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Abstract

This paper deals with high-performance Parallel Data Stream Pro-
cessing methodologies and implementation techniques. Data Stream Pro-
cessing (DaSP) is referred to in the most general and interesting sense:
on-line (often real-time) applications working on multiple, nondeterminis-
tic streams, with unlimited or unknown length and highly variable arrival
rate, whose elements must processed efficiently “on the fly”. Traditional
high-performance solutions are not sufficient to meet the critical require-
ments of high throughput and low latency with acceptable memory size:
typical DaSP applications require quite novel parallelism models, as well
as related design and implementation techniques on the emerging highly
parallel architectures. The aim of this paper is to give an original contribu-
tion to the design and implementation of parallel DaSP applications. The
contribution is twofold: (1) the definition of an approach to a new gen-
eral model for data-parallel DaSP computations according to a paradigm
called Data Stream Parallelism, (2) the application of this approach to
the parallel Stream Join problem, showing that the most interesting par-
allelizations in the literature are particular cases of our approach and
that, compared to them, better throughput and latency are achieved by
our implementation on multicore architectures.

1 Introduction

Data Stream Processing (DaSP) is a recent and highly active research field.
In a DaSP computation data are not modeled as traditional permanent, “in-
memory” data structures or relations, but as transient, continuous streams
whose elements must be processed “on the fly”, with critical requirements of
memory occupancy, throughput and latency. Several important on-line and
real-time applications can be modeled as DaSP, including network traffic anal-
ysis, financial trading, data mining, wireless sensor networks, and many others.

The topic of DaSP emerged by considering the execution of classic database
queries on systems supplied by potentially infinite streams of data. When input
data sets are continuous streams, some database operators become difficult to
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be efficiently implemented compared to static relational tables as in traditional
database systems. Notable examples are aggregate functions and join operators.
While the former are mainly based on a single input stream of tuples, in the
latter the problem is complicated by the presence of multiple streams and the
symmetric nature of joins. Several software infrastructures enabling continuous
query execution have been proposed over the last years [1, 11, 10, 8, 5, 15].

Some remarkable works [19, 6] have studied DaSP according to a computa-
tional and algorithmic modeling viewpoint, highlighting that this topic, besides
being a fascinating and challenging research one, can be of strategic importance
for data- and communication-intensive applications.

As known, the response time of a service is the sum of the waiting time for
receiving the service and of the service latency. The former can be minimized
by properly increasing the service throughput, thus high throughput is impor-
tant anyway. However, this is not sufficient, because in some data-intensive
computations the latency component might be much greater (even orders of
magnitude greater) than the waiting time. As an example, in algorithmic trad-
ing applications [6, 11] such performance feature is fundamental to detect real
trading opportunities. Nevertheless, some notable parallel DaSP proposals in
the literature privilege throughput only [7, 12, 22]. The problem of designing and
implementing high throughput and low latency DaSP applications - at the same
time satisfying requirements of memory and power consumption constraints - is
a quite complex one per se and because of the presence of multiple, nondeter-
ministic streams, with unlimited or unknown length and highly variable arrival
rate. Traditional high-performance solutions, or their simple variants, are not
always sufficient to solve this problem. Stream processing has been intensively
studied and applied in parallel computing, however by assuming that opera-
tions are independently applied to distinct elements of a stream, or to single
corresponding elements of multiple streams in a data-flow fashion. Aggregate
functions, join operators, complex correlations and other typical computational
patterns of DaSP applications require quite novel parallelism models and re-
lated design and implementation techniques on the emerging highly parallel
architectures (multi-/many-core processing elements combined in large systems
and heterogeneous clusters).

Another important research issue is that even the traditional parallelization
problems on permanent “in-memory” data structures can now be modeled as
equivalent parallel DaSP computations: the multiple stream elements are ob-
tained through the decomposition of finite or infinite data structures generated
in some system nodes and to be processed nondeterministically by other nodes
“on the fly”. This way of representing computations is more general, and: i) it
is useful per se, because it offers a further optimization chance as far as com-
munication and processing bandwidth are concerned, ii) it is consistent with
the characteristics of several important applications, in which data structures
cannot be stored/operated as a whole, and/or their stream representation is
more flexible and powerful for system resource exploitation, memory, real-time
requirements, software modularity and portability.

