

Università di Pisa

Dipartimento di Informatica

Technical Report: TR-13-11

Distributed monitoring of
cluster quality for car
insurance customer

segmentation

Mirco Nanni2, Roberto Trasarti2, Anna Monreale1,
Valerio Grossi1, Dino Pedreschi1

University of Pisa1, ISTI-CNR, Pisa2

July 21, 2013
ADDRESS: Largo B. Pontecorvo 3, 56127 Pisa, Italy. TEL: +39 050 2212700 FAX: +39 050 2212726

Distributed monitoring of cluster quality for car

insurance customer segmentation

Mirco Nanni2, Roberto Trasarti2, Anna Monreale1,
Valerio Grossi1, Dino Pedreschi1

University of Pisa1, ISTI-CNR, Pisa2

July 21, 2013

Abstract

Customer segmentation is one of the most traditional and valued tasks
in customer relationship management (CRM). In this paper, we explore
the problem in the context of the car insurance industry, where the mo-
bility behavior of customers plays a key role: different mobility needs,
driving habits and skills imply also different requirements (level of cov-
erage provided by the insurance) and risks (of accidents). In the present
work, we describe a methodology to extract several indicators describing
the driving profile of customers, and provide a clustering-oriented instan-
tiation of the segmentation problem, based on such indicators. Then, we
consider the availability of a continuous flow of fresh mobility data sent
by the circulating vehicles, aiming at keeping our segments constantly
up-to-date. We tackle a major scalability issue that emerges in this con-
text when the number of customers is large, namely the communication
bottleneck, by proposing and implementing a sophisticated distributed
monitoring solution, which reduces the communications between vehicles
and company servers to the essential. Finally, we validate the framework
on a large database of real mobility data, coming from GPS devices of
private cars.

1 Introduction and motivations

A key task in modern customer relationship management (CRM) is to under-
stand the needs of each customer and to devise policies to harmonize them at
the best with the company objectives. In most cases that translates into identify
a portfolio of customer profiles, each representing the needs and requirements of
a reasonable number of customers. Then, each profile can be treated separately
in order to devise the market strategies and business models that best fit its
customers’ peculiarities. In the business intelligence field, this process is best
known as customer segmentation, and is traditionally implemented by applying
pre-defined customer classification rules (for instance based on RFM indices:

1

Recency of last contact with customer, Frequency of transactions, Monetary
volume involved in the relation with the customer) or, in more recent times, by
using clustering algorithms. This kind of process can be applied to any kind of
business focused on services towards several customers, including the classical
domain of retail selling as well as e-commerce and many others. In particular,
in this paper we explore solutions for customer segmentation that put together
several novel aspects: first, we focus on the very actual and rather uncommon
ground of car insurance business, where the main features that characterize a
customer are related to how he/she drives, and therefore on his/her mobility;
second, we instantiate the general problem to the new context by adopting a
data mining-oriented approach; third, we tackle the problem from a more real-
istic big data perspective, where the application can benefit from a continuous
flow of fresh information. The first point leads us to model the characteristics
of the customers through features extracted from his/her mobility. In particu-
lar, we analyze the trajectories that describe such mobility based on standard
GPS traces, as those recently collected by specialized companies for the car
insurance sector. At the second point, we propose a definition of customer seg-
mentation based on the features mentioned above and a clustering procedure,
together with a notion of quality of the segmentation that can be used to test
the validity of a given segmentation in the context of dynamic data, i.e. when
the features describing the customers are updated to reflect their recent behav-
ior. This aspect is connected to the third point mentioned above, related to
big data, which implies, on the one hand, that the application can in princi-
ple provide a customer segmentation which is kept up-to-date with the recent
changes in real time; on the other hand, the huge size and speed of such data
requires to adopt proper strategies to minimize the communication and storage
requirements, since traditional centralized, off-line analysis methods might be
unsustainable in this context.

In this paper we provide solutions that consider all three aspects discussed
above, equipped with an extensive experimentation based on a large real dataset
of GPS traces. In particular, we address the problem of continuous monitoring
of the quality of the clusters (profiles) of similar drivers by adapting and ex-
tending the safe-zones approach [19], a method that supports the distributed
monitoring of global functions while limiting as far as possible the need for com-
munication between the distributed agents and a central server.

2 Problem definition

2.1 Background on trajectory data analysis

The history of a user is represented by the set of points in space and time
recorded by their mobility device defined as H = 〈p1 . . . pn〉 where pi = (x, y, t)

2

and x, y are spatial coordinates and t is an absolute time-point. Starting from
this sequence we are interested in extracting the user’s trajectories, where a
trajectory is a subsequence of points representing the movement between two
places where the user stops for an activity. In the literature there are complex
techniques for stop computation, but in our experiences a simple cut when using
a minimum period of time γ in considering a spatial buffer with radius r is a good
trade-off between the computational efficiency and quality of result obtained.
A common setup of the parameters in case of private cars is γ = 2hrs. and
r = 50m. In the following, we will also use the concepts of “the most frequent
location L1” and “the second most frequent location L2”. These two areas
represent for the user the most attractive places and in the literature, usually
are interpreted respectively as home and workplace.

2.2 Application

For the description of the user driving behavior in a time window we identified
four categories of measures: (i) basic, (ii) space-time distribution, (iii) context-
aware, and (iv) behavioral. The first one contains measures describing the basic
features of the trajectories in the time window such as:
Length: distance travelled by the user.
Duration: time spent travelling by the user.
Count: number of different user’s trips.
MaxAcceleration: maximum user’s acceleration.
MaxDeceleration: maximum user’s deceleration.

