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Abstract

In many emerging applications, such as real-time traffic monitoring, financial
analysis, sensor network monitoring an important task is the continuos monitoring
of stream data. In these contexts where large amount of data arrive continually
the data processing requires to access often valuable personal information. As a
consequence, the entire monitoring process could put at risk the privacy of peo-
ple represented in the stream data. In this paper, we study the privacy issues in
distributed systems during the monitoring of thresholds functions, where several
nodes contribute with their data to the monitoring of a specific event. We provide
a privacy-preserving framework suitable to find an acceptable trade-off among pri-
vacy protection, data quality and system performance. Using real-life data from
GPS devices of private cars, we demonstrate the effectiveness of our approach in a
case study consisting of the monitoring of customers mobility behaviors; in other
words, we show how techniques for efficient communication can be used while
preserving the individual privacy of the actors who are participating to the collec-
tive analysis.

1 Introduction
In the last years, many new emerging applications require sophisticated, real-time pro-
cessing and monitoring of high-volume data streams. These stream-based applications
include real-time financial analysis, network and infrastructure monitoring, fraud de-
tection, mobility traffic monitoring and command and control in military environments.
All these applications require an important task: the continuos monitoring of stream
data. In the last years, many study in the literature have been addressed the problem
of monitoring queries in distributed systems [25, 26, 7, 20, 30], where massive amount
of data arrive continually and the data processing requires to access often valuable per-
sonal information. As a consequence the entire monitoring process could put at risk
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the privacy of people represented in the stream data. Especially, in cases in which the
data streams describe some individual activity, revealing some behavior and habit.

In this paper, we study the privacy issues in distributed systems during the monitor-
ing of thresholds functions. We refer to the monitoring model presented in [30] and we
provide a privacy-preserving approach suitable for this kind of systems. In particular,
we assume a framework where some there are geographically dispersed sites called
nodes and a central station called coordinator. The communication is only allowed
between every site and the coordinator.

Assuring privacy protection in this kind of systems is challenging. Many privacy
models proposed in literature are inapplicable due to the absence of communications
among the nodes and because the communication is always point-to-point with the
coordinator that is supposed to be untrusted. Moreover, addressing privacy issues also
means finding an acceptable trade-off between privacy protection and data quality;
in this specific context the goal is harder because we need to consider an additional
requirement the system performance; in other words, in distributed monitoring systems
it is important to preserve efficiency as well as privacy.

In this paper we propose a solution based on the well-know additive randomiza-
tion [2, 6] that is suitable to guarantee privacy at collection time without requiring
any trusted entity for the data collection. We exploit some results in the literature
[18, 19] to bound the possible reconstruction of the perturbed data by an adversary.
We test the proposed privacy-preserving framework in a real-world application for the
monitoring of customers mobility behaviors in the context of car insurances. In our
experiments on real world data coming from GPS devices of private cars, we show that
our privacy-preserving framework provides acceptable results in terms of amounts of
communications, privacy protection and quality of the global function to be monitored.

The proposed solution is perfectly compatible with the change of perspective to-
wards a user-centric model for personal data management highlighted by the reform of
the data protection rules proposed on January 25, 2012 by the EC and the last report of
the World Economic Forum [14]. One possible way to achieve a user-centric paradigm
is to enable individuals to have the full control for the user on the lifecycle of his per-
sonal data (e.g., collection, storage, processing, sharing). Thus, the user has to have an
active role into a righteous and fruitful ecosystem based on personal data. Moreover,
the user has to have the right to dispose or distribute his data for receiving the desired
service with the desired privacy level that reflects the his privacy expectation. This is
exactly the basic idea behind our framework.

The remaining of the paper is organized as follows. Section 2 introduces some
background information. Section 3 provides the details of the distributed monitoring
of threshold functions we refer to. Section 4 describes the privacy model and states
the problem that we want to address. In Section 5 we present the details of or privacy-
preserving solution. Section 6 discusses the correctness of the privacy-preserving mon-
itoring process. Section 8 describes the details of the monitoring of the clustering qual-
ity where we want to apply our privacy-preserving method. In Section 9 we introduce
the application scenario where we test our method and we show our empirical results.
In Section 10 we discuss some work proposed in the literature. Finally, Section 11
concludes the report.
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2 Preliminaries
In this section we introduce some notions that are important for better understanding
the proposed privacy-preserving scheme.

2.1 Additive Randomization
Randomization methods are used to modify data with the aim of preserving the privacy
of sensitive information. They were traditionally used for statistical disclosure con-
trol [1] and later have been extended to the privacy-preserving data mining problem
[5]. Randomization based approaches use a noise quantity in order to perturb data.
The algorithms belonging to this group of techniques first of all modify the data by
using randomization techniques. Then, from the perturbed data it is still possible to
extract patterns and models. The most famous random perturbation technique is called
additive random perturbation This method can be described as follows. Denote by
U = {u1 . . . um} with m records and n attributes, the original dataset. The new dis-
torted dataset, denoted by Ũ = {ũ1 . . . ũm}, is obtained drawing independently from a
certain probability distribution a noise quantity zi and adding it to each record ui ∈ U .
The set of noise components is denoted by Z = {z1, . . . , zm}. Most commonly used
distributions are the uniform distribution over an interval [−α, α] and Gaussian distri-
bution with mean µ = 0 and standard deviation σ. The original record values cannot be
easily guessed from the distorted data as the variance of the noise is assumed enough
large. Instead, the distribution of the dataset can be easily recovered. Indeed, if U is the
random variable representing the data distribution for the original dataset, Z is the ran-
dom variable denoting the noise distribution, and Ũ is the random variable describing
the perturbed dataset, we have:

Ũ = U + Z
U = Ũ − Z.

