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Abstract


In this Technical Report we present an iterative procedure for the


evaluation, from a set of decision makers or deciders, of a set of projects


according to a given set of criteria and the possible selection of the best


or most preferred project from that set.


The procedure uses Pareto principles and a Borda classical voting method


and aims at attaining fair allocations whenever this is possible.


Comments, observations and reports of errors are very welcome.
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1 Introduction


In this technical report we present a procedure that can be used by a set E
of evaluators (or decision makers also termed deciders) for the evaluation of a
given set P of competing projects and the selection of one project from the set
P .
The evaluation turns in the ranking of the projects according to a given set C of
criteria and is carried out with the use of the concepts of Pareto dominance


and Pareto equivalence or indifference.
The problem of project evaluation and selection is very remarkable and has
received attention even from European Union authorities (see, for instance,
[17]).
In this technical report we propose an approach that sees the projects of the set
P as both feasible and eligible ([17]) and the elements of the set C as having
the same importance or weight1.
The proposed approach is based on a static setting since both the set P and
the set C are seen as exogenously given by the selection procedure ([6, 8, 9]). If,
during the execution of the procedure, the evaluators could vary dynamically the
sets P and C by adding or removing elements we would be in a dynamic setting
([9]). In the present technical report we do not deal with these possibilities so
that we restrict our treatment to the static setting.


2 The motivations


In order to understand the rationale of the proposed procedure we must con-
sider a set E of the deciders that act within a well defined normative context
that provides them with the set C of the evaluation criteria.
In this context the deciders have a common problem as a problem that can be
solved, for either economic or logistic reasons or both, only with the contribu-
tion of all the deciders at various degrees of involvement.
In order to solve such a problem every decider, however, is interested in the
implementation of one or more preferred projects pj .
In this way the deciders of the set E collect the set P of the projects as the
union of the sets Pk of the projects that each decider ek ∈ E would be willing
to implement in order to solve the common problem.
Once they have collected the projects they must evaluate such projects in order
to select one of them to have it implemented. We assume that all the presented
projects are included in the set P but for the projects that are fully equivalent
according to the opinion of all the deciders themselves. With this we mean
that if one of the deciders opposes to the claim of equivalence for a project that
project must be inserted in the set P .
In order to give some concreteness to our reasoning we note how this way of
proceeding can be applied to solve problems of solid wastes disposal, special


1In section 11 we show the case of different weights associated to the elements of C.
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and hazardous wastes disposal, local transports, water distribution manage-
ment, energy production and dispatchment, localization of either commercial or
industrial areas and all the similar problems that affect, with both positive and
negative externalities, more or less wide areas that fall under the jurisdiction of
a certain number of deciders.
As it will be clear from the rest of this technical report, in solving this type of
problems we cannot use approaches such that proposed in [13] (where the au-
thors present procedures for the fair division of indivisible goods) or such those
proposed in [2] (where the focus is on the sharing of one or more either divisible
or indivisible goods) since we have more complex aims. We, indeed, aim at pro-
viding tools (firstly) for the selection of an element from a set and (secondly) for
the sharing of the divisible features associated to such an element among a set
of deciders with the possibility, for the deciders, to iteratively examine all the
elements of that set also with the aid of either recovery or reevaluation phases.


3 The basic ingredients


The procedure that we are going to introduce in section 4 and analyze in the
following sections is based on a certain number of sets that have already been
introduced but that we formally define and characterize in the present section.
Such basic sets are:


- the set E of the deciders;


- the set C of the criteria;


- the set P of the projects.


The set E (of2 e = |E| elements) identifies the set of the deciders that, during
the execution of our iterative procedure, act also as evaluators of every project
of the set P .
In the roles of proposers, evaluators and selectors the members of the set E
act as peers without any subordination relation and without the possibility to
exert an absolute veto power3 over any of the projects during the whole process.
The set C (of c = |C| elements) derives from the normative context about the
problem that the deciders are trying to solve and contains a certain number of
criteria that are seen as exogenously fixed from the deciders.
Last but not least, the set P (of p = |P | elements) contains the projects to be
evaluated and selected. In order to perform such operations the deciders use
the elements of the set C.
Every criterion cj ∈ C is assumed to be characterized by the following features:


- the various cj have the same weight or importance but may be either
independent (so that the corresponding rankings can be determined one


2Given a set A with a = |A| we denote its cardinality or the number of its elements. An
empty set has, rather obviously, a null cardinality.


3With this power we denote the power to oppose to any of the projects so to have it
abandoned without any possibility of being either examined or discussed.
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independently from the others) or interdependent (so that the correspond-
ing rankings reflect these links);


- every cj is associated to a numerical scale of some type, either ordinal or
cardinal ([19, 20]), that allows the deciders to rank the projects pi ∈ P
according to each criterion;


- every cj allows the definition of a total ordering with possible ties among
the elements of the set P .