The aim of this paper is to give an original contribution to the design of
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parallel DaSP applications with stringent requirements of both throughput and
latency. The contribution is twofold:

• the definition of an approach to a new general model for data-parallel
DaSP computations according to a paradigm called Data Stream Paral-
lelism (Section 3);

• the application of this approach to the parallel Stream Join problem, show-
ing that the most interesting parallelizations, notably CellJoin [12] and
Handshake Join [22], are particular cases of our approach and that, com-
pared to them, better throughput and latency are achieved by our imple-
mentation on multicore architectures (Section 4).

Detailed evaluation experiments and state-of-the-art comparisons are described
in Section 5.

2 Related Work

Several software infrastructures (Data Stream Management Systems - DSMSs)
enabling continuous query execution have been proposed over the last years. Ex-
amples are are Borealis [1], Systems S [11], GigaScope [10], NiagraCQ [8] and
STREAM [5] and more recently StreamCloud [15]. They are frameworks pro-
viding SQL-like languages and run-time supports to continuous query definition
and execution.

Main issues in DSMSs are related to memory usage and management, and
the performance of query processing. In the literature the first aspect has been
studied through the engineering of data structures capable of providing succinct
representations of received data feeds [19, 6] (e.g. histograms, sketches and
synopsis) and by proposing optimized algorithms for stateful operators (e.g.
stream joins and aggregate functions applied on temporal windows [9]). In both
the cases the goal is to limit memory occupancy and I/O transfers, and to
produce sufficiently accurate results. Other strategies like load shedding [23]
have been used both to mitigate the pressure of high traffic rates and to save
memory. However, they can be used only if the application semantics allows to
loose data or to sample input streams.

The solution to the performance problems of DSMSs relies on parallelization.
As a first case, we can exploit parallelism among operators of the same query
and/or among different queries (i.e. inter-operator and inter-query parallelism),
placing operators on the available computing resources. This approach has been
followed by System S [4], in which data-flow graphs of queries are partitioned
into sub-queries assigned to a set of parallel Processing Elements (PEs) mapped
onto physical computing resources. A similar approach has been adopted in [27,
21], with special attention to load balancing mechanisms able to adapt the
mapping between operators and resources according to the current stream rates
and load variance. On emerging Cloud infrastructures the same problem has
been addressed in [15].
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Intra-operator parallelism is exploited when single operators are hot spots
and deserve to be internally parallelized. The paradigm enabling this possibility
is data parallelism [16, 24, 14]. It has been applied to streaming applications
(and also some DaSP computations) often in an unsystematic fashion by relying
on the simple idea that by using operator replicas we can parallelize the compu-
tation on different subsets of received data. As an example, parallelizations of
stateful operators have been described in [26] using locks to access shared data,
and in [25] for computations amenable to be parallelized using the MapReduce
pattern. Nevertheless, the application of data parallelism to DaSP can be much
more complicated especially when stateful operators involve a sliding (overlap-
ping) window semantics [9]. An interesting studying of window distributions
has been proposed in [7], by referring to tumbling and sliding windows and pro-
viding optimizations (i.e. pane-based distributions) when operators are based
on associative functions.

Windows-join operators are critical in DaSP applications. They can be used
to detect trends and find correlations between streams [17, 13]. Such compu-
tations can be difficult to be parallelized efficiently: because of the symmetric
semantics of joins, effective partitioning/replication techniques must be taken
into account when designing an efficient parallelization. Furthermore, it is im-
portant to be aware of the effect of a parallelization not only on throughput,
but on latency too. Some parallel solutions have been proposed in the litera-
ture. Two notable works are Cell Join [12] and Handshake Join [22], however
the former scales well only for low-parallelism applications, while the latter has
good scalability but has limitations for latency-sensible applications: they will
be characterized in Sections 3 and 4. Also approaches like [25] on top of Hadoop
MapReduce are based on data partitioning without latency evaluation. Paral-
lelization proposals developed in the past (as a small example in [2, 20]) operate
on static relational tables, and are not designed for performing windows-joins
over unbounded input streams.

3 Parallel Data Stream Processing

In this paper we focus on the parallelization of processing modules executing a
single DaSP operator with multiple streams. Rarely the execution of a DaSP
module has a data-flow semantics. The general case is the nondeterministic
semantics: the execution is enabled if at least one input stream contains a
value, where the actual selection of the input stream is driven by a strategy
applied to the module internal state.