Notice that, both m instantiations of the probability distribution Ũ and the distribution
Z are known. In particular, the distribution Z is known publicly. Therefore, by using
one of the methods discussed in [5, 3], we can compute a good approximation of the
distribution Ũ , by using a large enough number of values ofm. Then, by subtracting Z
from the approximated distribution of Ũ , we can compute an approximation of U . At
the end of this process individual records are not available, while obtain a distribution
only along individual dimensions describing the behavior of the original dataset U .

2.2 Spectral Filtering Attack
Kargupta et al. in [24] addressed the problem to extract the real data U from the per-
turbed data Ũ by knowing only the noise distribution applied to perturb the data. The
authors in this paper present an attack capable to separate the data from the noise by
using a spectral filtering technique. This attack is based on the observation that the dis-
tribution of eigenvalues of random matrices presents some well-known characteristics
that can be exploited for the data reconstruction.
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In the following we briefly describe the spectral filtering approach. Consider a
noise matrix Z with same dimensions as U . The random value perturbation techniques
generate a perturbed data matrix Ũ = U + Z . The objective of the spectral filtering
based approach is to derive the estimation Û of U from the perturbed data Ũ based on
random matrix theory. An explicit filtering procedure is shown below:

Step 1: Calculate the covariance matrix of Ũ by Ã = ŨT Ũ .

Step 2: Since the covariance matrix is symmetric and positive semi-definite, we
apply spectral decomposition on Ã to get Ã = Q̃ΛQ̃T , where Q̃ is orthogonal
matrix whose column vectors are eigenvectors of Ã, and Λ is the diagonal matrix
with the corresponding eigenvalues on its diagonal.

Step 3: Derive information of the eigenvalues from the covariance matrix of the
noise Z.

Step 4: Extract the first k components of Ã as the principal components by
comparing λ̃i with eigenvalues of the noise. λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃k are the
first k largest eigenvalue of Ã and ẽ1, ẽ2, . . . , ẽk are the corresponding eigen-
vectors. These eigenvectors form an orthonormal basis of a subspace X̃ . Let
X̃ = [ẽ1, ẽ2, . . . , ẽk]. The orthogonal projection onto X̃ is PX̃ = XX̃T .

Step 5: Obtain the estimated data set using Û = ŨPX̃ .

Based on the random matrix theory, we can derive the theoretical bounds of the
eigenvalues corresponding to the noise matrix Z as λZmin = σ2(1 − 1/

√
Q)2 and

λZmax
= σ2(1+1/

√
Q)2, whereQ is linear to the ratio between the number of records

and the number of attributes. As in most data mining applications, the number of
records far exceeds that of attributes (hence Q is large), we can see λZmin

≈ λZmax
≈

σ2 = λZ/(m− 1).

2.3 Error Lower Bound for spectral filtering based reconstruction
methods

Guo et al. in [18, 19] theoretically explore the problem which originates from the
usage of additive noise for privacy preservation and give a bound for the reconstruction
error and the perturbations in terms of matrix norm. This bound can help data owners to
decide how much noise should be added to satisfy a given threshold of tolerated privacy
breach. In other words, they provide an approach for generating the noise matrixZ with
the suitable σ2 value in such a way that a significant differences between Û and U is
introduced and so, a desirable privacy level is guaranteed.

The approach for discovering the lower bound is based on the notion of relative
error that is defines as

re(Û , U) = ‖Û − U‖F /‖U‖F (1)

4



where ‖.‖F denotes the Frobenius norm.
In [18, 19] authors derive a lower bound for the Singular Value Decomposition

(SVD) based reconstruction and show that this bound can be considered valid also for
the spectral filtering method. The SVD based reconstruction method estimates U as

Û = Ũk = L̃kD̃kR̃k =

k∑
i=1

d̃i l̃ir̃i
T

where D̃k is the diagonal matrix the diagonal matrix with k principal singular values
of Ũ and L̃k and R̃k contain the corresponding left and right singular vectors. Based
on this reconstruction of the original data U the reconstruction error between Û and U
is

‖Û − U‖F ≥ ‖Uk − U‖F .

In order to preserve privacy, data owners need to make sure that the relative error
is greater than the privacy threshold τ specified before the perturbation. Therefore, we
need to have

τ‖U‖F ≤ ‖Uk − U‖F = d2k+1 + . . .+ d2k (2)

Here, k which might be chosen by attackers can be determined by

k = max{i|τ ≤ (d2i+1 + + d2n)/‖U‖F } (3)

For i.i.d. noise based on equation (3) we have that di ≥ dZ , and the data owner
should generate Z such that the eigenvalue of (ZTZ) satisfies dk < dZ ≤ dk+1. Since
dZ is the eigenvalue ofZTZ, the variance of the noise can be derived σ2 = dZ/(m−1)
where m is the number of rows in Z.

