constraints are imposed (which could destroy the
structure of the pricing problem). In order to choose the arcs so as to construct the path for
one train after another, the following branching rule can be adopted:


• choose a train, say j, to branch on, based on the optimal LP solution x∗.


• select a departure node v from its first station fj (including the possibility of not schedul-
ing the train) or, if the departure from fj has already been fixed, select a departure
node associated with the first not yet fixed station. Also in this case, it is useful to base
the choice on the optimal LP solution, trying to identify a “good” path for the train.
Note that, as the travel times between consecutive stations are fixed, the specification
of all departure nodes for a train uniquely identifies its path in the solution.
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• branch by imposing that the path for train j visits the selected departure node v ∈
W i ∩ V j , by setting xP = 0 for all paths P that do not visit that node.


It is generally useful to explore the decision tree according to a depth-first strategy, in
order to limit the storage requirement. In addition, heuristic algorithms can be executed at
the root node in order to determine a good lower bound.


2.5.2 LP-based Heuristic Algorithms


In this section, we present some heuristic algorithms based on the optimal LP-solution. We
refer to model (16)-(22), but similar considerations can be applied to the arc model. The
construction of heuristic solutions from the LP relaxation can be done by fixing to 1 or 0
some variables xP associated with train paths and then solve again the LP-relaxation, until
an integer solution is found (or the problem turns out to be infeasible). An alternative
approach is to construct the path of each train step-by-step, as it is done in the enumerative
algorithm of the previous section (i.e. by choosing arcs in the graph for each train). Once a
feasible solution has been derived, it is very useful to apply local search procedures in order
to improve it. A simple local search is to consider k trains that were shifted and/or stretched
and/or cancelled in the solution found and to solve heuristically or optimally the ILP model,
by keeping fixed the paths for the remaining trains.


2.5.3 Lagrangian-based Heuristic Algorithms


The arc model (1)-(14) can be given on input to a general purpose ILP solver and solved
to optimality. However, both the number of variables and the number of constraints of for-
mulation (1)-(14) are very large for real-world TTP instances. As mentioned in [15], with
that time state-of-the-art ILP solvers, it was “impossible to design an exact algorithm based
on this model which is capable of finding an optimal solution within reasonable computing
time”. Therefore, in [15], a Lagrangian based heuristic algorithm, combined with a subgra-
dient optimization procedure, was developed. Constraints (6), (7) and (8) ((15) resp.) are
relaxed in a Lagrangian way: there is a Lagrangian multiplier associated with the nodes of G
(due to the y variables) as well as a Lagrangian multiplier associated with train-node pairs
(due to the z variables). The resulting Lagrangian relaxed problem calls for a set of paths for
the trains, each having maximum Lagrangian profit, given by the sum of the original profits
for the arcs in the path, minus the sum of the Lagrangian multipliers associated with the
nodes visited by the path. Near-optimal Lagrangian multipliers can be determined through
a subgradient optimization procedure. As the number of relaxed constraints is very large, a
dynamic constraint-generation scheme is used. At each iteration of the subgradient optimiza-
tion procedure, a heuristic solution is computed as follows. The trains are ranked according
to decreasing values of the Lagrangian profit of the associated path in the relaxed solution.
Then, the trains are scheduled one by one, choosing the path with maximum Lagrangian
profit that is compatible with the paths already computed (those corresponding to the trains
with higher ranking). Choosing the path with maximum Lagrangian profit, instead of the
path with maximum actual profit, is an attempt to take care of the trains with lower ranking
which still have to be scheduled. Local search procedures are applied in order to improve the
solution found.
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3 The Train Platforming Problem