Inside each module it is possible to apply specific efficient paradigms for
describing the parallel computation. A very general and powerful structured
programming paradigm is data parallelism [24, 14]. In the traditional “in-
memory” view, it is based on the replication of functions among a set of func-
tionally identical executors (Workers in the following), on the partitioning of
the input-output data (a static/dynamic partition of each data structure is as-
signed to each Worker), and possibly on the replication of some data in all the
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Workers. This paradigm can be defined according to a number of important
variants [16, 24, 14], notably map (fully independent Workers) and stencils (a
static/dynamic pattern of data dependence exists among the Workers compu-
tations to the Workers). For example, a sequential program for matrix-vector
product C[M ] = A[M ][M ]×B[M ] can be transformed into a data-parallel pro-
gram with parallelism degree N (N Workers), in which each Worker is assigned
a distinct partition of g = M/N elements of C and a distinct partition of g rows
of A. If B is replicated in all the Workers, then a map computation is expressed.
If B is partitioned too, then we have a stencil computation in which, at each step
on j, a data dependence on B[j] is established on the set of Workers (owing to
the associative property of addition, a ring stencil pattern can be recognized).

At the expense of some implementation complexity - because of the variety
of data parallel computations and because load balancing is not free, also de-
pending on some abstract knowledge of the sequential computation form - data
parallelism is able to meet important goals simultaneously: processing band-
width (throughput)1, latency and memory occupancy can be optimized w.r.t
other paradigms (e.g. farm).

In the following sub-sections 3.1, and 3.2 we review some basic concepts
and techniques for traditional in-memory stream-based parallelism. Then in
sub-section 3.3 we propose our methodology for parallel DaSP applications.

3.1 Data Parallelism and in-memory stream-based com-
putations

A complete treatment of data parallelism [14] is out of scope for this paper. We
will extract the essential concepts and issues which are useful to introduce our
proposal.

A high-level scheme of stream-based data-parallel computation (sketched in
Fig. 1) consists in a collection of functionally identical Worker entitiesW1, . . . ,WN

delegated to the execution of the core computation. Input streams are interfaced
by an Emitter entity (Data Distribution strategy) and the output streams are
interfaced by a Collector entity. Emitter, set of Workers, and Collector interact
in a pipelined fashion on distinct stream elements. The Emitter is responsible
of the following actions:

• data-flow or nondeterministic acceptance of input data;

• distribution of data to the Workers according to a partitioning or to a
replication strategy;

• load balancing of Worker computation.

The Collector accepts result partitions non-deterministically and produces out-
put data structures according to their type. For example, result partitions are

1In the following we use the term (processing) ”bandwidth” as a synonym of throughput.
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Figure 1: Abstract scheme of a generic Data Parallel computation.

gathered into the output data structure. Another well-known collection pat-
tern is the reduce operator applied to all the result elements according to an
associative function.

Either the Emitter or the Collector, or both, could be actually implemented
in a centralized manner, or in a partially or fully distributed manner. For ex-
ample, data partitioning/replication could be distributed among the Workers,
with the Emitter acting as an interface for the data acceptance and, possibly,
by providing some partial support to load balancing.

A notable distributed case is the pipelined data-parallel implementation [24],
in which the pipeline stages correspond to distinct groups of loop iterations: data
partitioning and replication are actually implemented through communications
from one stage to the next. Although simple to be implemented and able to
optimize both the throughput and the memory occupancy, the pipelined ap-
proach is characterized by the maximum latency. On the other hand, in a fully
centralized solution the Emitter could easily become a throughput bottleneck
when the degree of parallelism is high. In many cases, proper map solutions
with distributed data partitioning/replication exist which are able to optimize
both throughput and latency. Notable examples will be shown in Section 4.

3.2 Abstract data-parallel model and architectural depen-
dent implementations

It is convenient to refer to an abstract model for data parallel computations, in
which Emitter, Workers and Collector interact by means of by-value communi-
cations, e.g. message passing. As known, a message passing concurrent program
is inherently independent of the underlying architecture (it is portable, in princi-
ple): provided that the proper run-time support is designed, a message-passing
computation can be implemented/ported on a distributed memory cluster or on
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a shared memory multiprocessor, or (perhaps the most interesting case for high
parallelism) on a cluster of multi-processors.

In fact, the abstract message-passing description can be actually imple-
mented in different ways which are more suitable for the underlying architecture.
For example, let us consider data partitioning and replication:

1. in the abstract model we use collective communication primitives, notably
scatter (for partitioning input data), multicast (for replicating input data),
gather (for collecting results), as well as collective operations like reduce;

2. in the actual implementation for a distributed memory architecture, such
functionalities are really implemented by message passing primitives (e.g.
MPI), possibly with a run-time support able to overlap communication
and calculation;

3. in the actual implementation for a shared memory architecture (e.g. a
multi-/many-core component), communications can be implemented by
reference. For example, passing the data structure pointer (capability)
from the Emitter to the Workers could be sufficient for implementing
the equivalent semantics of multicast/replication (all Workers access a
single copy of the shared data structure) or of scatter/partitioning (each
Worker knows the partition of the shared structure according to an index
function). Analogously, stencil communications from Worker Wi to Wj

can be implemented by a synchronized direct access of Wj to the variable
modified by Wi (often, in order to synchronize all the Workers, a barrier
is roughly used).