3 Distributed monitoring of threshold functions
In this paper we consider the monitoring problem described in [30] where the specific
scope is to solve the problem of monitoring the value of a function computed over
data that are distributed in a network. We assume a framework with m geographically
dispersed sites (nodes) and a central coordinator (coordinator) that can communicate
with every site, while pairwise site communication is only allowed via the coordinating
source. Each site receives a stream of data updates and maintains a s-dimensional local
statistics vector vi(t). The coordinator has to assure that at each time instant t the
following condition holds:

f(v(t)) ≤ T (4)

where f is a given function, f : Rs → R, T ∈ R is a threshold and v(t) is the
weighted average of the vi(t) of all sites, i.e. v(t) = (

∑
i wivi(t))/

∑
wi for some

weights wi ≥ 0. While the latter condition is apparently a strong limitation to the
applicability of the framework, it has been shown that several interesting problems can
be reformulated in this way. A way to do this, which will also be used later in this
paper, is a vector augmentation trick, consisting in adding to vectors vi(t) (sent by the
sites to the coordinator) one or more extra components. As an example consider the
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monitoring of the variance of all vi(t), assuming s = 1, i.e. ensure that vari(vi(t)) ≤
T . Clearly, it does not directly fit the form in (4), but we can exploit the well known
property var(X) = avg(X2)−[avg(X)]2 to rewrite our problem as f(v(t)) = v(t)1−
[v(t)2]2. This only requires that each site has to communicates a 2-dimensional vector(
vi(t), vi(t)

2
)
.

In [30] authors propose the so called geometric approach to perform the monitoring
of (4). In the following, we provide some details on that method. All the points in Rs
where (4) is satisfied form the admissible region G, and our objective is simply to
ensure that v(t) ∈ G. The method is based on the following property: the convex
hull of a set {xi}i ⊂ Rs of points is entirely contained in

⋃
iB(xi, e), where e is

any point in Rs and B(xi, e) is the ball having the segment xie as diameter. It is
straightforward to see that our v(t) is contained in the convex hull of the set {vi(t)}i.
Therefore, if every ball B(vi(t), e) is contained in the admissible region (namely, it
is monochromatic), then also v(t) will be, and therefore (4) will be satisfied. Once
the coordinator has communicated to all sites the point e, each site will be able to test
whether its ball B(vi(t), e) is monochromatic. As long as no site detects a failure, we
are guaranteed to satisfy (4), without any need of communicating information to the
coordinator. When a site fails, it notifies the coordinator, who will ask to every site to
send their new vector values, and test condition (4). Notice that the test performed on
each site might cause false alarms (its ball intersects the inadmissible region, while the
overall v(t) is completely inside the admissible one) but not false negatives; in other
words, when condition (4) is violated the system will always capture that. In principle
the point e can be chosen freely, however it is convenient to compute it as e = v(t′),
where t′ is the time of the most recent synchronization, i.e. the phase where every site
communicates its new values to the coordinator. Note that Synchronizations usually
occur during the set-up phase but also any time there is a site rising an alarm.

3.1 Safe Zones for convex inadmissible regions
The geometric method discussed above provides a means to decide locally to the node
which vector values guarantee that the overall function satisfies the global constraint to
monitor. The set of such values is also called safe zone and, since it is only based on
the global function and on the reference point e, all nodes have the same safe zone.

In [26] it is shown that the safe zones built by the geometric method can also be
computed as the intersection of an infinite set of hyperplanes. Yet, it is also shown that
part of them are unnecessary, which makes the safe zones smaller (and thus less effec-
tive) than what strictly needed. A particular case is that where the inadmissible region
(the set of values that violate the global constraint) is convex. In this situation we can
easily find an optimal safe zone in two steps: first, find the point p of the inadmissi-
ble region which is closest to the reference point e; second, draw the hyperplane that
passes through p and is orthogonal to the segment ep, and then, of the two half-spaces
determined by the hyperplane take as safe zone the one that contains e.
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4 Privacy Model
In Section 3 we described the computational model that we refer to and we explained
that each node observes local update streams and verifies that the local constraint on its
stream has not been violated. In case of violation the node has to communicate its value
to the coordinator. In this case we can have serious privacy issues especially when each
node observes information about a single individual, thus the transmitted vector may
contains sensitive information. As an example, in a scenario where the coordinator is
responsible for monitoring functions on mobility data the local vector could describe
the mobility behavior of a person. An attacker accessing the user vector could learn
information such as the typical speed or typical trips.

Moreover, the non-communication from a specific node can reveal sensitive infor-
mation about the state of the node. Finally, when the node has to communicate to the
coordinator means that it is violating a local constraint, and this information itself could
be sensitive. How can we protect this sensitive information? We think that a suitable
method that we can apply in this setting is the additive randomization for perturbing
the data to be sent. Clearly, the data randomization affects also the safe zone inserting
also there an uncertainty.

In our setting, we assume that each node in our system is secure; in other words,
we do not consider attacks at the node level. We also assume that the coordinator is
untrusted. Therefore, we focus on designing privacy-preserving techniques to defend
against an untrusted coordinator. In particular, our goal in this paper is to inscribe
privacy protection in the monitoring system (Section 3) enabling the distributed moni-
toring of global functions while preserving the privacy of each node.

In the following we formally define the problem that we want to address.

Definition 1 Let {n1, n2, . . . , nm} be the m nodes of the system. We want to find a
privacy-preserving technique such that the following requirements are satisfied:

• individual privacy is guaranteed;

• the system performance, in terms of number of communications, is reasonable;

• the correctness and the quality of the global function f to be monitored is not
compromised.

In order to address this problem we propose a method based on the additive random-
ization of each local vector before sending it to the coordinator.

5 Preserving Privacy in Distributed Monitoring
In this section, we present the algorithm for privacy-preserving distributed monitoring.
The basic idea of our approach is to add to the original vector a noise vector where the
components are drawn from a Gaussian distribution with mean 0 and standard deviation
σ. Then, during the whole process for the geometric-based monitoring, described in
Section 3, in the system has to be considered the noisy version of each vector. In
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particular, each node uses the noisy version of the local statistics vector for checking
the local constraint and if there is a violation the node transmits it to the coordinator.
The coordinator averages all these noisy vectors, and checks whether the function of
the global average has crossed the threshold T .