We note how the presence of interdependencies among the criteria turns into
the need of either compensations or transfers and that the absence or the inade-
quacy of such compensations or transfers may give rise to the lack of unanimous
approval from the deciders for the project currently under examination (see sec-
tions 4 and 7).
We underline, moreover, how the numerical scale associated to each criterion is
used by the deciders to map their preferences on a total ordering with possible
ties among the projects for every criterion. For these purposes every criterion
is considered as an independent dimension so that, in many cases, such scales
can be, at least in part, arbitrarily defined by the deciders (but under the con-
straints posed by the normative in force for the current problem).
From these features we have that every pi ∈ P is associated to a point


xi = (xi1, . . . , xic) ∈ R
c (1)


with xij ∈ R for j ∈ [1, c]. By using these points we can characterize the projects
through Pareto criteria as either Pareto dominated or Pareto equivalent


(see section 5): those of the former type can be safely discarded (since for each
of them there is surely a project with better or not worse properties) whereas
those of the latter type are considered incomparable so that can be seen as
equivalent.


4 The proposed procedure


The iterative procedure that represents the core of the present technical
report consists of the following high level steps (whose details will be provided
in the next sections of this technical report):


(1) evaluation of the projects of the set P ;


(2) identification of the set Pd of the Pareto dominated and of the set Pe of
the Pareto equivalent projects;


(3) selection and removal of a project pi from the set Pe;


(4) sharing of the project pi’s shareable features among the deciders of the set
E;


(5) request for approval from the deciders;
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(6) if all the deciders approve the sharing then the procedure is over with a
success and pi is the selected project;


(7) if at least one decider opposes to the sharing then the project pi must be,
at least temporarily, shelved;


(8) if the set Pe is not empty the procedure recovers from step (3) otherwise
it would end with a failure;


(9) in order to avoid this failure the deciders can either perform a recovery of
at least one of the temporarily shelved projects or repeat the evaluation
of the projects;


(10) in the former case the procedure enters in a recovery step that will be
described in detail in section 9;


(11) in the latter case the procedure is repeated from step (1).


As it should be evident from its description the procedure is iterative over the
set P of the projects. The iteration points are represented by:


- step (8) that can give rise to at the most |Pe| iterations;


- step (11) that is meaningful only if Pe is varied (also considering the
subset relation) with respect to the preceding realizations of the same set
so that, since |P | is finite, the procedure can be repeated in this way a
finite number of times.


The key points of the procedure are steps (5) and (10) since the presence of the
latter step as a common knowledge among the deciders can cause the adoption
of strategic behaviors at the former step. With this we mean that a decider can
oppose to a project, even if he could be in favor to its selection, simply because
he knowns that that project can be recovered at step (10) with a simple request
and since he wants to examine also the other projects of the set Pe to verify if
there may be a better sharing for him.


5 The structure of the rest of the technical re-


port


Now that the basic elements have been introduced the technical report con-
tinues with a discussion of the Pareto criteria and with a detailed description of
the key steps of the proposed procedure. Then it describes in greater detail two
of such steps (or the sharing and recovery steps) before presenting a discussion
of the main properties that are satisfied by the proposed approach. The tech-
nical report ends with a section devoted to the analysis of the possible use of
different weights for the criteria of the set C followed by a short section devoted
to a conclusive discussion and to the presentation of future activities within this
research activity.
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6 About Pareto criteria


The key point is the definition of the sets Pd and Pe respectively of the
Pareto dominated and Pareto equivalent projects ([19, 3, 4]) according to
the criteria of the set C.
For our purposes a project pi ∈ P can be either Pareto dominated or Pareto
equivalent to some other project so that, if we are able to determine if a project
is not Pareto dominated, we can assign it to the set Pe.
Given a project pi ∈ P we say that it is Pareto dominated if and only if there
exists at least one project ph ∈ P such that:


ph �j pi ∀ cj ∈ C (2)


In relation (2) with �j we denote a strict preference binary relation endowed
with classical properties ([20]). In this way we speak of a strict dominance.
We can relax such definition and define a weak dominance binary relation
so that ph weakly dominates pi if and only if we have, using a classical weak
preference binary relation ([20]):


ph �j pi (3)


for all the cj ∈ C but at least for one criterion where we have a strict preference.
In both cases an either strictly or weakly dominated project belongs to the set
Pd of the Pareto dominated projects.
It is easily seen how:


- if pi ∈ Pd then there is at least one dominating project;


- there may be projects that are neither dominated nor dominating and
therefore belong to the set Pe.


The set Pe can be iteratively derived from the set P through a simple iterative
procedure that runs in p = |P | steps and has the following structure:


(0) we define Pe = ∅ and set an index i = 1;


(1) we extract pi from P (so4 P = P \{pi}), insert it in Pe (so Pe = Pe∪{pi})
and update i as i = i+ 1;


(2) we extract pi ∈ P so that we have the following possible cases:


(2a) pi is dominated by at least one of the projects that have already been
inserted in Pe so we can discard it,


(2b) if pi is not dominated we insert it in Pe (so Pe = Pe ∪ {pi}) and
remove from such a set all the projects that are dominated by the
current pi (so Pe = Pe \ Pdi


if with Pdi
we denote the set of the


projects to be removed from Pe owing to their being dominated);


4We note how expressions like a = a ⊕ b, where ⊕ denotes a binary operation, must be
read as assignment operations meaning that a assumes the old value modified in some way
with the current value of b.
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(3) we update i as i = i + 1 so that if i ≤ p the procedure is repeated from
step (2) otherwise it is over so that it produces, as its output, the set Pe


of the Pareto equivalent projects.