In conclusion, the by-value communication abstract model is general and is
able to capture all the needed features of a data-parallel program. Once a “good”
abstract solution has been designed, the architecture-dependent run-time sup-
port implementation, though being a complex issue, can be faced according
to the state-of-the-art knowledge in parallel and distributed architectures. Sub-
section 3.3 will demonstrate the validity of this approach for DaSP applications.

3.3 Data Stream Parallelism

We propose the Data Stream Parallel paradigm which extends the traditional
data-parallel one with powerful features and mechanisms for structured parallel
DaSP. The main features concern windowing management and data distribution
according to a limited set of solutions with a clear semantics and able to optimize
some or all performance metrics of interest (throughput, latency, memory).

3.3.1 Windowing methods

in DaSP, the concept of windows is applied according to at least the following
modes [7, 9]:
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a) tumbling, or non-overlapped, vs sliding, or overlapped, windows. In the
former case a discrete timing model is assumed in order to fully separate
the computation on a data window DW1 from the computation of the next
data window DW2, i.e. , i.e. DW1 expires when the computation on its
elements terminates. With sliding windowing, a continuous timing model is
assumed in which, according to some overlapping degree, expiring is applied
to individual/subsets of stream elements, not to whole windows;

b) count-based vs time-based windows, in which the elements belonging to a
data window are, respectively, a given number of consecutive stream elements
or are the elements received within a given time interval Tw, called window
length. Often the time-based mode implies the utilization of the most recent
values, and stream elements are associated a unique identifier in the form of
timestamp, i.e. each stream element is a pair (value, timestamp).

All the four combinations of a) and b) modes are possible. However, the seman-
tics of specific computations is captured (or better captured) by one of them.

When streams are derived from the decomposition of in-memory data struc-
tures, the tumbling windows semantics is quite natural, with the count-based
or the time-based mode depending on the data structure type. Many aggre-
gate functions and join operators of DSMSs are notable examples of the sliding
window mode and, most frequently associated to a time-based semantics. In
Section 4 we will study the Data Stream Parallel implementation of stream join
computations according to the time-based sliding window mode. In general, this
seems a frequent case of computations in which streams are not derived from
the decomposition of in-memory data structures.

3.3.2 Abstract module structures for DaSP

as said, the most interesting acceptance strategy of input data (Emitter func-
tionality) is the nondeterministic one. The output stream values can be pro-
duced in a different order with respect to the corresponding input values, i.e.
Collector is not in charge of reordering the results. If the time-based mode is
applied, the timestamps associated to the output values are sufficient for the
destination module being able to correctly utilizing the received results. How-
ever, also in count-based computations it is easy to utilize unique identifiers
dependent on the computational problem semantics (e.g. array indexes).

Important issues in the abstract model are: (i) data distribution and col-
lection management, (ii) windowing management. Two main models can be
recognized:

a) centralized model, also called Agnostic Workers;

b) distributed model, also called Active Workers.

In the centralized model, for each stream the nondeterministic Emitter is in
charge of:

8



• performing all the processing and storing actions needed to build and to
update the data window for each stream, according to the tumbling/sliding
and count-based/time-based semantics;

• distributing data windows to the Workers according to the partitioning or
to the replication strategy of the paradigm application, in general taking
into account load balancing and other optimizations too.

In this model, Workers are agnostic of the window management and data distri-
bution, i.e., they are just in charge of applying the computation to the received
window data.

In the distributed model, sliding window management and data distribution
are partially or entirely delegated to the Workers. They receive elementary
data values, or data window segments, from the Emitter and are in charge to
performs actions to build and to update the data window. In other words,
now Workers are active on sliding windows management too, thus their code is
very similar to (coincides with) the sequential version. Emitter and Collector
acts mainly as intelligent interfaces w.r.t the Worker strategies. It might be
convenient to have a partially distributed version, by delegating a few tasks to
Emitter (and Collector) in order to simplify, or to render more efficient, some
actions. Notably, some load balancing strategies could be executed directly by
the Emitter, e.g., according to round-robin or on-demand techniques.