5.1 Setup Phase.
Our proposal considers an initial phase where each node adds to its initial local statis-
tics vector vi(0) a noise vector zi(0) obtaining ṽi(0) and sends it to the coordinator,
that checks that the global vector computed by using the noisy vectors ṽi(t) is within
the admissible region; otherwise a global violation is raised. The coordinator defines
the initial vector e and communicates it to all sites. At this point each site is able to
construct its ball B(ṽi(t), e) with radius r̃i = ‖ṽi(t)−e‖

2 and center is c̃i = ṽi(t)+e
2 . It

is immediate to understand that the addition of the noise vector affects the radius and
the center of the ball and as a consequence the construction of the safe zone; in other
words also the safe zone is randomized.

5.2 Local Monitoring Phase.
After constructing its ball a node monitors the local statistics vector against that safe
zone; in other words, for each time t the node ni adds a noise vector zi to the current
statistics vector vi(t) and tests its local constraints, i.e., checks if the perturbed vector
ṽi(t) is contained in the admissible region (i.e., if the ball B(ṽi(t), e) is monochro-
matic). If no violation occurs, the monitoring cycles simply goes on without any com-
munication and any action from the controller’s side. If, instead, there is some local
violation, the controller has to check whether there is a global violation. In particular,
to verify whether the global threshold T was crossed the coordinator requires a syn-
chronization, i.e., all the nodes have to transmit their perturbed statistics vectors and
then evaluates whether the average of this vector is within the admissible region. In the
case that a global breach is detected the coordinator computes a new estimate vector e
according to the updated statistics vectors sent by the nodes.

6 Correctness of the Monitoring
As already stated above, the randomization of each local statistics vector ṽi(t) implies
the randomization of each ball B(ṽi(t), e). In particular, when we add a noise vector
zi (with components drawn by a Gaussian distribution with mean 0 and standard de-
viation σ) to vi(t) the diameter of the original ball could increase or decrease and the
ball could be also change it position. All these changes can lead to a fake or missing
alarms. The first case is due to the fact the a non-monochromatic ball after the random-
ization could become monochromatic and generate fake violations. In other words, we
could increase the false positive alarms and so, the number of communications with
respect to the communications required by the monitoring without any privacy protec-
tion. The second case represents the opposite situation: a monochromatic ball becomes
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Figure 1: Missing Alarms caused by the randomization

non-monochromatic with the randomization. This means that the node might not com-
municate when really happens a violation of the original constraint. In other words, the
correctness of the system could be compromised because of missing alarms. This case
is represented in Figure 1 where grey area represents the inadmissible zone, the red ball
represents the randomized ball while the other ball is the original one. We can observe
that the construction of the red ball given the perturbed vector leads to a missing alarm.
The same figure in the right side shows what happens in the system in terms of safe
zones. We can note that the original vector lies out of the safe zone while the adding of
noise moves the vector within the safe zone generating the missing alarm.

In the following we give the correctness guarantees of the privacy-preserving mon-
itoring. In particular, we provide a probabilistic guarantee about missing alarms.

Given a vector ṽi(t), we know that it is the result of adding noise to each original
component drawn by a Gaussian distribution with mean 0 and standard deviation σ.
Fixed a probability 1 − δ, we want to find the minimum radius such that the original
vector vi(t) is one of the points in the area covered by the sphere (in s dimensions)
with center ṽi(t) and a specific radius rl; in other words, ||zi|| = ||vi(t)− ṽi(t)|| ≤ rl
with probability at least 1− δ. In order to do that we can observe that ||zi||2 follows a
χ2
s distribution, and in particular the distribution is σ2χ2

s.
Given the ball B(ṽi(t), e) of the node ni with center c̃i, we denote by dist(c̃i, b)

the distance between c̃i and the boundary of the non-admissible region. We are ready
to formulate the theorem that states the correctness of the monitoring.

Theorem 1 Given a perturbed local statistics vector if its ballB(ṽi(t), e) is monochro-
matic and dist(c̃i, ṽi(t))+rl < dist(c̃i, b) then the probability to have a missing alarm
is at most δ.

Proof: As explained above with probability at least 1−δ we have ||vi(t)−ṽi(t)|| ≤
rl. So, we observe that dist(c̃i, ṽi(t)) + r represents the radius of the original ball
B(v(t), e) with probability at least 1 − δ. In fact, we have that dist(c̃i, ṽi(t)) =
||ṽi(t)−e||

2 , i.e., it is the radius of the ballB(ṽi(t), e) while ||ṽi(t)−e||2 +rl ≥ ||ṽi(t)−e||2 +
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||vi(t)− ṽi(t)|| = ||vi(t)−e||
2 , i.e., the original ball will have at most this radius. Since,

dist(c̃i, ṽi(t))+rl < dist(c̃i, b) we can infer that with probability at least 1−δ the orig-
inal ball B(v(t), e) is monochromatic and as a consequence the probability of missing
alarms (non-monochromatic) ball is at most δ.

The above theorem is related to the missing alarms at node level, i.e., missing
alarms that each single node can generate with the construction of its ball after the per-
turbation. Another form of missing alarms are those that we call global missing alarms.
We have a missing alarm of this kind when the coordinator receives one or more alarms
from the nodes, computes the average vector ṽ(t) and it is within the admissible region
while the original v(t) would not be within that region. Before providing the theorem
that states the probability of global missing in the monitoring process, we note that if
each node vector is perturbed by a noise vector with components drawn by a Gaussian
distribution N (0, σ), then the average vector is affected by a noise from a Gaussian
distribution with standard deviation σ√

m
, where m is the number of nodes in the sys-

tem. By following the same reasoning as in the case of local missing alarms we have
that, given the perturbed average vector ṽ(t), with probability at least 1− δ its original
version is within the area covered by the sphere (in s dimensions) with center ṽ(t) and
radius rg . Therefore, we have that ||v(t)− ṽi|| ≤ rg with probability at least 1− δ and
the noise ||v(t)− ṽi||2 follows the distribution σ√

m
2χ2

s.
In the following we denote by dist(ṽ(t), b) the distance between the global vector

ṽ(t) and the boundary of the non-admissible region.