We note how the foregoing procedure assumes that the projects of the set P
have been numbered in some way from p1 to pp, an easy task, indeed. It is easy
to see why step (1) is always feasible from step (0).
At this point we have to fully characterize the binary relations �j and �j ([20])
for every cj ∈ C. In order to make this characterization we recall how every cj
allows the assignment of a real value xij to every project pi so that we have the
following cases:


pi �j ph if and only if xij > xhj so that cj represents a benefit or a
property where the higher is the better;


pi �j ph if and only if xij < xhj so that cj represents a cost or a property
where the lower is the better.


This for the strict dominance. We can easily characterize also the weak domi-
nance if we properly replace �j with �j, > with ≥ and < with ≤.
In order to make some more comments and give concreteness to our arguments
we consider a toy example where we have:


C = {c1, c2}


P = {p1, p2, p3, p4}


According to the proposed procedure we start with considering p1 to which we
associate the vector x1 = (x11, x12) so that we may have the following cases:


- if both c1 and c2 represent benefits we have that the projects pj such that
xj1 < x11 and xj2 < x12 are in Pd;


- if both c1 and c2 represent costs we have that the projects such that
xj1 > x11 and xj2 > x12 are in Pd;


- if c1 represents a benefit and c2 represents a cost we have that the projects
pj such that xj1 < x11 and xj2 > x12 are in Pd;


- dual considerations hold if c1 is a cost and c2 is a benefit.


According to our procedure we put p1 in Pe and consider its relations of dom-
inance with the other three projects of the set P . With this we mean that we
compare p2 with the projects that are present in Pe and update this set accord-
ingly then we go on with p3 and end with p4.
When we are over we have defined the set Pe of the Pareto equivalent projects
for this case. With this we mean that, for instance:


(a) if p1 dominates all the other projects we then have Pe = {p1},


(b) if p1 is dominated by p2 that dominates also p3 but not p4 we have Pe =
{p2, p4}.
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We note how in case (a) we discard all the other three projects since they are
dominated by p1 whereas in case (b) we start with Pe = {p1} then we switch
to Pe = {p2} to end with Pe = {p2, p4}. Similar considerations hold also if we
properly consider the weak relations ≥ and ≤.


7 The procedure in detail


In this section we describe in detail some of the steps that we only listed
in section 4 within the general procedure whereas we devote section 8 to a
discussion of the sharing step and section 9 to a discussion of the recovery


step.
We start with the evaluation step (or step (1)) where each project pi ∈ P is
associated to a vector xi ∈ R


c. This step must be necessarily carried out by the
deciders before they can identify the set Pe of the Pareto equivalent projects
from the set P of the competing projects.
In order to accomplish this task we have that:


- every decider ek ∈ E, privately and independently from the others, pro-
duces an evaluation matrix Xk of p rows and c columns such that


Xk = {xij}i∈[1,p],j∈[1,c] (4)


contains, for a given decider, his evaluations xij of every project pi ac-
cording to every criterion cj ;


- the e matrices Xk are merged, through a mechanical procedure, into a
single global matrix X ;


- this matrix is used by the deciders to define the set Pe as we have seen in
section 6.


As it is easily seen the rows of the matrix X are the vectors xi that we have
already introduced in section 3 whereas its columns define how each criterion
ranks the different projects.
The deciders define their matricesXk using the set C that is common knowledge
among them ([14, 16]) and possibly after that also the main features of the
projects of the set P have become common knowledge.
The merging of the matrices Xk into X is performed as follows:


- if cj is a cost we have xij = mink∈[1,e]x
k
ij for i ∈ [1, p] with j ∈ [1, c];


- if cj is a benefit we have xij = maxk∈[1,e]x
k
ij for i ∈ [1, p] with j ∈ [1, c].


These rules are an ex-ante common knowledge among the deciders. In this way
we encourage the revelation from every decider of his true evaluations of the
benefits and the costs associated to every project. Such rules, indeed, tend
to discourage the adoption of strategic evaluations that, anyway, could be
filtered by the deciders in the sharing and unanimous approval steps. We say
that an evaluation is strategic if:
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(s1) it assigns high costs and low benefits to a project in order to discredit it;


(s2) it assigns low costs and high benefits to a project in order to favor it.


We note that the assignment of either low costs and benefits or of high costs
and benefits, although it may be insincere, is not classified as strategic since it
is both more realistic and less damaging for the selection procedure as a whole.
As it is evident evaluations of the (s1) type tend to be filtered out by our merging
rule that, on the other hand, tends to amplify the effect of evaluations of the
(s2) type. On the ground of this we have that if some of the deciders adopt
strategic evaluations they contribute to the definition of an unrealistic global
matrix X so that when one of the affected projects is evaluated in the sharing
and request for unanimous approval steps it may be rejected since, depending
on the case:


- some deciders feel that they suffer too high costs as compared to the
benefits they get;


- some deciders are thought to get too high benefits and to suffer too low
costs.