Being a distributed version, Workers can take part to the distribution strate-
gies themselves too, i.e., they can implement distributed forms of partitioning
(scattering), replication (multicasting) and collection (gathering), as well as col-
lective operation, like reduce, in a distributed mode.

The application of the centralized and distributed model depends on the
computation algorithm and on the windowing modes. As it happens in the
traditional data-parallel model, some optimizations can be introduced depend-
ing on the specific semantics of the sequential computation. For example, for
count-based windows aggregate functions, the pane method [7] can be applied
in order to optimize the memory occupancy by reducing the replication degree
of stream elements belonging to the common part of consecutive windows.

The application of centralized and distributed models to the Stream Join
problem will be studied in Section 4.

3.3.3 Optimal Parallelism Degree

let us consider a Data Stream Parallel computation acting on multiple streams
X1, . . . , Xm with inter-arrival rates λ1, . . . , λm respectively. The maximum
bandwidth (throughput) can be expressed as a function of the following type:

Bω
max = Bω

max(λ1, . . . , λm, ω, Γ) (1)

where ω is a set of parameters related to the windowing semantics (e.g. window
length) and Γ is a set of parameters characterizing the sequential algorithm.
For example, in Stream Join, ω is the temporal window length Tw and Γ is the
hit rate p of the join operator.
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One goal of a parallelization is to achieve the maximum bandwidth at steady
state, i.e. after and before the initial “filling” and the final “emptying” transient
phases of the steaming execution. To this goal, the optimal parallelism degree
Nopt is the minimum number of Workers such that the output rate of results is
equal to the maximum bandwidth.

4 Parallel Stream Join on Multicore Architec-
tures

As seen, Data Stream Parallelism is potentially able to optimize both throughput
and/or latency by selecting and instantiating the best abstract model among a
very limited number of structured versions, i.e., centralized, pipeline-distributed,
partially distributed with linear or multidimensional topology. In this section we
apply the methodology of Section 3 by discussing a novel parallelization of join
operators on data streams and comparing it with the current state-of-the-art
parallel implementations. We remark that out goal are both high throughput
and low latency parallel join implementations.

We adopt a time-based sliding window semantics according to the basic pro-
cedure referred as Kang’s algorithm, originally described in [17]. The descrip-
tion and our parallelization proposal are valid for an arbitrary number of input
streams and for time-based and count-based windows. Just for clarity reasons
we refer to the basic case of two streams with a time-based window semantics.

Given two streams X and Y , for each new arrival from stream X the algo-
rithm consists in the following actions:

1. scan the Y -window, evaluate the join predicate and propagate the results;

2. insert the new tuple into the X-window;

3. invalidate all the expired tuples from the X-window.

This sequence is performed symmetrically for the other stream.
The generic procedure for the Kang’s algorithm is a nested-loop evaluation in

which all the possible joining tuples satisfying the window constraints are firstly
enumerated and then filtered according to the join predicate. For certain join
predicates (e.g. equi-join) the procedure can be optimized using efficient data-
structures (e.g. hash tables and tree indices) in order to avoid to enumerate all
the possible pairs of tuples. In the following we suppose a generic window-join
problem on streams without specifying the predicate and which kind of data
structures is effectively used. In fact, as we will see, our abstract paralleliza-
tion design will be completely agnostic w.r.t the specific implementation of the
Kang’s algorithm.

Let us denote by R the stream of joined results, Tw the window length, and
tx and ty the timestamps of two tuples x and y. Formally, the join condition
can be defined as follows:
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Definition 4.1 (Time-based Window-Join Semantics) given two tuples x
and y satisfying the join predicate, the pair (x, y) is in the output stream R iff:

• if x is older than y, then the timestamps must respect the following con-
dition: tx ≥ ty − Tw;

• otherwise x must be in the current X-window when y arrives, i.e. ty ≥
tx − Tw.

The latency is evaluated as follows:

Definition 4.2 (Latency) let two tuples x and y with timestamps tx and ty.
Let us suppose that the two tuples join and the output result r = (x, y) is produced
at time tr. The latency lr is given by:

lr = tr −max {tx, ty} (2)

If we can assume that the calculation time of the join operator is constant
(or featuring small variance), thus load balancing can be achieved by assigning
to each Worker the same number of comparisons between tuples (i.e. the same
number of tuples in the current windows).