Theorem 2 Given the perturbed global vector ṽ(t), if rg < dist(ṽ(t), b) then the prob-
ability to have a missing alarm is at most δ.

Proof: The proof is straightforward and derives from the observation that with proba-
bility at least 1− δ we have ||v(t)− ṽi(t)|| ≤ rg .

7 Protection against Spectral Filtering Attack
In Section 2.2 we discuss the weakness of the additive randomization. In our setting
we assume that an attacker can access the coordinator site, obtain the matrix Ũ where
each row is a perturbed node vector ṽ(t). From Ũ the attacker applying the spectral fil-
tering reconstruction obtains Û . The distance between U and Û represents the privacy
protection that we measure by the relative error re(U, Û): greater relative error means
more privacy protection. The relative error increases when we increase the magnitude
of the noise to be added to the original data; in other word, a Gaussian distribution
with a greater standard deviation σ guarantees more privacy protection. The goal is
to find the suitable σ for the noise distribution so that a minimum level of privacy is
guaranteed.

In Section 2.3 we presented the result obtained in [18, 19] related to a lower bound
for the relative error after a spectral filtering attack. We also discussed as this bound can
be exploited for identifying the standard deviation of the noise distribution to guarantee
a minimum level of privacy τ . This methodology is perfect in a centralized system
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where the data owner has the original matrix U and can find the best k such that with
Uk the condition (2) is satisfied and, as a consequence, can identify the best σ of the
noise distribution to be used for the perturbation. In a distributed setting, we do not have
a global vision of the original vectors and so of the matrix U , thus finding the best σ for
the perturbation is not possible. To solve this problem we propose to learn the standard
deviation observing the historical data of the nodesN . The idea is to analyze for a long
time the data about the nodes in the system and by observing the typical behavior of
the data we can learn the standard deviation σ suitable to have the minimum privacy
level τ . The learnt values of σ will be used during the monitoring phase. The basic
assumption here is that user’s behaviors present some typical regularities and we want
to exploit them for finding the suitable standard deviation of the noise distribution. In
the following we describe the details of the procedure for the learning phase.

For each monitor iteration tp, we consider the matrix U(tp) composed of all the
node vectors in the historical data vi(tp). For each possible value of k = 1, . . . , p we
computes the eigenvalues, namely dk, dk+1 and then dZ defined as the average of the
two eigenvalues, respecting the properties that dk < dZ ≤ dk+1. Finally the value
of σ(tp) =

√
dZ/(m− 1) is computed; in the following we denote by σk(tp) the

standard deviation at the iteration tp computed with the value k. Then, we compute
the corresponding relative error corresponding to the privacy level guaranteed by the
computed σ value; in other words, we compute re(U(tp), Uk(tp)) = τk(tp).

The learnt information, composed of a set of pairs 〈σk(tp), τk(tp)〉, can be used
by each node during the monitoring phase after setting the global privacy level that
we desired to be guaranteed in the system. In particular, given a monitoring iteration
tp and the global privacy level to be guaranteed τ the node will draw the noise from
the Gaussian distribution with standard deviation σk(tp) corresponding to minimum
the τk(tp) such that τk(tp) ≥ τ . Clearly, the learnt information could be used in a
different way. As an example, after the learning we could decide to always use the
maximum standard deviation found in the historical data. This could bring to use in
some steps too much noise that corresponds to a better privacy but also a worst impact
on the correctness of the monitoring function.

8 Distributed Monitoring of Clustering Quality
In order to evaluate our privacy-preserving method we need to verify in real appli-
cations the empirical privacy guarantees, the impact of the privacy approach on the
number of communications and on the correctness of the monitoring function. To this
aim we decide to apply our privacy-preserving mechanism in the application presented
in [28], where the goal is a distributed monitoring of clustering quality.

The measure used to evaluate the quality of a clustering is the simple and very
popular Sum of Squared Error (SSE in short), defined as follows:

SSE =

h∑
i=1

∑
p∈Ci

||p− ci||22 (5)

where Ci represents the i-th cluster, and ci is its center (average vector).
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The monitoring problem in this setting deals with dynamic data consists in continu-
ously checking whether the last clustering computed is still good enough, recomputing
the clusters only in the negative case. This requirement can be easily translated in terms
of SSE by asking that the dispersion of the objects within the clusters did not grow,
or at least not significantly. That means computing the SSE at each time stamp t, de-
noted by SSEt, and test that it stays below some threshold. We refer to this continuous
testing with the term monitoring. Finally, such a threshold should take into account
the dispersion obtained at the very moment the clusters were created, which we de-
note with SSE0 (i.e. time counting starts from the moment the most recent clustering
was performed), suggesting to adopt a relative threshold. That is summarized in the
following problem definition:

Definition 2 (Cluster Monitoring Problem)
Given a clustering C = {C1, . . . , Ch} having initial SSE equal to SSE0, and given a
tolerance α ∈ R+, we require to ensure that at each time instant t the following holds
for the SSE of the (dynamic) dataset Dt:

SSEt ≤ (1 + α)SSE0 (6)

When that does not happen, a re-computation/update of cluster assignments should be
performed.