The outcome of step (1) is the matrix X that, at step (2), allows the deciders
to identify, as we have seen in section 6, the set Pe from which they select (and
remove) one project at a time (step (3)).
Once the sharing step (step (4), see section 8) has been executed the procedure
goes on with a request for approval (step (5)) for the project currently under
examination.
At this step there is a call for unanimity or for an unanimous approval so that
every decider can act as a temporary veto player ([14]) so to cause the shelving
of a project since the outcome of the sharing step is believed to be unfair by at
least one decider.
The other meaningful steps are step (10) and step (11): at the former we have
a recovery (see section 9) whereas at the latter we have a reevaluation. We
note how the recovery step is a way to avoid boycotting from the temporary
veto players.
A recovery is possible if at least one decider asks for it otherwise the procedure
can go on with a reevaluation of the projects and so can be repeated from step
(1).
If, however, after a new execution of the steps (1) and (2), the set Pe is un-
changed (by comparing it, also as a subset, with any of the previously deter-
mined Pe sets) the procedure must be aborted with a failure. This interruption
is a consequence of the fact that no decider requested a recovery (and so none
of them thought a project from Pe as worth being reconsidered) and that a new
definition of the matrix X produced a set Pe of Pareto equivalent projects that
coincides with or is a subset of one of the sets that have already been examined
without success in one of the preceding iterations. We underline how the execu-
tion of a recovery step prevents the deciders from performing any reevaluation
of the projects.
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From these facts and from the fact that the set P has a finite cardinality we
derive, as we already noted in section 4, that the procedure cannot last forever.


8 The sharing step


Every project pi ∈ Pe is associated to its vector xi (as defined by relation
(1)). The elements xij (with j ∈ [1, c]) of this vector belongs either to shareable
features or to non shareable features.
In the former category we have, for instance, implementation costs, functioning
costs, maintenance costs, economic benefits, labor related benefits, savings re-
lated benefits, all measured according to cardinal scales ([20]).
In the latter category we have, for instance, the degree of compliance to some
norms or the measure of the environmental impact through either positive or
negative externalities, both possibly measured over ordinal scales ([20]).
From this we derive that we can decompose the vector xi in the two sub vectors
of the shareable and the non shareable features as follows:


xi = (xis , xins
) (5)


The sharing step involves, therefore, only the elements of the sub-vector xis and
is executed through a method called last modifier ([9, 10]).
We note that the elements of the sub-vector xins


do not enter the the sharing
step but can be considered by the deciders:


- when they have either to approve or to reject the outcome of a sharing
step;


- when they have to ask for a recovery step so to recover the preferred
projects according to such values.


This method has been inspired by a method called last diminisher ([3]) that,
in case of a divisible good, works as follows. Given a good to be shared among a
set of partners A,B,C . . . we have that A cuts a portion of the good for himself
and the others can (but are not obliged to) reduce such portion (if they judge
it is too big). If none of the others reduces the portion then A gets it and exits
the game. If some of them reduces it then the last one who reduces the portion
must take it and exit the game. The procedure is repeated until all the partners
receive their own share of the good (with the last two partners that can use a
simple divide and choose procedure as it is shown in [3]).
Although simple, elegant and attracting this procedure only guarantees pro-


portionality5 but fails envy-freeness6 since every partner but the last two


5We recall that an allocation procedure satisfies proportionality ([3, 4]) if each of n players
thinks to have received a portion that has size or value of at least 1/n of the total size or
value.


6We recall that an allocation procedure satisfies envy-freeness ([3, 4]) if each of n players
thinks to have received a portion that is at least tied for the largest or for the most valuable
and so does not envy any other player.
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partners can envy a portion that another partner receives at a later stage. The
procedure neither ex-ante guarantees Pareto efficiency7 so that this property
can be verified only ex-post and, if it is failed, can hardly be recovered through
bilateral exchanges without violating either proportionality or envy-freeness or
both.
The last modifier procedure, on the ground of the last diminisher procedure,
works as follows:


(1) a decider ek is selected at random from the set E;


(2) this decider proposes for himself a vector xk
is


from xis so that it contains
some fractions of the shareable items;


(3) if no other decider opposes to the proposal then:


(3a) ek gets xk
is


and exits, at least temporarily, the sharing game8,


(3b) xis is properly updated by subtracting, component by component,
the elements of xk


is
,


(3c) the set E is updated by removing this ek from it;


(4) if at least one decider opposes the proposal then the opposers, in succes-
sion, modify it in some way but only once for each decider that, at that
moment, is still in the set E;


(5) let us assume that ej is the last modifier and that the product of his
modifications is the vector x̃k


is
so that:


(5a) if ek accepts x̃k
is
then, with some obvious modifications, the procedure


goes on as at the step (3),


(5b) if ek refuses x̃k
is


then ej must accept it so that, with some obvious
modifications, the procedure goes on as at the step (3);


(6) if the set E contains at least two elements and there are features to be
shared in the vector xis then this sharing procedure restarts from the step
(1);


(7) if the set E contains only one element and there are features to be shared
in the vector xis then such features are allocated to that decider;


(8) if the set E is empty but there are residual features to be shared in the
vector xis then this sharing procedure is repeated from scratch on this
vector of residuals;


7An allocation procedure is Pareto efficient ([3, 4]) if there is no other allocation where a
player is strictly better off and none of the other players is worse off.