4.1 Centralized solution

Let us consider what happen when a new element is received from one of the
streams (i.e. xi from stream X). We need to apply the join predicate between
xi and any element inside the current window of Y , which is well defined: it
contains all the elements of stream Y received in the last Tw interval, and
it has been partitioned by the Emitter among the set of Workers. Value xi is
multicasted to the Workers. Each Worker applies step 1 of the Kang’s algorithm.
Of course, when we receive an element from the stream Y (i.e. yi) the situation
is reversed. The Emitter is also responsible of inserting and removing elements
from windows, i.e. executing steps 2 and 3 of the algorithm, so that Workers are
completely agnostic of the sliding nature of windows. An abstract representation
of this parallelization is sketched in Fig. 1.

This parallelization has been successfully used in CellJoin [12]. At the arrival
of each element (xi), the Emitter must: (i) determine the partitioning of a
window (Y ); (ii) scatter the window (Y ) to the set of Workers; (iii) multicast
the element (xi) to all the Workers; (iv) insert the element (xi) in its window
(X); (v) remove the expired tuples from the corresponding window (X).

As known from the methodology of Section 3, this solution is able to opti-
mize throughput provided that the Emitter has a sufficiently low service time
to sustain the input streams rate. The data distribution overhead (actions ii,
iii) can be mitigated on shared memory architectures by allocating windows
contiguously and sending pointers to the correct areas, instead of actual values
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(see Section 3.2). If determining a balanced partitioning at each arrival becomes
a problem (action i), the Emitter can use the same partitioning on subsequent
elements (of the same stream) and adapt it every once in a while to re-balance
the amount of elements per partition. Nevertheless, actions iv and v cannot be
further optimized and can possibly make the Emitter a throughput bottleneck
with a high number of Workers and very fast input streams. In the imple-
mentation proposed in [12] the authors exploit the heterogeneous nature of the
IBM Cell architecture (from which the name derives) by placing the Emitter
on the single PPE and the Workers on the 8 SPEs. In this case, given the very
limited number of Workers, the Emitter does not become a bottleneck and the
application scales for low parallelism degrees with low latency.

4.2 Distributed pipeline-based solution

To solve the throughput and scalability problems for highly parallel join appli-
cations, we study solutions based on the distributed model able to minimize the
Emitter overhead.

The pipeline data-parallel solution is a potential candidate, with a fully dis-
tributed window partitioning and replication and window management among
the pipeline stages. In order to efficiently meet pipelining features and joining
requirements, an interesting variant to the pure pipeline solution has been pro-
posed in [22] with the Handshake Join parallelization: the two streams flow in
the opposite directions of the pipeline, as depicted in Fig. 2. In this way each
element of a stream will, sooner or later, encounter any element of the other
stream, effectively allowing a fully distributed parallelization of the Stream Join
problem. We denote by X-i and Y -j the i-th and the j-th partition/segment of
X-/Y -window.

X-1 . . .

Worker 1 Worker 2 Worker N

X

Y

X-2 X-N

Y-1Y-(N-1)Y-N

joined tuples joined tuples joined tuples

Figure 2: Abstract scheme of the Handshake Join parallelization.

As known in general, and as it is quite evident in this case, the throughout
and scalability advantages are achieved at the expense of a too long latency that
becomes a complex function of the expiring strategy. Thus this solution is not
acceptable for latency-sensitive applications.

4.3 Distributed solution: proposed approach

We propose a novel parallelization that encompass the advantages of CellJoin
and, at the same time, allows the definition of a lightweight, scalable (w.r.t the
number of Workers) Emitter that removes the bottleneck problems of CellJoin
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and allows extremely low latency compared to Handshake Join. The method-
ology of Section 3 is applied to find the best combination of partitioning and
replication in a Data Steam Parallel module, at the same time being able to
apply efficient architecture-dependent implementation techniques.

We use a distributed model with a very low number of functionalities left to
the Emitter. The main idea is to introduce an Emitter that distribute tuples to
the set of Active Workers (unlike CellJoin). On the other hand, we do not want
to excessively increase the computation on the Workers, that are now in charge
of collectively handling insertion and removal from the windows. This is possible
by exploiting a tuple distribution that: (i) fixes the owner of each tuple to a (a
set of) Worker(s), (ii) lets each Worker remove expired tuple independently, so
that the Emitter is only responsible of selecting the destination Worker for each
element of the streams, while each Worker handles its local window, by using
the very same computation of the sequential join.

We partition a window (Y ) and replicate the other (X), so that each element
received from stream Y is sent to only one Worker, while elements received
from stream X are multicasted to all N Workers. The correctness can be easily
verified by ensuring that each tuple of one stream will be compared with all the
elements of the other window:

• a tuple yi received from stream Y is forwarded to a specific Worker.
Given the replication of the other stream, such Worker contains the full
X-window, and can perform the entire join on yi;

• a tuple xi received from stream X is forwarded to all the Workers. Each
Worker contains a distinct partition of Y and performs a join on the local
window (similarly to CellJoin). The cumulative results of all the Workers
represent the entire join on xi.