This information is directly computable from the raw GPS traces without any
complex process. However, they are useful to understand the behavior of the car
usage. The second category comprehends more complex measures that capture
how the territory is used, both spatially and temporally:
Avg Dist L1: average distance of the user from his most frequent location

L1.
Radius g: radius of gyration of the user (i.e. the standard deviation from the

center of mass of his movements).
Radius g L1: radius of gyration w.r.t. to the user’s L1.
TimeL1L2: time spent by the user in L1 or L2.
EntropyLocation: entropy of the location frequencies where the user stops.
EntropyTime: entropy of user’s travel time frequencies.

This set of measures describes the spatial and temporal user distribution move-
ments. The third category is composed of the context-aware features, where
information about the user’s movement is related to the spatial and temporal
context in which he moves:
EntropyArc: entropy of road segment frequencies traversed by the user.
Phighway: distance travelled on highways by the user.
Pcity: distance travelled inside urban areas by the user.
Length arc crowded: distance travelled on top 20% most crowded road seg-

ments.
Pnight: distance travelled during night time (i.e. between 10 p.m. and 5

3

a.m.) by the user.
With this category the user is characterized by the different contexts in which
he travel during the time window. The last category focuses on capturing some
specific behaviors:
PAccelerationDeceleration: percentage of rapid accelerations/decelerations

of the user during his movements.
Pover: how much the user drives over the speed limits.
Profile: how much the user follows his profiles, i.e. trips that he performs

frequently.

Clustering-based customer segmentation. The indicators built at the previous
step provide a summary of all factors deemed relevant to characterize the driving
of an individual. On this base, the customer segmentation can be defined es-
sentially in two ways: by means of user-defined rules to assign each customer to
one out of a set of pre-defined segments; or by applying a data-driven approach
that looks for the existence of meaningful groups of customers, each group con-
taining individuals with similar feature values. The first solution mimics quite
closely the traditional approach to CRM, where a set of golden rules, learned
through years of experience or through prestigious studies, is assumed to hold
perpetually, virtually unaffected by external factors. The second solution fol-
lows a data-mining perspective, and essentially trades the clear understanding
of static, well-established golden rules for the capability of capturing the poten-
tially dynamic group structure of customers directly suggested by their mobility
indicators.

Quite obviously, the user-defined rules look advantageous in all contexts
where such a set of such rules are known and the domain is characterized by a
large inertia. In all other cases (no applicable rules are known or the domain is
inherently dynamic, thus quickly turning such rules obsolete), the data-driven
approach may come to help. Since the characteristics of the domain considered
in this paper better fit the latter situation, in our work we will devise a data-
driven solution to the customer segmentation problem.

Following well-known precedents in the business intelligence literature [4],
we choose to build segments through a clustering algorithm. In selecting the
most appropriate clustering schema, we should consider the following require-
ments of our application: first, each segment should contain customers that are
significantly similar to each other, and therefore clusters should be basically
compact; second, some customers might not fit well any segment, and there-
fore the clustering procedure should account outliers, to some extent; third, as
the pool of customers might be very large, for instance in the order of several
millions, the algorithms need to have a low computational complexity.

The first and last requirements can be met very simply by the standard K-
means algorithm, which seeks globular clusters and has an almost linear com-
plexity. In order to account outliers and yet keep the overall procedure efficient,
we choose to first apply K-means on the input data, and afterwards apply a
postprocessing to remove objects too far from the cluster center. The K-means
algorithm starts from a set of random cluster centers (centroids), and then it-

4

eratively assigns each data object to the closest centroid and then recomputes
the centroid of each cluster as the average of its data vectors; the process is
repeated until convergence is reached, i.e. the cluster centroids are stable.

As we can see, the only parameter of the method is the number of clusters
K. If no (correct) guesses for K are provided by the domain knowledge, a
reasonable value can be found by applying standard methods (see, e.g. [15])
that run the clustering with several values for K, and select the largest one
such that a further increase in K generates no significant improvement in the
clusters compactness (the latter being measured through a quantity called SSE,
defined in the next sections for other purposes).

2.3 Customer segmentation on dynamic data

The mobility of individuals is a phenomenon that, in principle, can highly change
with time. For instance, some routines might be affected by sudden and tempo-
rary variations of the environment (special events or road works forcing people
to adapt their daily routes), or they might be influenced by seasonal factors
(actually, the whole lifestyle might change from winter to summer). Finally,
a change in the mobility might be simply an effect of the natural evolution of
individual lives, possibly involving changing working conditions, family status
and taste on how to enjoy the spare time – cases in which the variation of the
individual mobility is more likely to last relatively long.

For these reasons, in our context it is advisable to have mechanisms that
ensure a good fit between the actual segmentation (the one that the company
is using to shape its business) and the real mobility behavior of the customers.

Assuming to have access to a stream of continuously updated indicators for
all our customers, the first question to tackle is the following: how and when the
changes detected on single users should translate into changes in the customer
segmentation? Indeed, some individual changes might be small enough to have
negligible effects on the corresponding segments, or at least not to impact on the
overall structure of segments. In these cases, it is advisable to simply keep the
known segmentation, avoiding the practical troubles at the management level
that would result from an excessively frequent redefinition of the segments.

In order to implement the general principles mentioned above, we follow an
approach where the last computed segmentation is kept as long as some quality
requirements are satisfied, which are defined and discussed below in some detail.
Then, whenever such requirements are violated, the existing segmentation is
discarded, and a new one is computed from the most recent data.

In the remaining of this section we provide the elements for redefining the
customer segmentation in a dynamic context following the ideas mentioned
above. We do that assuming to work in a centralized setting where it is possible
to store and analyze all the mobility data streaming in. In Section 3 we will
move to a more realistic setting, where the communication issues (inevitable
on a large scale application like the one we are developing) are considered and
dealt with.