The goal of the train platforming phase, following the train timetabling phase, is to find an
assignment of trains to platforms in a railway station, and the corresponding routing inside
the station. The practical relevance of the problem inspired the definition of a few different
versions, depending on the infrastructure manager and train operators requirements. The
Train Platforming Problem (TPP) is relatively easy to solve for small contexts, i.e., stations
with very few platforms and alternative paths to route the trains. However, it becomes a
difficult optimization problem when applied to complex railway station topologies, such as
those associated with the main European stations, having hundreds of trains and tens of
platforms. In this section we present the train platforming problem as proposed by the main
Italian Infrastructure Manager Rete Ferroviaria Italiana (RFI) and considered in Caprara
et al. [16]. This version has many features in common with the Netherland Railways ver-
sion addressed in Kroon et al. [31], Zwaneveld [48], Zwaneveld et al. [49], Zwaneveld et al.
[50]. We start our presentation with a brief literature review and introduce the platforming
optimization problem using a small example. Next, we show a possible 0-1 Quadratic Pro-
gramming (01-QP) model having a large number of variables, and a solution approach based
on a Branch-and-Cut-and-Price algorithm.


3.1 Literature review


As it is often the case with practical problems, every reference generally considers a different
version, making it difficult to compare the proposed methods. The easiest version is the one
considered by De Luca Cardillo and Mione [23] and Billionet [1], who address a simplified case
in which, for each train, the scheduled arrival and departure times cannot be changed and
the paths used to route the trains within the station are uniquely determined by the choice
of the platform. A more general version of the problem, similar to the one we present (see
Caprara et al. [16]), in which arrival and departure times and arrival and departure paths are
not fixed a priori is addressed in Zwaneveld [48], Zwaneveld et al. [50], Zwaneveld et al. [49],
Kroon et al. [31]. Finally, the version addressed in Carey and Carville [20] is an intermediate
one, in that arrival and departure times can be changed, but the assignment of a train to a
platform uniquely determines the paths that the train will follow on its way to and from the
platform.


3.2 Problem Description


In the following, we describe TPP by specifying its input, constraints and objective function,
using a small example.


3.2.1 Problem input: station topology and train timetable


Similarly to TTP, the input of TPP consists of a topology and a timetable and all times are
discretized (e.g., in minutes). The topology required by TPP is a station topology, because
TPP is solved for a specific railway station. In Figure 9 we present an example of TPP
topology instance that will be used throughout this section. Station topologies are diagrams
consisting of nodes and segments that represent physical elements of the train station. The
topology in Figure 9 consists of 3 platforms, 2 directions, 5 arrival paths and 4 departure
paths, that will be explained in the following.
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There are several points at which a train may stop within the station to download/upload
passengers and/or goods; these points are called platforms and can be of different type and
length. The set B of platforms includes regular platforms, corresponding to platforms that
one foresees to use, and dummy platforms, corresponding to virtual additional platforms that
one would like not to use but that may be necessary to find a feasible solution. In the example
of Figure 9 the regular platforms are indicated with a bold line and correspond to the three
segments delimited by nodes with Roman numbers I, II and III (clearly, the dummy platforms
are never depicted). The concept of dummy platform was introduced in order to measure the
lack of capacity in a railway station, if not all trains can be assigned to regular platforms
according to the given timetable. For long-term planning the use of dummy platforms suggests
to enlarge the station, whereas for medium-term planning it is a clear indication that not all
trains can be scheduled (unless the safety margins are relaxed).


We also have a set D of directions for train arrivals and departures and a collection R of
paths connecting directions and platforms. For each direction d ∈ D, we have a travel time
gd for all paths connecting d to any platform (independent of the specific path, platform, and
train). Moreover, for each ordered pair (d1, d2) ∈ D × D corresponding to arrival direction
d1 and departure direction d2, the input specifies a preference list Ld1,d2 ⊆ B of preferred
platforms for all trains that arrive from direction d1 and depart to direction d2. In our example
directions are named D1 and D2. Both directions are associated with arrival and departure
tracks, denoted by an “inbound” and an “outbound” arrow, respectively. Inbound nodes and
tracks are represented using a “dashed” line, outbound nodes and tracks are represented using
a “dotted” line. Inbound nodes D1 and D2 represent “entry” points from direction D1 and
D2, respectively. Outbound nodes D1 and D2 represent “exit” points towards direction D1
and D2, respectively. We assume the travel time gd = 5 minutes for all directions, and no
preference list is given, for simplicity.