8A player can reenter the sharing game in the following cases: if a recovery is requested, if
a reevaluation is executed or in other cases that are going to be discussed shortly. In any case
any player is going to reenter the sharing game on a different project if the current project
fails to get unanimous approval.
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(9) the last case where the set E is not empty but xis = 0 or there are
no more features to be shared among the set of the yet to be involved
deciders (the so called leftover deciders of the set Elo) is dealt with in the
next paragraphs.


If the case that we mentioned at step (9) occurs the deciders of the set Elo (that
have been excluded up to this point from the sharing) can declare to be either
satisfied or unsatisfied with the outcome, possibly by using also the elements of
the vector xins


to evaluate the fairness of the current outcome.
If all the leftover deciders of the set Elo declare to be satisfied then the sharing
step is over otherwise, if at least one of them declares to be unsatisfied, the
procedure is closed with the following steps that implement step (9) above:


(9a) the unsatisfied deciders of the set Elo can try to arrange local agreements
with the deciders that got fractions of benefits and costs for the local
sharing of such benefits and costs ([18]);


(9b) if such negotiations succeed, so that their outcomes can be made common
knowledge among all the deciders, the sharing step is over;


(9c) if such negotiations fail the procedure is repeated from scratch from step
(1) on condition that it has not yet been repeated for the same set Elo of
deciders since, in this case, it ends with the acceptance of the currently
defined allocations.


The presence of step (9c) aims both at encouraging the success of the local
negotiations and at discouraging any possible actions of boycotting.
We note how the arising of a dissatisfaction, although it may seem strange, is
motivated by the desire from [some of] the deciders of the set Elo either to
receive compensations (on the ground of the values of the parameters of the sub
vector xins


) or to participate in the sharing of the benefits even at the expense
of sharing also some of the costs.
When the sharing step (step (4) of the procedure of section 4) is over, every
decider ek ∈ E has got his vector of shares xk


is
for the project pi ∈ P so that


the deciders can go to the request for unanimous approval step (or step (5)
of the procedure of section 4).
If there is an unanimous approval (step (6) of the procedure of section 4) then
the procedure ends with success otherwise the last diminisher procedure may
be repeated, if it is possible, on another project of the set Pe, as we have seen
in section 4.


9 The recovery step


As we have seen in section 7 the recovery step is possible if and only if at
least one decider asks for it. We note that every decider that is willing to ask
for the execution of a recovery step can propose one and only one project pi
from the set Pe as worth being reexamined according to him. By imposing this


13







limit of one project for each decider we enforce the selection from the deciders
of the best project (for each of them) from the set Pe.
In this way the deciders define the set P r


e of the recovered Pareto equivalent
projects. This set is defined without any negotiation through individual deci-
sions that are taken privately and revealed all at the same time. We have two
cases:


(1) |P r
e | = 1


(2) |P r
e | > 1


In the (1) case the deciders recovered only one project that undergoes again the
sharing step and the request for unanimous approval step. If the project gets an
unanimous approval it is selected with the associated sharing of the shareable
benefits and costs among the deciders otherwise the whole procedure ends with
a failure.
In the (2) case the deciders can order the projects by using the Borda9 method
([11, 21, 22, 15, 7]).
In this case the Borda method allows the definition of a total ordering with
possible ties among the elements of the set P r


e ⊆ Pe. With this we mean that:


- the set P r
e is partitioned in a certain number h ≤ |P r


e | of disjoint subsets
P r
ei


(with i ∈ [1, h]);


- every subset is associated to a Borda score bi and the Borda scores are
assumed to be ordered as


b1 > b2 > · · · > bh (6)


The projects are examined according to the foregoing ordering and so starting
from those of P r


e1
to end with those of P r


eh
.


For every project of each subset the deciders:


- define the sharing of its benefits and costs according to what we have seen
in section 8;


- answer to a request for unanimous approval.


If, at any step, a project receives unanimous approval it is selected to be im-
plemented otherwise, if this does not occur for any project, the procedure ends
with a failure, this fact being an ex-ante common knowledge among the deciders
together with the partitioning and ordering of the projects of the set P r


e .