5

Quality measure. A simple and very popular method for measuring the overall
quality of a clustering is the so-called Sum of Squared Error (SSE in short),
defined as follows:

SSE =

k∑
i=1

∑
p∈Ci

||p− ci||22 (1)

where Ci represents the i-th cluster, and ci is its center (average vector).
This measure evaluates the dispersion of each cluster around its centroid, and
therefore gives emphasis to the compactness of clusters. Having dispersed clus-
ters does not necessarily mean that they are not meaningful or that they do
not capture well the cluster structure hidden in the data. However, that might
affect the reliability of a centroid as a representative of all the objects in the
cluster, and the cluster might lack the homogeneity that was a requirement of
our initial problem – segmenting customers into groups having homogeneous
needs. For this reason the SSE measure seems to fit properly with our context,
and will later be applied in our application.

We also notice that the use of SSE is very coherent with the algorithm
adopted for clustering. Indeed, it is easy to see that K-means tries to reduce
the SSE at each step of its iterative process, stopping when a local optimum is
reached.

Monitoring formulation of the problem. Our approach to deal with dynamic
data consists in continuously checking whether the last customer segmentation
computed is still good enough, recomputing the segments only in the negative
case. This requirement can be easily translated in terms of SSE by asking that
the dispersion of the objects within the clusters did not grow, or at least not
significantly. That means computing the SSE at each time stamp t, which we
will denote with SSEt, and test that it stays below some threshold. We refer
to this continuous testing with the term monitoring. Finally, such a threshold
should take into account the dispersion obtained at the very moment the clus-
ters were created, which we denote with SSE0 (i.e. time counting starts from
the moment the most recent clustering was performed), suggesting to adopt a
relative threshold. That is summarized in the following problem definition:

Definition 1 (Cluster Monitoring Problem)
Given a clustering C = {C1, . . . , Ck} having initial SSE equal to SSE0, and
given a tolerance α ∈ R+, we require to ensure that at each time instant t the
following holds for the SSE of the (dynamic) dataset Dt:

SSEt ≤ (1 + α)SSE0 (2)

When that does not happen, a recomputation/update of cluster assignments
should be performed.

We should note that SSE describes all the clusters together, aggregating the
dispersions of the single clusters. That means that in principle having a good
SSE does not guarantee that each single cluster is compact, since some slightly
over-dispersed cluster might be balanced in the sum by some virtuous one that

6

adds very little to the SSE. From this perspective, it might happen that the end
user of our application wants to ask for stronger requirements in the monitoring
problem. Therefore, we will consider also the following variant of the problem,
where the constraints are imposed over each single cluster:

Definition 2 (Strict Cluster Monitoring) Given a clustering C = {C1, . . . , Ck}
having initial SSE equal to SSE0, and given a tolerance α ∈ R+, we require to
ensure that at each time instant t the following holds:

∀ki=1.SSE
(i)
t ≤ SSE

(i)
0 + θ(i) (3)

where SSE
(i)
t is the contribution of cluster i to the SSE at time t, i.e.

SSEt =
∑k
i=1 SSE

(i)
t , and the θ(i) ∈ R+ are fixed thresholds such that

∑k
i=1 SSE

(i)
0 +

θ(i) = (1 +α)SSE0. When condition (3) is violated, a recomputation/update of
cluster assignments should be performed.

3 Distributed monitoring

Our application context implies that our data sources are both streaming and
distributed, since each vehicle involved continuously generates updates for its
indicators, and all these data need somehow to be collected by a single unit to
elaborate them. This creates a simple network with several nodes that com-
municate exclusively with a single special node, that we call controller, where
nodes just communicate everything and the controller performs all the compu-
tation. However, such a purely centralized solution is applicable only on the
small scale, since the communication stream generated by millions of vehicles
would be hard to sustain. In this section we propose a solution based on the
distributed monitoring paradigm, that aims to save a significant amount of com-
munications by deferring a small part of the computation to the nodes of the
network. More specifically, our objective is to continuously verify that the clus-
tering/segmentation satisfies the quality constraint (2) or (3), and recompute
the clustering only when the constraint is violated. Therefore, a simple way to
distribute the computation consists in providing to the nodes some local condi-
tions to test such that, if each local test is successful, they guarantee also the
satisfaction of the global quality constraint. The basic idea is that the nodes
themselves can recognize the data changes that do not significantly impact on
the quality measure to monitor, thus avoiding to update the controller with
useless information.

In the following subsections we describe the setting of distributed monitoring
of functions that we are going to use, showing how our problem can be trans-
lated is such terms. Then, we describe the full framework that implements the
monitoring and integrates several forms of predictive models that improve its
communication reduction capabilities.

7

3.1 Distributed monitoring of functions

The work in [19] addresses the general problem of monitoring the value of a
function computed over data that are distributed in a network. More specifically,
the framework considers a two-tiered setting, with n geographically dispersed
sites (also called nodes) and a central coordinator (also called controller) that
is capable of communicating with every site, while pairwise site communication
is only allowed via the coordinating source. Each site receives a stream of data
updates and maintains a d-dimensional local measurements vector vi(t). The
task of the coordinator is to ensure that at each time instant t the following
holds:

f(v(t)) ≤ T (4)

where f is a given function, f : Rd → R, T ∈ R is a threshold and v(t) is the
weighted average of the vi(t) of all sites, i.e. v(t) = (

∑
i wivi(t))/

∑
wi for some

weights wi ≥ 0. While the latter condition is apparently a strong limitation to
the applicability of the framework, it has been shown that several interesting
problems can be reformulated in this way. A basic means to do this, which will
also be used later in this paper, is a vector augmentation trick, consisting in
adding to vectors vi(t) (sent by the sites to the coordinator) one or more extra
components. The basic example is the task of monitoring the variance of all
vi(t), assuming d = 1, i.e. ensure that vari(vi(t)) ≤ T . While not directly fitting
the form in (4), we can exploit the well known property var(X) = avg(X2) −
[avg(X)]2 to rewrite our problem as f(v(t)) = v(t)1 − [v(t)2]2, assuming that
each site now communicates a 2-dimensional vector

(
vi(t), vi(t)

2
)
.