For each direction d ∈ D and platform b ∈ B, we have a (possibly empty) set Rd,b ⊆ R
of paths linking direction d to platform b. Specifically, we have Rd,b = Ra


d,b ∪Rd
d,b, where the


paths in Ra
d,b are arrival paths to get from d to b and Rd


d,b are departure paths to get from b to


d. Note that we may have paths in Ra
d,b ∩ Rd


d,b, called two-way paths. For each path R ∈ R,
we are given a list IR ⊆ R of incompatible paths, i.e., paths that share at least one physical
element. (In particular, a path R is always incompatible with itself.) In our example, there
is one arrival path from direction D1 to platform I (passing through node a), two arrival
paths from direction D1 to platform II (one passing through node a, the other through node
e), and two arrival paths from direction D2 to platforms II and III, passing through node d.
The arrival paths are represented with dashed lines. Similarly, there are two departure paths
towards direction D1 from platforms II and III passing through node b, and two departure
paths towards direction D2 from platforms I and II passing through node c. The departure
paths are represented with dotted lines. Note that the following pairs of paths are mutually
incompatible:


• arrival paths from direction D1 to platforms I and II, passing through node a, because
they share the same (inbound) track and node a


• arrival paths from direction D2 to platforms II and III, passing through node d, because
they share the same (inbound) track and node d


• departure paths from platforms I and II towards direction D2, passing through node c,
because they share the same (outbound) track and node c
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• departure paths from platforms II and III towards direction D1, passing through node
b, because they share the same (outbound) track and node b


Whereas, the arrival paths from direction D1 passing through node a are compatible with the
arrival path from direction D1 passing through node e.


D1 a c D2


D1
b


II II


D2III III d


II


Platform I


Platform II


Platform III


e


Figure 9: A station topology example.


The timetable required by TPP is the one produced after the TTP phase, restricted to
the trains that go through the considered station. Each train t ∈ T has an associated ideal
arrival time ua


t at a platform, along with a maximum arrival shift sa
t , and an associated ideal


departure time ud
t from the platform, along with a maximum departure shift sd


t , meaning
that the train must arrive to a platform in the interval [ua


t − sa
t , u


a
t + sa


t ] and depart in the
interval [ud


t − sd
t , u


d
t + sd


t ]. Each train also specifies a minimum stopping time, in our example
1 minute. Moreover, each t ∈ T has an associated arrival direction da


t ∈ D, a departure
direction dd


t ∈ D and a set Ct ⊆ B of candidate platforms where it may stop, corresponding
to the platforms for which there exist at least two paths linking respectively the arrival and
departure directions of t to the given platform.


In our example, let T = {1, 2, 3} be the set of trains. The timetable provided on input
is presented in Table 5. For all trains, we have sa


t = sd
t = 1, i.e., the maximum arrival and


departure shifts are one minute. The set of candidate platforms is indicated, for each train,
in column ‘Platf.’ of Table 5.


Directions Times Shifts
Train Arr. Dir. Dep. Dir. Arr. Time Dep. Time Arr. Shift Dep. Shift Platf.


1 D1 D2 9:00 9:03 1 1 I,II
2 D2 D1 9:05 9:10 1 1 II,III
3 D1 D1 9:09 9:12 1 1 II


Table 5: Example of a schedule.