9We recall how the Borda method with a set of voters and a set of alternatives is based
on the following mechanism ([1]): every voter ranks the n alternatives from the best to the
worst by assigning n points to the former down to 1 point to the latter so to define a total
ordering without ties among the alternatives. Such orderings are merged by simply summing
the points assigned to each alternative. In this way the alternative with the highest number of
points is the Borda winner. The final ordering can present ties among even all the alternatives
and the tied alternatives can be seen as equivalent, at least according to this scoring method.
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10 The properties of the proposed procedure


Before presenting the properties of the proposed procedure we note how, at
least for some of the deciders or the so called affected deciders, the status
quo represents a problematic situation that involves some costs that they think
justify the selection and the implementation of a solution.
This fact must be taken into consideration when we examine the properties that
are satisfied by the procedure that we presented in section 4.
As we have seen from section 7 to section 9 the procedure can terminate either
with a failure or with a success.
In the failure case the problem remains unsolved so that the affected deciders
(those that are directly affected by the problem) are worse off than in presence
of any solution whereas the other deciders remain in their current situation and
so are surely no worse off. This situation of absence of a solution is decidedly
worse than any other situation in which a solution has been selected ad im-
plemented so that the affected deciders are better off whereas the unaffected
deciders continue to be no worse off with the possibility to be better off.
From this we derive the strong incentives for the deciders to select a solution
among the projects of the set P and implement it.
In the success case a project has been selected by unanimous approval of the
deciders so that every decider ek ∈ E has got his vector of (possibly null) shares
xk
is


associated to the selected project pi ∈ P .
In this case we have to verify which properties are verified by the selected solu-
tion.
In agreement with [3] and [4] we are interested in establishing ways for the iden-
tification of fair allocations of shareable benefits and costs. In [3] and [4] an
allocation is said to be fair if it satisfies the properties of envy-freeness, propor-
tionality, Pareto efficiency and equitability10 (to be defined and specialized to
our context at due time).
In the spirit of [3] and [4] we are primarily interested in envy-freeness and
proportionality (see also footnotes 5 and 7) and to keep satisfied the key re-
lations between these two properties.
Since the acceptance of a project from the deciders occurs by unanimous ap-
proval we can assert that, in this case, envy-freeness is surely satisfied since,
in presence of any envy, the envious deciders would not join the approval.
Similarly to what is done in [3] and [4] we state the definition from the point of
view of the single decider. With this we mean that11:


10In both [3] and [4] equitability is defined only for the case of two players so we need either
to abandon this property as non usable in our context or to adapt it to our context where we
usually have more than two deciders. In this technical report, as we show in the closing part
of the present section, we decided to adopt the second approach.


11We underline how the value bki
is obtained by ek as a proxy measure of the benefits that


he derives from xk
is


as filtered through his individual values system whereas cki
is similarly


obtained from the costs. On the other hand bi and ci represent similar quantities that ek
attributes to the deciders as a whole.


15







- if bki
is the benefit that ek thinks to get from pi to which he assign a


global benefit equal to bi (to be shared among all the members of E),


- if cki
is the cost that ek thinks to get from pi to which he assign a global


cost equal to ci (to be shared among all the members of E)


then an allocation of benefits and costs satisfies envy-freeness for the decider
ek if and only if the following inequalities hold for every j ∈ [1, e]:


bki
≥ bji (7)


cki
≤ cji (8)


In relation (7) bji is the benefit that, according to ek, is obtained by ej from pi
whereas, in relation (8), cji is the corresponding cost.
We note how:


- if relations (7) and (8) are satisfied for all the deciders ek ∈ E then the
allocation is envy-free and the associated project gains the unanimous
approval;


- if a project gains unanimous approval this means the absence of any en-
vious decider and so that relations (7) and (8) are satisfied for all the
deciders ek ∈ E.


In this way we justify the assertion that we have made before. After envy-
freeness we define proportionality in our context. We state that an allocation
of benefits and costs satisfies proportionality for the decider ek if and only if
the following inequalities hold:


bki


bi
≥


1


e
(9)


cki


ci
≤


1


e
(10)


or, equivalently:


bki
≥


bi
e


(11)


cki
≤


ci
e


(12)


with e = |E|.
At this point, according to [3] and [4], we have to verify the relations that exist
between envy-freeness and proportionality so to keep the fact that the former
implies the second but the converse is true only for the case of two deciders.
In order to verify the direct implication we can start from relations (7) and (8)
and sum over the set [1, e] so to get12:


ebki
≥


e∑


j=1


bji = bi (13)


12We note how the values bji are attributed by ek to the other deciders so that they are
numerical values on the same cardinal scale and can summed up without any problem. The
same holds also for the values cji .
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ecki
≤


e∑


j=1


cji = ci (14)


from where we derive easily both relations (11) and (12) and, hence, both rela-
tions (9) and (10). In this way, having assumed that the devised solution verifies
envy-freeness from its having gained unanimous approval, we have that it also
verifies proportionality.
We note how the converse, in general, is not true. From relation (11), for in-
stance, we cannot be sure to derive relation (7) for every j ∈ [1, e] and the same
holds also for relations (12) and (8).
We can easily justify this fact for the former pair of relations with the following
argument that works similarly for the latter pair. If we have:


bki
≥


bi
e


(15)


with bi =
∑e


j=1 bji we can have values bji > bki
so violating the definition of


envy-freeness since, in those cases, ek would envy ej .
If however e = 2 we have, from the definition of proportionality:


bk1
≥


bi
2


(16)


ck1
≤


ci
2


(17)


so that e1 cannot envy the other decider e2 (and vice versa e2 cannot envy e1
if the allocation is proportional also for the second decider). In this way, as it
is obtained also in [3] and [4], we have seen how proportionality implies envy-
freeness for the case of two deciders.
At this point we have verified that, from two plausible definitions of envy-
freeness and proportionality, if the unanimous approval requirement is satisfied
we have envy-freeness and, as a consequence, also proportionality.
The last two properties we are interested in arePareto efficiency and, possibly,
equitability.
For what concerns Pareto efficiency we can verify it as an ex-post property
either on the vector xis or on the values (such as bki