The algorithmic solution proposed in [19] to perform the monitoring of (4)
follows a so called geometric approach. All the points in Rd where (4) is satisfied
form the admissible region G, and our objective is simply to ensure that v(t) ∈
G. The method stems from the following property: the convex hull of a set
{xi}i ⊂ Rd of points is entirely contained in

⋃
iB(xi, e), where e is any point

in Rd and B(xi, e) is the ball having the segment xie as diameter. In turn,
it is straightforward to see that our v(t) is contained in the convex hull of the
set {vi(t)}i. Therefore, if every ball B(vi(t), e) is contained in the admissible
region (namely, it is monochromatic), then also v(t) will be, and therefore (4)
will be satisfied. Once the controller has communicated to all sites the point
e, each site will be able to test whether its ball B(vi(t), e) is monochromatic.
As long as no site detects a failure, we are guaranteed to satisfy (4), without
any need of communicating information to the controller. When a site fails, it
notifies the controller, who, in the basic approach, will ask to every site to send
their new vector values, and test condition (4). Notice that the test performed
on each site might cause false alarms (its ball exits the admissible region, yet
the overall v(t) is still inside) but not false negatives, i.e. when condition (4)
is violated the system will always discover that. While in principle the point
e can be chosen freely, it is convenient in practise to compute it as e = v(t′),
where t′ is the time of the most recent synchronization, i.e. the phase where
every site communicates its new values to the controller. Beside at the start-up
of the system, synchronizations usually occur when a site rises an alarm. With

8

this choice, it results useful to slightly change the method by asking each site to
check the ball B(ui(t), e) instead of B(vi(t), e), where ui(t) = e+ (vi(t)− vi(t′))
is called the drift vector. It is trivial to prove that the average avgi (ui(t)) is
equal to v(t), thus not changing the monitoring task. Yet, now, immediately
after any synchronization we have that ui(t

′) = e, therefore the vectors of all
sites start from the same point e, and the balls B(ui(t), e) have actually the size
of a single point, clearly reducing the chance that a false alarm will rise in the
near future.

3.2 Distributed monitoring of cluster quality

The cluster monitor problem (Definitions 1 and 2) can be fitted to the geometric
approach described above, by properly rewriting it and exploiting the vector
augmentation trick seen for the variance monitoring (Section 3.1). Indeed, the
formulation of SSE is very similar to a variance, though on d dimensions. To find
the precise relation between the two, we observe that each cluster Ci, having
centroid ci, contributes to the SSE by the following value:

SSE(i) =
∑
p∈Ci

||p− ci||22
=
∑d
j=1

∑
p∈Ci

(pj − avgq∈Ci
(qj))

= |Ci|
∑d
j=1 varp∈Ci

(pj)

= |Ci|
∑d
j=1

[
avgp∈Ci

((pj)2)−
(
avgp∈Ci

(pj)
)2] (5)

where pj represents the j-th component of the d-dimensional vector p. This
means that by augmenting the vector vi(t) of each node with the additional d
features vi,1(t)2, . . . , vi,d(t)

2, we can compute the variance for each component,
as requested in (5). Actually, we can do slightly better, by further aggregating
the terms in the last line:

SSE(i) = |Ci| ·
[
avgp∈Ci

(
||p||22

)
− ||avgp∈Ci(p)||22

]
(6)

which means that only one additional component is needed, corresponding to
||p||22 of the node (p represents our vi(t)).

3.3 Monitoring framework

The relation (6) states that the geometric approach discussed in Section 3.1 can
be applied to monitor a single cluster, provided that we have defined a threshold
value for it. This provides a direct solution to the strict version of our monitoring
problem (Definition 2), since it already introduces an individual threshold for
each cluster, and therefore implicitly partitions the problem into K separate
sub-problems. The basic problem (Definition 1), instead, does not impose such
a partitioning, and allows some interplay between the different clustering, e.g.,
clusters with a high SSE(i) might be balanced by others having a low value.

Problem partitioning. In our solution we choose to divide the monitoring into K
separate sub-problems in both the basic and the strict problem definitions. That

9

means, in practice, we will introduce thresholds for each single SSE(i) also in
the basic case, thus actually making it more restrictive. Additional mechanisms
to exploit the interplay between clusters allowed by the basic problem will be
introduced later in this section. Then, after each synchronization, where all
nodes send their vectors to the controller (including the initial start-up of the
system), the controller will send to the node of each cluster both its centroid
and the corresponding SSE threshold. With this information, each node will
be able to locally test sufficient conditions that ensure the cluster not to exceed
the SSE threshold assigned to it, based on the geometric solution described in
Section 3.1.

In order to perform the above mentioned threshold partitioning, we essen-
tially need to define the values (or rather, a method to compute them) of the
constants θ(i) mentioned in Definition 2, i.e. the SSE increments allowed to each
cluster. Two natural choices emerge: using the same value for all clusters; or
making θ(i) proportional to SSE(i). The first solution will be called uniform SSE
distribution, and implies that we set ∀i.θ(i) = αSSE0/K. The second one will

be called proportional SSE distribution, and requires to set ∀i.θ(i) = αSSE
(i)
0 .

In order to allow a flexible choice between the two alternatives, we will adopt
the following schema, parametric in β ∈ [0, 1]:

∀i.θ(i) = β
(
αSSE

(i)
0

)
+ (1− β)

(
α
SSE0

K

)
(7)

Thus, β = 0 will correspond to the uniform distribution, β = 1 to the propor-
tional one, and any value in the middle to some trade-off between them.