3.2.2 Problem constraints


Assignment constraints impose that every train in the timetable must be assigned a platform,
an arrival path and a departure path. If there are not enough regular platforms for all the
trains, then a dummy platform must be used. Clearly, as we will see in the objective function
section, this has a “very high” cost because it corresponds to a “practically infeasible” solution.
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Note that if a dummy platform is chosen, one does not need to select the paths, because
dummy platforms are only meant to measure the lack of platform capacity in the station, so
no routing information is required. In our example, train 1 can either go to platform I or
platform II. If we select platform II, there are two possible arrival paths, namely: “entry” D1,
node a, platform II or “entry” D1, node e, platform II; the only possible departure path is:
platform II, node c, “exit” D2. As said in the previous section, each train also has a maximum
arrival and departure shift time. Therefore one can modify the timetable to some extent and
define different actual arrival and departure times for each train. In our example, the actual
arrival time va


1 of train 1 must belong to the interval [8:59,9:01] and the actual departure
time vd


1 must belong to the interval [9:02,9:04]. To summarize, assignment constraints ask
for assigning each train a 5-tuple consisting of: platform, arrival path, departure path, shift
on arrival, and shift on departure. (Of course, shifts can be equal to zero.) Operational
constraints apply both to platforms and paths as follows:


• A platform cannot be assigned to more than one train at the same time.


• Incompatible paths can be assigned to different trains at the same time, only if the
overlapping time interval is under a threshold π. In our example we assume π = 2
minutes.


Conventionally, a train occupies a platform for the interval [va
t − h, vd


t + h], where h is
a so-called headway value introduced for safety reasons. In our example, we assume h = 3.
Moreover, the train occupies arrival path Ra for the interval [va


t −gdat , v
a
t −1] and the departure


path Rd for the interval [vd
t + 1, vd


t + gddt
], recalling the path travel times defined above. So, if


we assign train 1 to platform II with no time shifts, the actual arrival and departure times are:
va


1 =9:00, vd
1 =9:03 and the occupation time intervals for arrival path, platform and departure


path are given in Table 6. Note again that there are two possible arrival paths from direction
D1 towards platform II, in our solution example we choose the path passing through node
a. With regards to train 2, even if we shift forward its arrival time, it will always occupy
the platform for an interval that overlaps with the (platform) interval of train 1, see Table
6. Therefore we must assign the two trains to different platforms. If we select platform III
for train 2, the only available (arrival and departure) paths are those passing through nodes
d and b connecting platform III to direction D2 and D1, respectively. We assume no shift
is applied to train 2 and the occupation time intervals are shown in Table 6. Note that the
paths used by train 1 and 2 are compatible, since they have nothing in common. Finally, train
3 can only be assigned to platform II, for example using the arrival path from direction D1
through node e and the (only) departure path towards direction D1 through node b. Again,
the occupation time intervals are shown in Table 6. Note that the platform occupation time
interval of train 3 overlaps with that of train 1 and both trains are assigned to platform II.
So we need to shift forward (by 1 minute) the arrival time of train 3 (note that the departure
time of train 3 is not changed). Also the departure paths of trains 2 and 3 are incompatible
and the corresponding time intervals overlap by 3 minutes (i.e., 9:13, 9:14, 9:15), whereas the
threshold π is 2 minutes. Again, we need to use shifts, in this case it is enough to shift forward
(by 1 minute) the departure time of train 3. The complete platforming information for our
example are shown in Table 7. The arrival and departure times of train 3 are, respectively,
9:10 and 9:13.
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Train Arrival Path Platform Departure Path


1 8:55-8:59 8:57-9:06 9:04-9:08
2 9:00-9:04 9:02-9:13 9:11-9:15
3 9:04-9:08 9:06-9:15 9:13-9:17


Table 6: Occupation time intervals.


Train Arrival Path Platform Departure Path Arrival Shift Departure Shift


1 D1-a-II II II-c-D2 0 0
2 D2-d-III III III-b-D1 0 0
3 D1-e-II II II-b-D1 +1 +1


Table 7: Solution example.


3.2.3 Problem objective


The objective function is computed by using the following coefficients, for which we also report
the numerical values to give an idea of their relative importance: α1 = 1000, α2 = 100000,
α3 = 1, α4 = 100, α5 = 10000, α6 = 5.