In [28] a strict version of this problem is also considered with the motivation that
SSE describes all the clusters together, aggregating the dispersions of each single clus-
ters, but this does not guarantee that a good SSE implies that each single cluster is
compact, since some slightly over-dispersed cluster might be balanced in the sum by
some virtuous one that adds very little to the SSE.

In this paper we use the strict variant of the clustering monitoring problem, where
the constraints are imposed over each single cluster:

Definition 3 (Strict Cluster Monitoring) Given a clusteringC = {C1, . . . , Ch} hav-
ing initial SSE equal to SSE0, and given a tolerance α ∈ R+, we require to ensure
that at each time instant t the following holds:

∀hi=1.SSE
(i)
t ≤ SSE

(i)
0 + θ(i) (7)

where SSE(i)
t is the contribution of cluster i to the SSE at time t, i.e. SSEt =∑h

i=1 SSE
(i)
t , and the θ(i) ∈ R+ are fixed thresholds such that

∑h
i=1 SSE

(i)
0 +θ(i) =

(1 + α)SSE0. When condition (7) is violated, a recomputation/update of cluster as-
signments should be performed.

The clustering monitor problem (Definitions 2 and 3) can be fitted to the geometric
approach described above, by properly rewriting it as a variance monitoring. We ob-
serve that the formulation of SSE is very similar to a variance, though on s dimensions.
Each cluster Ci, having centroid ci, contributes to the SSE by the following value:
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SSE(i) =
∑
p∈Ci

||p− ci||22
=
∑s
j=1

∑
p∈Ci

(pj − avgq∈Ci
(qj))

= |Ci|
∑s
j=1 varp∈Ci(p

j)

= |Ci|
∑s
j=1

[
avgp∈Ci((p

j)2)−
(
avgp∈Ci(p

j)
)2] (8)

where pj represents the j-th component of the s-dimensional vector p. This means
that by augmenting the vector vi(t) of each node with the additional s features vi,1(t)2, . . . , vi,s(t)

2,
we can compute the variance for each component. Actually, we can do slightly better,
by aggregating the terms in the last line:

SSE(i) = |Ci| ·
[
avgp∈Ci

(
||p||22

)
− ||avgp∈Ci

(p)||22
]

(9)

which means that only one additional component is needed, corresponding to ||p||22 of
the node (p represents our vi(t)).

The relation (9) states that the geometric approach can be applied for the moni-
toring of a single cluster, provided that we have defined a threshold value for it. This
represents a solution to the strict version of our monitoring problem (Definition 3). We
have an implicit partition of the problem intoK separate subproblems, that means hav-
ing a threshold for each single SSE(i). In [28] propose the fallowing partition of the
global SSE; in other words they provide the values for the constants θ(i) in Definition
3:

∀i.θ(i) = β
(
αSSE

(i)
0

)
+ (1− β)

(
α
SSE0

K

)
(10)

where the parameter β ∈ [0, 1].
For evaluating our privacy-preserving approach we make simpler the task and as-

sume that an initial set of profiles are provided to the coordinator, and in the set-up
phase it assigns each node to the profile more similar to it. This assignment generates
the initial clustering. The monitoring consists in continuously checking whether this
clustering is still good enough. In the negative case a new assignment is computed.
In particular, we observe that in our process when a node violates its constraint, com-
municates the new statistics vector to the coordinator indicating its cluster Cj . The
coordinator requires to each node belonging to Cj a synchronization and checks the
new value of the SSE(j)

t , In case of violation at cluster level the coordinator raises
a global violation that requires the re-assignment of the statistics vectors to the initial
profiles and so all nodes have to communicate their new vectors. Note that, in this
version of the problem we only change the way to compute the clustering because here
the initial centroids (profiles) are already provided.

8.1 Privacy in Distributed Monitoring of Clustering Quality
As explained in Section 5, each node before sending its local statistics vector adds a
noise vector. In this application each node has to perturb the vector and the additional
component thus it has to send the pair 〈 ˜vj(t),

˜||vj(t)||22〉. The coordinator will use this
information to compute each SSE(i); in particular, the formula will be:

SSE
(i)
t = |Ci| ·

[
avgvj(t)∈Ci

( ˜||vj(t)||22)− ||avgṽj(t)∈Ci
(ṽj(t))||22

]
.
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We noted that the additional component, i.e.,‖|vj(t)||22 is useful for the clustering
monitoring but could be used by an attacker for reducing the uncertainty in the vec-
tor reconstruction. So, in this particular application we propose to add a semi-trusted
entity that has the goal of: 1) receiving all the perturbed additional components from
the nodes; 2) computing for each cluster Ci the right component of the SSE(i), i.e,
||avgṽj(t)∈Ci

(ṽj(t))||22; and 3) sending this value to the coordinator that in this way
can compute the SSE(i) without any information about the single value of each addi-
tional component. Note that the additional component alone cannot reveal any private
information about the single node.

9 Application Scenario
The monitoring of clustering quality can be used in different contexts. Here, we con-
sider the particular case of continuous monitoring of the quality of the profiles of sim-
ilar drivers by using the safe zones approach. This scenario is the same used in [28]
where authors identified four categories of measures for the description of the user
driving behavior in a time window: (i) basic, (ii) space-time distribution, (iii) context-
aware, and (iv) behavioral.

The first one contains measures, directly computable from the raw GPS traces,
describing the basic features of the trajectories in the time window. These measures
allow understanding the behavior of the car usage:

• Length: distance travelled by the user.