Multi-level monitoring. The previous discussions suggest that the cluster mon-
itoring can be organized at three levels, as depicted in Fig.1. At the bottom
layer, each node checks its local constraints, based on the information it re-
ceived during the last synchronization. Whenever a local violation occurs at
some node, the controller reacts by verifying whether the alarm was true (the
SSE(i) of the corresponding cluster is too large) or not, which constitutes the
second layer. The basic action taken by the controller is to simply query all
nodes of the cluster to compute the real SSE(i), yet smarter solutions are pos-
sible, including the node balancing strategy that will be discussed later in this
section. When the alarm is true, the strict problem definition requires a re-
computation of the clustering, and thus the controller also needs to start a full
synchronization. In the basic problem definition a smarter approach is possible
(also discussed later in this section) which checks whether other, more virtuous
clusters have a SSE(i) that can balance our large one.

Algorithm 1 summarizes the whole monitoring process for a more complex
case, i.e. the basic problem, where some balancing is possible between single
nodes or between clusters.

First, in an initialization phase (steps 1–6) the controller receives all local
vectors vi(0) from the nodes and computes a first clustering, sending back to the
nodes all the information they need to start the distributed monitoring. The
monitoring phase (steps 7–25) contains three main actions: first, each node tests

10

Figure 1: Logic organization of the framework.

its local constraints (steps 9–12) using the methods described in Sections 3.1
and 3.2. If no violation occurs, the monitoring cycles simply goes on without
any communication and any action from the controller’s side. If, instead, there
is some local violation, the controller communicates with the nodes of the cor-
responding cluster to check is the violation can be balanced (steps 13–15). If
that is not possible, it means the cluster SSE is too large, and the controller
tries to see if other clusters can help to balance it (steps 16–17). If everything
fails, it means the whole clustering is actually violating the monitoring condition
(2), and therefore an initialization of the system is required (steps 18–19). The
latter event triggers the execution of the last phase (steps 20–24), essentially
requiring the same operations of the initialization phase. We remark that the
strict version of the monitoring problem does not allow any interplay between
clusters, therefore, in that case the cluster balancing (step 17) should simply be
omitted. Also, as we will see later, the cluster balancing is executed in such a
way that a when it fails all nodes will already have sent their up-to-date vectors
to the controller, and therefore it is not required any further communication
from the nodes side. When the cluster balancing is omitted, as for the basic
monitoring problem, such communications are needed, and step 2 should be
replicated before the clustering takes place (i.e., between steps 20 and 21).

3.4 Node-level improvements

The proposed solution can be improved in several ways, by exploiting recent
developments of the general theory summarized in Section 3.1 (which will be
discussed in the next paragraphs) or by extending it with application-specific
improvements (topic mainly covered in the next section).

Safe Zones for convex inadmissible regions. The geometric method discussed in
Section 3.1 provides a means to decide locally to the node which vector values
guarantee that the overall function satisfies the global constraint to monitor.
The set of such values is also called safe zone and, since it is only based on the
global function and on the reference point e, all nodes have the same safe zone.

In [14] it is shown that the safe zones built by the geometric method can
also be computed as the intersection of an infinite set of hyperplanes. Yet, it

11

Algorithm 1: Overall monitoring workflow
Input: number of clusters K; tolerance α; dynamic customers data set D
// Synchronization and setup
Initialize t := 0;1
All nodes in D send vectors vi(0);2
Compute clustering;3
foreach cluster Ci do4

Compute threshold SSE
(i)

thr
;5

Send ci and SSE
(i)

thr
to all nodes in Ci;6

// Monitoring
repeat7

t := t+ 1;8
foreach node Si ∈ D do9

Si tests its local constraints;10
if Violation then11

Send alarm to Controller;12

foreach cluster Ci do13
if Controller receives at least one alarm from Ci then14

Try node balancing on Ci;15
if balancing failed then16

Try cluster balancing;17
if balancing failed then18

Exit loop and request synchronization;19

if Requested synchronization then20
// Recompute clusters
Compute clustering ;21
foreach cluster Ci do22

Compute threshold SSE
(i)

thr
;23

Send ci and SSE
(i)

thr
to all nodes in Ci;24

until Forever ;25

is also shown that part of them are unnecessary, which makes the safe zones
smaller (and thus less effective) than what strictly needed. A particular case
is that where the inadmissible region (the set of values that violate the global
constraint) is convex. In this situation we can easily find an optimal safe zone
in two steps: first, find the point p of the inadmissible region which is closest to
the reference point e; second, draw the hyperplane that passes through p and is
orthogonal to the segment ep, and then, of the two half-spaces determined by
the hyperplane take as safe zone the one that contains e.

This is very relevant for our problem, since the SSE(i) of a cluster has a
quadratic form with positive coefficients, and therefore our inadmissible region
is the part of space that stands above an “upward” parabola, which is a convex
set. For this reason, in our application we will adopt the smarted safe zones
described above.

Balancing. As already mentioned earlier, when a node violates its local con-
straints (i.e., it exits its safe zone) there might be other nodes that can com-
pensate it. A simple method to do that consists in applying a straightforward
property: if we move the local vectors vi(t) and vj(t) of two nodes, respectively
by δ and −δ, the overall average v(t) will not be affected. That means that if

12

vi(t) trespassed the border (an hyperplane, in our case) of the safe zone by an
amount δ, generating an alarm, and we realize that vj(t)− δ still remains in the
safe zone, we can remove the violation by translating both vectors as described
above, without any further effect on the monitoring process. Actually, since
the border of the safe zone is a hyperplane, we only need to consider δ that
are orthogonal to it, therefore we can code the translation by means of a single
scalar, representing the distance between vi(t) and the hyperplane.

The balancing of nodes, then, is realized along the following strategy: when
a node of cluster Ci raises a violation, it also communicates its amount δ (which
will be negative); then, the controller asks to 2 other nodes of the cluster, chosen
randomly, their distance δ1 and δ2 from the hyperplane. If δ + δ1 + δ2 ≥ 0, the
balancing is successful, otherwise the controller tries with 4 more nodes, etc., at
each iteration doubling the number of nodes involved, till either δ+

∑
i δi ≥ 0, or

all nodes have been contacted without success. In the latter case, the balancing
fails.