In order to achieve load balancing despite variability of tuple expiring timing
and stream rate, a simple yet effective policy is to distribute elements in a
round-robin fashion, i.e. yi is forwarded to Wj with j=(i mod N) + 1. In this
way new elements are evenly distributed (independently of the current rate)
and, given the expiring condition, evenly removed. Using this distribution the
two windows are not partitioned in contiguous segments, but each Worker has
it own set of tuples assigned in an interleaved fashion.

To further limit the Emitter service time, we can distribute the multicast
of X tuples (i.e. Emitter forwards xi to W1, that forwards it to W2, and
so on), so the Emitter only needs to forward each received tuple to one of the
Workers, independently of the number of Workers in the parallel program. Fig. 3
illustrates a solution with a linear set of Workers.

This solution is still partially affected by latency problems. When an el-
ement is received on X, each Worker compute the join on a partition of Y ,
therefore splitting the amount of comparison among the whole set of Workers,
and reducing latency w.r.t the sequential version. However, when an element is
received on Y , the whole join will be computed by a single Worker, therefore
achieving a latency comparable to the sequential version.
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Figure 3: Linear set of Workers exchanging X tuples.

We know from the general theory of Section 3 that proper solutions exists,
able to minimize latency too, while maximizing throughput. In our case, this
is achieved by generalizing the Worker organization as a mix of partitioning
and replication for both windows, considering a square or, more generically,
rectangular layout as in Fig. 4.
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Figure 4: General layout of Workers using m rows and n columns.

We maintain the same partitioning of Y among columns, and further par-
tition X among rows (for correctness the same considerations apply). For a
square layout this comes at the (little) cost of not being able to use any number
of Workers. The rectangular layout has not such restriction and still allows a
good balanced (but not optimal) latency.

From the latency point of view a rectangular layout is also interesting in the
case of asymmetric streams (i.e. X have an higher rate than Y or vice-versa),
because it is able to balance the partition size of the two windows (in terms of
elements) per Worker (this fact will be clarified in Section 5.3).
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4.4 Implementation and Optimizations

The abstract parallelization described in Section 4.3 has been implemented on
general-purpose shared memory multi-/many-core CPUs. The implementation
relies on several optimizations related to:

• how data structures are organized in memory;

• how replication has been really implemented;

• efficient re-definition of the Kang’s algorithm performed by Workers.

4.4.1 Attribute-oriented organization

each received tuple consists of a set of attributes a1, a2, . . . , ak. Two different
ways to store tuples in memory can be identified: (1) tuple-oriented organiza-
tion: different tuples are stored in contiguous regions of memory; (2) attribute-
oriented organization: we use k separated data structures to contiguously store
the same attribute of different tuples.

As stated in [12], the second approach should be preferred to reach bet-
ter performance. It can reduce the amount of cache lines transferred to apply
the join predicate over the entire window. Furthermore, according to the spe-
cific definition of the join operator, such organization can be useful to exploit
the SIMD capability of modern CPUs without overhead in arranging temporal
structures for the operands of vector instructions. Due to these reasons, we use
this organization in the implementation of our parallel join version.

Our version exploits replication and partitioning of the two stream windows
onto a generic matrix structure of Workers. Workers belonging to different
rows/columns are assigned different segments of the same stream window (e.g.
conventionally X-window is partitioned among Workers on different rows and
Y -window among Workers on different columns). The opposite is for replication.
Workers on the same row/column have a replica of the corresponding segment
of X/Y -window. An example of such organization is shown in Fig. 5 supposing
two attributes per tuple and a square structure of nine Workers.

4.4.2 Support to replication

replication yields to a higher memory occupation and Workers need to prop-
agate each received tuple by value. On today’s multi-/many-core machines,
replication can be implemented efficiently from the memory occupancy view-
point by exploiting sharing instead of pure replication of data-structures. Let
us focus on how replication of X-window segments is realized (symmetrically the
same principle applies to Y -window). Workers belonging to the same row have
a replica of the same segment of X-window. By resorting on shared memory,
the segment is physically shared by Workers on the corresponding row: such
Workers have the address to the initial portion of the same X-window segment.