• Duration: time spent traveling by the user.

• Count: number of different user’s trips.

• MaxAcceleration: maximum user’s acceleration.

• MaxDeceleration: maximum user’s deceleration.

The second category involves more complex measures that capture how the drivers
use territory in space and time and in some way describe the spatial and temporal user
distribution movements:

• Avg Dist L1: average distance of the user from his most frequent location L1.

• Radius g: radius of gyration of the user (i.e. the standard deviation from the
center of mass of his movements).
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• Radius g L1: radius of gyration w.r.t. to the user’s L1.

• TimeL1L2: time spent by the user in L1 or L2.

• EntropyLocation: entropy of the location frequencies where the user stops.

• EntropyTime: entropy of user’s travel time frequencies.

The third category is composed of the context-aware features, where information
about the user’s movement is related to the spatial and temporal context in which he
moves:

• EntropyArc: entropy of road segment frequencies traversed by the user.

• Phighway: distance travelled on highways by the user.

• Pcity: distance travelled inside urban areas by the user.

• Length arc crowded: distance travelled on top 20% most crowded road seg-
ments.

• Pnight: distance travelled during night time (i.e. between 10 p.m. and 5 a.m.)
by the user.

The last category focuses on capturing some specific mobility behaviors:

• PAccelerationDeceleration: percentage of rapid accelerations/decelerations of
the user during his movements.

• Pover: how much the user drives over the speed limits.

• Profile: how much the user follows his profiles, i.e. trips that he performs fre-
quently.

9.1 Dataset and data preprocessing
We performed our experiments on measures extracted from both real-world data and
synthetic data.

The real-world data are provided by an Italian company called OctoTelematics col-
lecting data for insurance purposes. This dataset is composed by GPS observations
of 11,470 1 private cars active in Tuscany in a period of 35 days between June and

1The dataset is available at kdd.isti.cnr.it/node/493
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July 2011. Due some pre-processing (i.e. aggregation and filtering) performed by the
device on board the sampling rate is reduced to a observation every 3 minutes and it
is not regulated by any policy of synchronization. Moreover, we divided the dataset
temporally in order to create a training and a test set: the first week for the training set
and the remaining 4 weeks for the test set.

We used the training set for two tasks: (1) extracting the measures presented in the
previous section using a time window of 3 days with a time granularity of 15 minutes;
and (2) learning the regularity of the drivers to extract the suitable standard deviation to
use in the Gaussian distribution for drawing the random noise and assuring a minimum
level of privacy.

Concerning the first task we computed the measures and applied a pre-processing
on them for making them suitable to the specific use. First of all, due the low sam-
pling rate in the data, some of the measures, described in the above section, cannot be
extracted. These measures involve all the acceleration based measurements and thus
we have excluded them from our experiments. Once all the measures are computed
on the first week, we transformed them into a log scale because some variables fol-
low a skewed distribution. We also normalized the variables through z-score to have
zero average and variance equal to 1. Finally, since the idea is to build the customer
profiles using a clustering method, we have also studied the correlation between the
measures, discovering that several strong correlations held. Therefore, we selected a
subset of measures to avoid strong biases in successive analyses and, as side effect, this
reduced the dimensionality of the dataset. After the above pre-processing the remain-
ing attributes are the following: Duration, Radius g L1, TimeL1L2, EntropyArc, Pcity,
Phighway, Pnight, Pover and Profile.

Concerning the second task we performed the algorithm for learning suitable stan-
dard deviation values for the noise distribution (Section 7). In other words, given the
data in the first week we learnt a set of pairs 〈σk(tp), τk(tp)〉, can be used by each
node during the monitoring phase after setting the global privacy level that we desired
to be guaranteed in the system. In our experiments we set the global privacy level at
τ = 0.25, 0.5, 0.8.

9.2 Experimental Evaluation
Now we empirically analyze the effects of the privacy transformation on the number
of communications and on the quality of clustering and global function. Moreover,
we also measure the privacy guarantees. In our experiments we set the probability of
missing alarm to δ = 0.01, this means that we capture possible local and global missing
alarms with a probability at least equal to 99.99% and we consider a number of profiles
equal to 10.

9.2.1 Communication Evaluation

To evaluate the performances of the proposed privacy-preserving approach we con-
sider the amount of communications exchanged between the nodes and the controller
and between the nodes and the semi-trusted entity for the communication of the ad-
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ditional component. The communications of the first type are always a vector with s
dimensions while the messages of the second type are vectors of 1 dimension. In both
cases the channel is a point-to-point link between the node and the controller/third
party. Here, we do not consider the communications from the controller to the nodes;
these communications can be of different sizes and they can use broadcasting capabil-
ities of the networks to reach all the nodes at once. The number of communications of
this kind are negligible as showed in [28] thus, we decided to not include them in the
analysis.

We compare the amount of communications required by the monitoring process
without any privacy guarantee and the one required in the system when we use our
privacy-preserving method with different levels of privacy. In the privacy-preserving
monitoring the number of communications also includes the communications between
the nodes and the semi-trusted entity.

The Figure 2 shows the behavior of the communications increasing the α parame-
ter. As expected the number of communications increases with the privacy protection:
more privacy requires more communications. This is due to two reasons: 1) in the
privacy-preserving approach any time the node has to transmit the vector it has also to
transmit the additional component with another transmission, so we have double com-
munications; 2) the randomization can increase the number of false negative alarms.
However, we can see that with a reasonable α = 1.5 the privacy-preserving approach
adds about 30% of communications to the original ones. This is also effect of the dou-
ble communications due to the third party; indeed without this additional messages we
would have a number of communications very similar. We can also note that after the
α value of about 2 we have that increasing the level of privacy leads to a decreasing of
the communications. This is probably due to the bad effect of a too big value of α in
computing Equation (6).