, cki
, bi and ci) that we


have used for the definition of both envy-freeness and proportionality.
In the former or objective case we proceed as follows. If pi gets unanimous
approval we have the associated vector xis = (xisj)j∈[1,h] (of h ≤ c shareable
benefits and costs) that is shared among the deciders of the set E. In this case
every ek ∈ E gets his own vector xk


is
so that:


xk
is
= (xk


isj
)j∈[1,h] (18)


and:
e∑


k=1


xk
isj


= xisj (19)
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At this point we may note that if xk
isj


corresponds to a benefit ek is better
off if such a value is increased whereas if it is a cost ek is better off if such a
value is decreased. The presence of the constraints represented by relation (19)
implies that to any of such variations for ek there must correspond the opposite
variations for at least another decider eh that, consequently, would be worse
off. From such considerations we derive how the resulting allocation is Pareto
efficient in this objective sense.
In the latter or subjective case we have that every decider ek assigns to the
project pi that gets unanimous approval the values bki


, bi, cki
, ci with the


following constraints:


bi =


e∑


j=1


bji (20)


ci =


e∑


j=1


cji (21)


so that if ek claims either higher benefits or lower costs for himself (so to be
better off) there is for sure at least another decider who suffers the opposite
variations and so is worse off. From these considerations we derive how the
allocation associated to pi satisfies Pareto efficiency also in this subjective sense.
Now we have to say something about equitability. In [3] and [4] for two players
A and B an allocation is equitable if A thinks that the portion he got is worth
the same, in his valuation, as the portion that B got, in B’s valuation.
The key points of equitability are therefore the following13:


- the property can be verified only as an ex-post condition;


- it is based on publicly revealed values expressed on a common scale and
not on subjective valuations.


In order to follow the same guidelines we modified the definition of equality so
that it measures, for each decider, the total balance between the wins and the
losses that he gets in pairwise comparisons with the other deciders on every
single shareable feature. In this way we say that an allocation is equitable if no
decider gets more losses than wins.
Before showing how this seemingly vague definition can be applied to our context
we recall that:


- to the selected project pi there corresponds a global vector xis and, for
each decider, an individual vector xk


is
;


- the global vector contains the scalar values xisj whereas the individual
vectors contain the scalar values xk


isj
so that relation (19) holds.


13We follow the indications of [3] and [4]. Especially of [4] where a method called AW or
Adjusted Winner is defined and fully discussed.
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At this point we consider a decider ek and perform a comparison between xk
is


and xl
is


for every other decider el with l 6= k. Such comparison is performed by


confronting xk
isj


with xl
isj


for every j ∈ [1, h] with h = |xis |.
We have that:


- j may correspond to a benefit so that if xk
isj


≥ xl
isj


this counts as 1
otherwise it counts as −1;


- j may correspond to a cost so that if xk
isj


≤ xl
isj


this counts as 1 otherwise
it counts as −1.


Now for a given j we sum the 1s (that correspond to wins) and the −1s (that
correspond to losses) so to get an integer in the range [−(e− 1), (e− 1)] that is
assigned to the j-th element of the vector vk (of h elements) of the valuations
that we associate to every decider ek. As the last step we sum all the components
of every vector vk so to get, for each of them, a single value sk ∈ [−h(e−i), h(e−
1)] as a cumulative value, one for each decider, in the spirit of AW (see footnote
13).
The values sk, as a last step, can be used to evaluate the equitability of the
allocations associated to the selected project pi as follows:


- if for every ek we have sk = 0 (and so we have a perfect balance of wins
and losses) we can state that the allocation satisfies equitability;


- if for every ek we have sk ≥ 0 and there are some deciders ej ∈ Ê ⊆ E
for which we have sj > 0 we can state that the allocation still satisfies
equitability;


- if we have at least one decider ek such that sk < 0 we can state that the
allocation fails equitability.


Summing up we have that if a project pi ∈ P gets unanimous approval then
we are sure that the associated allocation xis of shareable benefits and costs
among the deciders satisfies envy-freeness (and therefore proportionality)
and Pareto efficiency without any guarantee that it satisfies also equitabil-


ity. On the ground of [3] and [4] the last fact prevents us from declaring that
the allocation is surely fair although we think that the lack of a guarantee of
equitability is a minor problem, at least within our context.
The key point, indeed, is the fact that there is no guarantee that at least one
pi ∈ P gets unanimous approval from the deciders. In the literature that we
have cited so far (but see also [24, 12, 23, 5]) the conditions under which a divi-
sion is effectively carried out are given for granted and satisfied14. In our case
the situation is quite different since the effective execution of a sharing (and so
of a division) requires the satisfaction of the necessary step of the unanimous


14For instance in the case of the cake cutting algorithms there is no discussion about the
conditions that make the division a necessary step but similar considerations hold in most of
the cases, if not in all. With this we mean that the division is a given and has no prerequisite
to be satisfied but, for instance, the presence of the cake.
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approval.
The only guarantee that we have that this step is satisfied is that:


- the presence of a common problem gives strong incentives to the deciders
in order to have them reach the necessary unanimous approval on at least
one of the projects pi ∈ P ;


- the wider is the set of the deciders that are affected by a problem in
relation to the whole set of the deciders the higher is the probability that
the deciders reach the necessary unanimous approval;


- the same holds the more serious and impacting the common problem is.