When the balancing is successful, we have two alternatives, that we call re-
spectively balancing with memory and memoryless balancing. In the first one,
the node that rose the violation and the other ones needed to balance it, perma-
nently translate their vectors; in the second one, the translation is only virtual,
and all nodes keep their vector. The latter is expected to work better in situ-
ations where the violations are due to temporary noisy updates of the vectors,
which should disappear at the next timestamp.

The balancing process described above, when successful, assigns a final dis-
tance from the hyperplane that is zero for the node who rose the violation and
all those used to balance it, while all other nodes (those queried by the controller
but not needed to reach the amount |δ|) are left unchanged. A possible alter-
native consists in building a buffer between all the n nodes and the hyperplane,
by redistributing the total amount of δi of the nodes not yet involved. That can
be realized by setting the distance from the hyperplane of each node involved
to (δ +

∑n
i δ1) /(n+ 1).

Finally, the same kind of reasoning followed so far can be applied at the level
of clusters, in the case of the basic problem definition: if a cluster exceeds its
assigned threshold θ(i), the controller can try to balance it with other clusters.
In order to do that, all the nodes of each cluster Cj involved will send their
up-to-date vectors, in order to compute the real SSE(j), and see if it can be
used to balance SSE(i). Similarly as above, we can also introduce a buffer,
in order to provide some extra-tolerance to the clusters for the next iterations
of the monitoring. Since the number of cluster is usually relatively low, the
exponential schema applied at the level of nodes can be replace by a linear one,
i.e. the controller involves new clusters in the balancing one-by-one, instead of
doubling their number at each step.

In Section 4 we will experiment all these variants, in order to verify which
ones seem to fit better our application.

13

3.5 Introducing predictive models

The recent work in [8] extends the geometric approach by introducing predictive
models. The basic idea is that the reference point e used to define the safe
zones needs not to be static. As far as all nodes always share the same value,
it can change in time. The basic idea consists in defining models that provide
some predictions for each vi(t), which in turn are combined together by the
controller to provide a model that predicts v(t). Such model is distributed to
all nodes, which will then use its predicted values as (time-varying) reference
point. The final effect is that, if the predictive models work well, the drift
vectors of the nodes (see Section 3.1) will all be very close to the real value v(t),
thus minimizing the chance of false alarms.

We distinguish two types of predictive models to use in our framework: one
based on the detection of trends in the recent data; and one based on the de-
tection periodicities of the data, obtained by analyzing historical information.

Trend-based models. From this family of models, introduced in [8], we will con-
sider two alternatives: the linear growth model, which assumes that the vector
of a node will evolve in time following the law vi(t) = t

ts
vi(ts), where ts is the

time of the last synchronization; and the velocity/acceleration model, which as-
sumes the law followed has the form vi(t) = vi(ts) + (t− ts)veli + (t− ts)2acci,
where veli and acci are estimates of the velocity and acceleration (as vectors) of
vi(t) estimated at time ts by the node itself, by looking to a piece of its recent
history. Both models favour simplicity and ease of computation, only requiring
to send very little extra information on the network.

History-based models. This models extend the approach of [8] by learning regu-
larities in the behaviour of a vector vi(t) from a segment of history of its node,
in way similar to [16]. We consider two variants. The first one is called history-
based constant model, very simply computes the average value of vi(t) on the
history segment, which then represents the “default” vector for the node. The
second one is called history-based variable, and performs a similar computation,
yet providing different values for different time slots within the 24h of the day.
This way, we will obtain a “default” vector which is dependent on the hour
of the day (or other time unit adopted). Since they are based on longer-term
history, as compared to the trend-based methods, these solutions require to
send the local models of the nodes to the controller (and the aggregate global
model backward) only at the beginning of the monitoring, thus not affecting
communications in any significant way.

Adapting the Choosing Among Alternative approach shown in [8], we com-
bine together all models listed above in the following way: at each synchroniza-
tion only one model type is chosen, based on how well each model performed
since the previous synchronization. Therefore, each node always applies all
models, in order to test whether it would cause an alarm or not, even if only
one of them is actually used to decide whether a violation is occurring. During
the synchronization, for each model the coordinator counts the number of nodes
where the model was successful (i.e., did not signal a false alarm), and selects

14

Figure 2: Communications during the strict clustering monitor by varying the
α parameter.

the best one.

3.6 Dataset and data preprocessing

The dataset is provided by an Italian company called OctoTelematics collecting
data for insurance purposes. This dataset is composed by GPS observations of
11,470 1 private cars active in Tuscany in a period of 35 days between June and
July 2011. Due some pre-processing (i.e. aggregation and filtering) performed
by the device on board the sampling rate is reduced to a observation every 3
minutes and it is not regulated by any policy of synchronization. Moreover,
we divided the dataset temporally in order to create a training and a test set
respectively using the first week and the remaining 4 weeks. The two dataset
are processed to extract the measures presented in Sec.2.2 using a time window
of 3 days with a time granularity of 15 minutes. Unfortunately, due the low
sampling rate, some of the measures can’t be extracted, i.e. all the acceleration
based measures, therefore we have excluded them from our experiments. Once
all the measures are collected we studied their values and since some variables
follow skewed distribution, they were transformed to a log scale. Finally, all
variables have been normalized through z-score, thus making all variables have
zero average and variance equal to 1. Since the idea is to build the customer pro-
files using a clustering method, we must consider also the correlation between
the measures, hence we used the training set to produce a schema of correla-
tions revealing that several strong correlations held. Therefore we selected a
subset of measures to avoid strong biases in successive analyses and, as side

1The dataset is available at kdd.isti.cnr.it/node/493

15

Figure 3: The percentage predictive model usage.

effect, reduce the dimensionality of the dataset. The attributes remained after
this selection are the following: Duration, Radius g L1, TimeL1L2, EntropyArc,
Pcity, Phighway, Pnight, Pover and Profile.