9.2.2 Quality of the Clustering Monitoring

We also analyzed the impact of the randomization on the monitored global SSE and on
the quality of clusters. Figure 3 shows the behavior of the SSE measure by varying α
and with different levels of privacy. We observe that the SSE value increases when the
level of privacy in the data is greater; however, the effect of the privacy is reasonable
because we have an increasing of about 7% of the original value at worst case.

For evaluating the quality of the obtained clusters we also measured the F-measure,
that is the harmonic mean of precision and recall. The recall measures how the cohesion
of a cluster is preserved; it is 1 if the whole original cluster is mapped into a single
randomized cluster, it tends to zero if the original elements are scattered among several
randomized clusters. The precision measures how the singularity of a cluster is mapped
into the private version: if the private cluster contains only elements corresponding to
the original cluster its value is 1, otherwise the value tends to zero if there are other
elements corresponding to other clusters. As expected we have that the increasing
of privacy protection reduces the quality of the clusters. This result is depicted in
Figure 4 where we vary α and plot for each value the average of F-measure obtained
in each monitoring iteration. Finally, we also analyzed how changes the number of
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Figure 4: F-Measure behavior by varying α and for different levels of privacy protec-
tion.

re-clustering with the application of the privacy transformation. Figure 5 shows that
again the effect of the privacy level is the increasing of the average of re-clustering for
each value of α; however, we can note that the increment is negligible.

9.2.3 Privacy Guarantee

Finally, we also evaluated the level of privacy guaranteed at coordinator site. We simu-
lated an attack by spectral filtering technique. Our assumption in this experiment is that
the attacker has access to the list of learnt values of standard deviation that the nodes
used for the noise distribution. We computed the relative error (Equation 1) any time
that the nodes have sent their vectors to the coordinator. Figure 6 depicts the obtained
results where we plot for each α the average of the global privacy level guaranteed dur-
ing the whole process of monitoring. We can observe that the level of privacy provided
is much higher w.r.t. the theoretical level of privacy set as a parameter. This is a good
result considering that the performance of the system and the correctness of the global
function can be considered acceptable even with this high data distortion. In particular,
we can observe that setting the global privacy level at 0.25 we have a data protection
corresponding to almost 0.5.

Although the methodology described in Section 7 aims at learning the suitable
standard deviation for the noise distribution to have a specific global privacy level, we
also analyzed the the individual privacy level. In other words, we measured the relative
error at record granularity with the following formula: rel(X̂,X) = ‖X̂−X‖2/‖X‖2.
The three plots in Figure 7 depict the cumulative distribution of the individual privacy
level for α values equal to 0.6, 1.5 and 3. We can observe that we obtain a reasonable
privacy protection also at individual level; in particular all the plots show a similar
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result. For example we have that for global privacy τ = 0.5 the 80% of vectors have
an individual protection of at least 0.7.

10 Related Work
Various solutions have been proposed to preserve privacy in distributed systems. Some
of these solutions propose to share information using the trusted third party services
[22]. But in real system sometime it is hard to have a trusted by all entities. In case
where the architecture does not consider trusted third party the privacy problem is
usually formulated as a variation of the secure multiparty computation (SMC) problem,
which has been extensively studied in the literature [16]. However, even if in [17,
34] it has been proved that a general solution to SMC problems exists it has a high
computational overhead and thus cannot be efficiently used in practice. By making
a tradeoff between generality and efficiency, different solutions have been proposed
to solve various information sharing issues such us intersection and equijoin [21, 4,
15], association rule mining [23, 32], classification [10, 35], top-k queries [33], and
statistical analysis [9].

A recent model proposed in the literature is the differential privacy model [12] that
provides privacy guarantees against adversaries with arbitrary background information.
There are two popular mechanisms to achieve differential privacy, Laplace mechanism
that supports queries whose outputs are numerical [12] and exponential mechanism that
works for any queries whose output spaces are discrete [27]. Dwork et al. in [13] re-
cently propose the notion of pan privacy, i.e., how to achieve differential privacy when
the adversary is allowed access to the mechanism’s internal states. The authors use the
pan privacy in the continual counter mechanism [13, 11], and show how to make their
counter mechanism resilient against a single unannounced intrusion. A similar prob-
lem is addressed in [8]. Rastogi et al. [29] and Chan et al. [31] consider the problem
of privately aggregating sums over multiple time periods. Both of them consider un-
trusted coordinator, in particular, malicious coordinator, and use both encryption and
differential privacy for the design of privacy-preserving data aggregation methods.

However, all these works does not consider monitoring systems of thresholding
function, where the main goal is to monitor the value of a function and in the same
time maintain under control the communications between the nodes and the monitor
allowing the communication only when it is necessary.

11 Conclusion
In this paper, we have proposed a method for inscribing privacy in a distributed mon-
itoring process. Our approach is based on the well-know additive randomization and
exploits some results in the literature to bound the possible reconstruction of the per-
turbed vectors.

We have applied our privacy preserving technique for the monitoring of the cluster-
ing quality in a real-world application and we have evaluated the system performance
in terms of number of communications, privacy guarantees and quality of the global
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Figure 7: Privacy protection a individual level by varying α and τ .
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function to be monitored. The results show that the quality of the monitoring is reason-
able while preserving good levels of privacy.

Further investigations will be directed to test our privacy preserving approach in
other real-world applications such as the quality monitoring of customer segmentation
with respect to their shopping habits in distributed market basket data.
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