The objective function consists of three parts: fixed platform costs, train platforming
costs, and path incompatibility costs. Each platform cost is given by cb = α1 if b is a regular
platform, and cb = α2 if b is a dummy platform (in other words the cost for using a dummy
platform is two orders of magnitude larger than the cost for using a regular platform). Each
train platforming cost ct is given by α3 · st, where st is the total shift (expressed in minutes)
of train t (counting both the arrival and departure shifts), plus α4 if the train uses a regular
platform not in the preference list Ldat ,ddt


, plus α5 if, instead, the train uses a dummy platform.
Finally, for each pair of trains t1 and t2 we have a penalty α6 · ot1,t2 , where ot1,t2 is the sum of
the durations of the time intervals (in minutes) in which trains t1 and t2 occupy incompatible
paths at the same time. Let’s see the cost in our example. We use 2 regular platforms, so
the platform cost is 2 ∗ α1 = 2 ∗ 1000 = 2000. Train 1 and 2 use regular platforms, no shift,
no preference list, so their cost is 0. Train 3 uses a regular platform, 1 minute of shift on
arrival and 1 minute of shift on departure (2 minutes of shift in total), no preference list, so
the cost is 2 ∗ α3 = 2 ∗ 1 = 2. Finally, with regards to penalties for incompatible paths, the
only pair of trains that uses incompatible paths at the same time is pair (2, 3). As said above,
we have 2 minutes of overlapping between the departure intervals of trains 2 and 3 that use
incompatible paths, so the penalty is 2 ∗ α6 = 2 ∗ 5 = 10. The total cost of our solution is
2000 + 2 + 10 = 2012.


3.3 A 0-1 Quadratic Model


As we mentioned in the previous section, each train t must be assigned a 5-tuple consisting
of a platform b ∈ Ct, an arrival path Ra ∈ Ra


dat ,b
, a departure path Rd ∈ Rd


ddt ,b
, and the


corresponding actual arrival time va
t ∈ [ua


t − sa
t , u


a
t + sa


t ] and actual departure time vd
t ∈


[ud
t − sd


t , u
d
t + sd


t ]. In the following we call this 5-tuple a pattern. We denote with Pt the set
of patterns that can be assigned to train t ∈ T . We also discussed operational constraints
forbidding the assignment of patterns to trains if this implies occupying the same platform
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at the same time, or using arrival/departure paths that intersect at the same time if the
the overlapping time interval is larger than a threshold π. This can be easily represented
by defining a pattern incompatibility graph with one node for each train-pattern pair (t, p),
with p ∈ Pt, and an edge joining each pair (t1, p1), (t2, p2) of incompatible patterns. This
graph models “hard” incompatibilities that must be forbidden in a feasible solution. Note
that there are also “soft” incompatibilities, generally associated with the use of incompatible
arrival/departure paths if the overlapping is under the threshold π, that are admitted but
penalized in the objective function, as illustrated in the previous section, so they do not
appear in the pattern incompatibility graph.


TPP requires the assignment of a pattern p ∈ Pt to each train t ∈ T so that no two incom-
patible patterns are assigned and the objective function defined by the following coefficients
is minimized. There are a cost cb for each platform b ∈ B that is used in the solution, a cost
ct,p associated with the assignment of pattern p ∈ Pt to train t ∈ T , and a cost ct1,p1,t2,p2
associated with the assignment of pattern p1 ∈ Pt1 to train t1 and of pattern p2 ∈ Pt2 to train
t2 for (t1, t2) ∈ T 2, in case these two patterns have a “soft” incompatibility. Note that the
cost ct,p is the train platforming cost if pattern p is assigned to train t, and the cost ct1,p1,t2,p2
is the path incompatibility cost if patterns p1 and p2 are assigned to trains t1, t2, respectively.


Here, T 2 ⊆ {(t1, t2) : t1, t2 ∈ T, t1 6= t2} denotes the set of pairs of distinct trains whose
patterns may have a “hard” or “soft” incompatibility.