4 Experiments

4.1 Performance evaluation

To evaluate the performances of the proposed method we consider the amount
of communications exchanged between the nodes and the controller. To better
study the performances we separated two different kinds of messages: the ones
coming from the nodes toward the controller and vice versa. The communica-
tions of the first type are always of the same size (a vector with d dimensions plus
other parameters for predictive models) and the channel is a point-to-point link
between the node and the controller; meanwhile the second group is composed
by communications with different sizes that can use broadcasting capabilities
of the networks to reach all the nodes at once. A worst case analysis of the
communications from the controller revealed that they are dominated by the
requests for the balancing and they have an upper bound of 4%, which in an
empirically evaluation drops to values between 1.23% and 2.34%. For sake of
readability we first present the results of the strict clustering monitor. In Fig.2
the method is evaluated varying the α parameter. The algorithm is applied with
different variants presented in previous sections: the method with only node bal-
ancing without memory (Basic); with memory during the balancing (M); using
the trend predictive models (PT); using the history predictive models (PH);
and considering a buffer in the balancing (B). Moreover in the figure we report
also the baseline representing a lower bound of the communications needed to
monitor, computed as the communications generated by synchronizations. It is

16

Figure 4: Communications during the clustering monitor by varying the α pa-
rameter.

interesting to see the effect of the introduction of the memory during the node
balancing (in the strict problem the clusters are not balanced) which gives a first
boost to the performances reducing the communications. The usage of the trend
based predictive models contributes only marginally to reduce communications,
while the history based ones have a rather large impact, reducing the communi-
cations close to the baseline. The impact of the history-based predictive models
it is also confirmed by the Fig.3 where the usage of each predictive model is
analyzed in terms of the amount of time in which it is used during the monitor-
ing. It is important to notice how, excluding the static one, the constant history
based model is the most used outperforming the others. The second most used
is the variable version, which is probably more affected by noisy values than the
constant version. The least used is the linear growth which is never used and
clearly not suitable to describe the trend of the data. Considering the basic ver-
sion of the clustering monitor problem, it is clear from the baseline in Fig.4 that
the communications needed are less. Our method obtains good performances
and, as in the strict version, the predictive models improve the performances.
Experiments showed that the buffer feature presented in Sec.3.4, applied at the
node level, does not improve the performances significantly, hence in the ex-
periments we present it only in the case of the balancing applied at the cluster
level, where we can see that it reduces significantly the communications, both
with and without the predictive model.

4.2 Cluster evaluation

Given the result of a clustering operation, our end user needs to interpret the
solution by defining and labeling the obtained clusters. Interpreting clusters

17

Figure 5: Hierarchical clustering on a set of centroids (left) and feature distri-
butions (right).

usually involves examining their centroids, which represent the average behav-
ior of each group of objects. This analysis is important because sheds light on
whether the segments identified by the clusters are conceptually distinguishable.
As a consequence we have decided to examine the values of centroids and tried
to identify explanatory features to profile the clusters. The first step of the in-
terpretation process was to understand the relation among the cluster centroids
in order to understand their similarity (or dissimilarity). Therefore, we have
applied on the set of centroids a hierarchical clustering algorithm with “single-
linkage” method for the distance computation. The result simply highlights
groups of centroids (clusters), which are similar and clusters that are particu-
larly different. In this way, it is easy to understand which clusters represent
similar customer profiles. In Fig.5 (left) we depict the result of the hierarchical
clustering on a set of centroids. We observe that by analyzing the dendogram an
analyst could easily understand that the customer profile represented by Cluster
12 (green) and that of Cluster 0 (red) should be more similar to each other than
the customer profile of Cluster 38 (blue). This is confirmed by the behaviors
of some of the feature distributions in each one of these three clusters. Indeed,
in Fig.5(right), we observe that the feature distributions are more similar in
Clusters 0 and 12; especially, for almost all the context-aware features.

Analyzing the feature distributions in Fig.5(right) we can characterize each
one of the three clusters by labeling them with a particular customer profile. We
classified Cluster 0 as the group of drivers that we call explorers. The people in
this cluster travel a lot without following any particular systematic behavior and
the entropy of their movements is high. Moreover, this category of drivers tends
not to respect the speed limits. Cluster 12, as explained above, is very similar to
Cluster 0 but the people here have a more systematic behavior (Profile), spend
more time in their frequent locations – typically representing home and working

18

locations –, which probably determine most of their mobility. We identify these
people as long-range commuters. Finally, Cluster 38 represents drivers called
Sunday drivers; indeed, they travel rarely, typically use the highways and do
not travel within the city. Also, they tend to respect the speed limits.

Another important point in the monitoring of clustering is how much time
passes between consecutive reclusterings. As expected, we verified that it strongly
depends on the α parameter. As an example, for α = 4 we perform the
re-clustering on average once every 20 hours, and an average of 11 hours for
α = 0.8. A deeper analysis reveals that this average is strongly affected particu-
larly unstable periods of time where many clusterings are executed consecutively.
However, once good profiles are detected the relative clustering persists longer.

5 Related Work

We briefly summarize some works in the literature on fields that are tightly
connected to our proposal.
Distributed Clustering can be classified into two main groups. The first one
includes completely decentralized methods requiring a significant amount of
communications among nodes [5, 7, 3]. Most of these works propose algorithms
for k-means clustering over a P2P network. The second group requires that
the nodes build local clustering models and send them asynchronously to a
central station, that forms a combined global model [18, 17, 13]. The basic
assumption of these algorithms is that each node contains more than one point.
Some of these works propose algorithms for hierarchical clustering [17], others
extend the density-based clustering to this setting [13] and others present a k-
means version suitable for wireless sensor networks with a hierarchical structure
[18]. As opposed to the methods mentioned above, in our context, in a given
timestamp each node has a single point that is transmitted to the central station
for the clustering. Moreover, our setting does not allow communications among
nodes.