11 The use of different weights for the criteria


In section 3 we have assumed that the criteria of the set C have the same
weight or importance. In this way the criteria give the same contribution to the
evaluation of the projects and so to the definition of the set Pe.
There may be cases, however, where either the normative context or the political
will of the deciders impose, possibly through a negotiated agreement among the
deciders ([18]), a differentiation of the weights to be associated to the criteria.
In this case to each criterion cj we associate a weight wj such that:


(1) wj > 0 for each j ∈ [1, c]


(2)
∑c


j=1 wj = 1


The key point is represented, however, by the the presence of distinct values
for the weights instead of their effective values. Such distinct values allow us to
partition the set C in a certain number of disjoint subsets Cj of criteria with
the same value of the associated weight. If we suppose to have k ≤ c distinct
weights w̃j we may assume that they are ordered as:


w̃1 > w̃2 > · · · > w̃k (22)


where each value w̃j identifies a subset Cj ⊆ C.
In this case the procedure that we have presented in section 4 must be modified
in order to account for the presence of disjoint subsets Cj of criteria with de-
creasing importances w̃j (with j ∈ [1, k]) where the criteria of the set C1 have
the highest importance and those of the set Ck have the lowest importance.
For this purpose we note that:


- the first two steps are modified since the deciders firstly associate to every
project pi ∈ P a vector x1


i ∈ R
|C1| by using the criteria of the set C1;


- by using such a vector the deciders filter the set P so to obtain the set
Pe1 ;
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- then the deciders use the criteria of the set C2 and associate to every
project pi ∈ Pe1 a vector x2


i ∈ R
|C2| in order to filter the set Pe1 and


obtain the new set Pe2 ;


- this procedure goes on until the deciders


· either determine, at some step i, a set Pei such that |Pei | = 1


· or use all the sets Cj with j ∈ [1, k] and determine the final set Pek .


- in both cases the final set of Pareto equivalent projects represents the set
Pe that is used from the step labeled as (3) on (see section 4).


In addition to such modifications we note that if the procedure of section 4 jumps
back from step (11) to step (1) the deciders have the possibility to modify also
the weights of the criteria of the set C in order to produce a different set Pe on
which to repeat iteratively the steps from (3) to (8).
As a last point we must consider if the recovery step must be modified or not.
Since the recovery step define a subset of Pe as containing the projects that,
according to the deciders, are worth being reexamined it should be evident how
the procedure that we have seen in section 9 can remain unchanged.
As a last step we can show how the use of different weights for the criteria works
in the case of our toy example as compared to the use of equal weights.
We recall how in our toy example we assumed to have:


C = {c1, c2}


P = {p1, p2, p3, p4}


We may have that:


c1 represents the implementation costs of a project and has a weight w1 =
2/3,


c2 represents the functioning costs of a project and has a weight w2 = 1/3.


In this scenario the deciders are more focused on the short term whereas, in the
opposite case of w1 = 1/3 and w2 = 2/3, they would be more focused on the
long term.
If, as the second step of the procedure that we saw in section 4, we filter the
projects of P with c1 we are interested in the values xj1 with j ∈ [1, 4]. In this
way we can get, for instance, Pe1 = {p1, p3} since we have x11 = x31 < x21 ≤
x41. By so doing we are going to not consider any more the projects p2 and p4.
If we filter the projects of Pe1 with c2 we are interested in the values xj2 so that,
if we have x32 < x12 we end up with Pe2 = {p3} so that p3 is the only Pareto
equivalent project in this case.
If, on the other hand, we assume equal weights for the criteria of C we have
that both p2 and p4 are to be included in Pe if we have x22 < x42 < x32 whereas
p1 would be strongly dominated by p3 and so it would be discarded also in this
case.
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12 Conclusions and future plans


In this technical report we have presented a procedure for the ranking and
selection of a project from a set P of projects through the use of the criteria of the
set C that may have either equal or different weights and through the application
of concepts of Pareto dominance and Pareto equivalence or indifference. The
use of such concepts allows the iterative definition of the set Pe of the Pareto
equivalent projects from the set P of the projects that the deciders have to
analyze and rank.
The procedure has been presented, examined in details and its properties have
been stated, justified and verified.
Future plans include the definition and implementation of a dynamic setting
(see section 1) as well as a more strict formalization of the alleged properties of
the proposed procedure and its application to more complex and more realistic
examples.
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