We now present a 0-1 Quadratic Programming (0-1 QP) model. Let G be the pattern
incompatibility graph, and letK be the whole collection of cliques inG andKb be the collection
of cliques in G associated with sets of patterns that use platform b at the same time. I.e., for
each K ∈ Kb with (t1, p1) ∈ K and (t2, p2) ∈ K, pattern p1 for train t1 and pattern p2 for
train t2 both use platform b and occupy it for overlapping intervals. The straightforward 0-1
QP formulation of the problem, using a binary variable yb for each b ∈ B, with yb = 1 if and
only if platform b is used, and a binary variable xt,p for each t ∈ T and p ∈ Pt, with xt,p = 1
if and only if train t is assigned pattern p, is the following:


min
∑
b∈B


cbyb +
∑
t∈T


∑
p∈Pt


ct,p xt,p +
∑


(t1,t2)∈T 2


∑
p1∈Pt1


∑
p2∈Pt2


ct1,p1,t2,p2 xt1,p1 xt2,p2 (24)


subject to ∑
p∈Pt


xt,p = 1, t ∈ T, (25)


∑
(t,p)∈K


xt,p ≤ yb, K ∈ Kb, (26)


∑
(t,p)∈K


xt,p ≤ 1, K ∈ K, (27)


yb, xt,p ∈ {0, 1}, b ∈ B, t ∈ T, p ∈ Pt. (28)


Constraints (25) guarantee that each train is assigned a pattern, constraints (26) impose that
at most one train at a time occupies a given platform b, and if this ever happens that variable
yb takes the value 1, and constraints (27) forbid the assignment of patterns that are pairwise
incompatible. Note that the objective function is quadratic, hence the overall model is a
discrete non-linear model. These models are particularly complex, because they combine the
difficulties of non-linear functions with integrality constraints on the variables.
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3.4 Solution Methods


In this section we simply aim at pointing out the main features of the model. We do not
intend to discuss in detail the solution methods, since they are many, but let the reader know
what are the available algorithmic approaches and hopefully give some useful references.


Quadratic Objective Function The model presented in the previous section is a 0-1 QP
problem. There are many ways to deal with it, but basically there are two main ap-
proaches: treat it as an integer non-linear model or linearize it and use “standard” ILP
techniques to solve it. In particular, given that the integer variables are all binary, one
can exploit many techniques developed for the 0-1 quadratic case. A good recent survey
on this topic can be found in [5]. With regards to linearization, one can apply classical
linearization techniques proposed for the Quadratic Assignment Problem (QAP), see
[6], or use [16]’s linearization method, which guarantees a strong continuous relaxation
and a fast separation algorithm.


Clique Constraints These constraints are exponentially many, so one needs to add them
dynamically. In [16] the authors present a simple exact separation technique. Of course
one could also develop fast heuristic separation algorithms to be run before the exact
one.


Pattern Variables The model has a large number of pattern variables, so it is not convenient
to deal with the whole model. Yet, the number of patters for real-world instances allows
direct enumeration. So in [16] the authors simply enumerate all pattern variables,
calculate the corresponding reduced cost and dynamically add only those having a
negative reduced cost.


The overall solution method presented [16] is a branch-and-cut-and-price method because
both variables and constraints are added dynamically through separation and pricing proce-
dures, respectively. Note that in [16] branching is aimed at quickly finding a “good” feasible
solution. This makes it essentially a canonical diving heuristic algorithm that, rather than
terminating at the end of the “dive”, continues as a canonical depth-first branch-and-bound
method until optimality is proved (or the time limit is reached).


References


[1] Billionnet A (2003) Using Integer Programming to Solve the Train Platforming Problem.
Transportation Science, 37:213–222


[2] Borndörfer R, Grötschel M, Lukac S, Mitusch K, Schlechte T, Schultz S, Tanner A (2006)
An Auctioning Approach to Railway Slot Allocation. Competition and Regulation in
Network Industries, 7(2):163–197


[3] Borndörfer R, Schlechte T (2008) Solving railway track allocation problems. Operations
Research Proceedings, 117–122
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