Clustering on Data Streams is addressed in [10]: given a sequence of
points, the approach maintains a good clustering of the sequences observed,
using a small amount of memory and time. Some other works in the data
stream scenario may be found in [1, 2, 6]. [9] proposes an algorithm for clustering
distributed data streams. Given a network of nodes, where each of them receives
its share of a distributed data stream, the goal is to obtain a common clustering.
Here,the nodes cannot share single points of their datasets, but only aggregate
information. This setting differs from ours because they image to have more
than one point in each node.

Monitoring. Besides the methods addressing the monitoring of arbitrary
threshold functions over distributed data streams described in [19, 8] and already
discussed in previous sections, in the literature some works treat the problem of
clustering monitoring by considering different aspects and settings. For instance,
[20] studies the monitoring of the L2 norm, useful for monitoring the accuracy
of a k-means clustering. Others consider the clustering monitoring in a P2P

19

network by proposing a hierarchical structure of nodes [12].
Customer Segmentation. Market segmentation is one of the most funda-

mental strategic marketing concepts: grouping people according to their simi-
larity in several dimensions related to a product under consideration [4]. Typi-
cally, for this task predefined customer classification rules are applied. However,
recently, some methods propose the use of clustering algorithms. As an exam-
ple, in [11] authors propose the use of k-means clustering analysis to group
consumers into segments by collecting historical data accumulated in business
support systems of a telecommunication company. They do not consider any
distribution of the data and the analysis is performed off-line.

6 Conclusions

In this paper we explored an innovative instance of the customer segmentation
problem in the context of car insurances, characterized by a strong human mo-
bility component and the large scale, distributed and streaming nature of its
data sources. We developed and tested all the components of the application,
exploiting a large dataset of car mobility data, showing the feasibility of the ap-
proach. We believe that the distributed monitoring of cluster quality proposed
here has a validity beyond the application domain, and we plan to validate
it into an extensive array of clustering problems so that to achieve a general
methodology.

References

[1] C. Aggarwal, J. Han, J. Wang, P. Yu. A framework for clustering evolving data
streams. VLDB 2003, pp. 81-92.

[2] B. Babcock, M. Datar, R. Motwani, L. O’Callaghan. Maintaining variance and
k-medians over data stream windows. ACM PODS 2003, pp. 234-243.

[3] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, S.
Datta. Clustering distributed data streams in peer-to-peer environments.
Inf.Sci.176(14):1952-1985,2006.

[4] M. J. Berry, and G. S. Linoff. Data mining techniques: for marketing, sales, and
customer relationship management. Wiley Computer Publishing, 2004.

[5] S. Datta, C. Giannella, H. Kargupta. Approximate Distributed K-Means Clus-
tering over a Peer-to-Peer Network. IEEE TKDE 21(10): 1372-1388, 2009.

[6] P. Domingos, L. Spencer, G. Hulten. Mining time-changing data streams. ACM
KDD 2001, pp. 97-106.

[7] P. A. Forero, A. Cano, G. B. Giannakis. Distributed Clustering Using Wireless
Sensor Networks. J. Sel. Topics Signal Processing 5(4): 707-724, 2011.

20

[8] N. Giatrakos, A. Deligiannakis, M.N. Garofalakis, I. Sharfman, A. Schuster.
Prediction-based geometric monitoring over distributed data streams. SIGMOD
2012, pp. 265-276.

[9] A. Guerrieri, A. Montresor: DS-Means: Distributed Data Stream Clustering.
Euro-Par 2012, pp. 260-271.

[10] S. Guha, N. Mishra, R. Motwani, L. O’Callaghan. Clustering data streams. FOCS
2000, pp. 359-366.

[11] X.Hong; Q. Gangyi. Data Mining in Market Segmentation and Tariff Policy De-
sign: A Telecommunication Case. Information Processing (APCIP) 2009, pp.
328-331.

[12] M. Hua, M. Ki Lau, J. Pei, K. Wu. Continuous K-Means Monitoring with Low
Reporting Cost in Sensor Networks. IEEE TKDE 21(12): 1679-1691, 2009.

[13] E. Januzaj, H.-P. Kriegel, M. Pfeifle. DBDC: density based distributed clustering.
EDBT 2004, pp. 88-105.

[14] D. Keren, I. Sharfman, A. Schuster, A. Livne. Shape Sensitive Geometric Moni-
toring. In IEEE TKDE 24(8): 1520-1535, 2012.

[15] P.-N. Tan, M. Steinbach, V. Kumar. Introduction to Data Mining. Addison-
Wesley 2005.

[16] M.Nanni, R. Trasarti, G. Rossetti and D. Pedreschi. Efficient distributed com-
putation of human mobility aggregates through User Mobility Profiles. In Urb-
Comp’12: ACM SIGKDD International Workshop.

[17] N. Samatova, G. Ostrouchov, A. Geist, A. Melechko. RACHET: An efficient
cover-based merging of clustering hierarchies from distributed datasets. Distrib.
Parallel Databases 11 (2): 157-180, 2002.

[18] P. Sasikumar, S. Khara. K-Means Clustering in Wireless Sensor Networks. Con-
ference on Computational Intelligence and Communication Networks, 2012.

[19] I. Sharfman, A. Schuster, and D. Keren. A Geometric Approach to Monitor-
ing Threshold Functions over Distributed Data Streams. ACM Trans. Database
Systems, 32(4), 2007.

[20] R. Wolff, K. Bhaduri, and H. Kargupta. Local L2 Thresholding Based Data
Mining in Peer-to-Peer Systems. SDM 2006.

21