Using shared window segments, communications between Workers have a
different nature. Once the Emitter receives a tuple x, it firstly selects the
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Figure 5: Data organization between Workers. X/Y -windows are replicated (shared)
and partitioned among Workers.

destination row in a round-robin fashion, then the tuple is transmitted to the
first Worker of that row. The Worker is responsible to physically modify its X-
window segment by adding the new tuple. All the other Workers on the same
row only require to be notified of the presence of the new tuple to start the
join evaluation with their segment of Y -window. The notification is performed
exchanging special messages of the minimum size as possible according to the
underlying architecture specifications (usually messages of one word). Such
optimization has two important consequences on our parallelization:

• by avoiding real replica of window segments, the memory occupancy of
the parallel program will be similar to the sequential version (only two
windows should be maintained and updated);

• sharing makes it possible to exchange smaller messages between Workers
instead of real tuples. This result leads to further improvement in latency,
since Workers on the same row/column start their join evaluation earlier
compared with a version with pure replication and communication of entire
tuples.

Such way to perform replication has important impacts on the way in which
expiring tuples are identified and really removed from windows. In the abstract
communication-based model, each Worker is responsible to remove expired tu-
ples in its window segments. When segment sharing is applied, this activity
must be performed in a careful way. In fact only one Worker effectively remove
expired tuples form a shared segment and this action must be performed iff
expired tuples are no longer necessary to all the other Workers sharing the same
segment of the window. We manage this fact with a low complexity procedure:
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• each Worker maintains a counter to the first valid tuple for each of its
window segments;

• Workers mark their expired tuples locally, by increasing the corresponding
counter (tuples are maintained ordered w.r.t the timestamp attribute);

• expired tuples are physically removed from the window segment. This is
performed periodically by identifying expired tuples for all the Workers
sharing the same window segment (i.e. by taking the minimum between
Worker counters).

4.4.3 Sequential algorithm improvement

the final implementation detail is related to the improvement of sequential algo-
rithm performed by Workers. In the basic Kang’s algorithm, at each reception
of a tuple from stream X (and symmetrically from Y ) we scan the Y -window
to find joining tuples, next the new tuple is added to X-window and then the
X-window is scanned to find expired tuples. In our version Workers optimize
this procedure by avoiding to scan two window segments at each reception of a
new tuple. After receiving a new tuple x, a Worker: (1) insert x in its segment
of X-window; (2) scan its segment of Y -window to find tuples joining with x; (3)
determine the number of expired tuples from Y -window by updating its counter
correspondently.

Note that we look for expired tuples in the opposite window of the received
element (differently from the Kang’s algorithm). The result is that only one scan
of a window segment is needed for each received element. Expired tuples in X-
window will be determined only when a tuple from step Y is received. In this
way we can reduce the Worker processing time with great advantages in terms
of throughput and latency and respecting the correct join conditions provided
in Definition 4.1 (tuples are always compared according to their timestamps
before computing the join result).

5 Experiments

In this section we provide an experimental evaluation of achieved throughput
and latency by our parallel solution, referred as DP-Join in the sequel2. Further-
more, we compare our approach with the most recent existing parallelization [22]
- Handshake Join3. In Section 4.1 we saw that CellJoin [12] is a notable example
of centralized implementation with low parallelism, while in this section we are
interested in studying solutions without parallelism degree constraints.

2The source code of DP-Join will be available at the current address
http://www.di.unipi.it/∼mencagli/DP-Join.zip

3We thank the authors of [22] for having made available their source code at the current
url: http://people.inf.ethz.ch/jteubner/publications/soccer-players/
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5.1 Experimental setup

We study the same join problem described in [22] and [12] consisting in a band-
join predicate over two streamsX and Y . Two tuples x and y (in their respective
windows) join iff the following condition holds:

WHERE x.a BETWEEN y.a - 10 AND y.a + 10

AND x.b BETWEEN y.b - 10 AND y.b + 10

where a and b are join attributes. Their values are generated in order to repro-
duce a join probability (hit rate) p = 3.6 ·10−6. Because of the predicate, we use
the general nested-loop join algorithm, where each window is implemented by a
dynamic array for each attribute (see Section 4.4). Tuples and their timestamps
are pre-generated according to the input stream rates and read from file before
each test execution.

DP-Join is implemented on a commodity Intel multi-processor architecture
composed of two Xeon E5-2650 CPUs for a total of 16 cores and 32 hardware
SMT contexts (HyperThreading). Each core has a private L1 and L2 cache of
size 32 KB and 256 KB. Each group of 8 cores share a L3 cache of 20 MB.
Communications are implemented using a ”by reference” model (i.e. passing
pointers to shared data as described in Section 3.2) using efficient lock-free
queues made available by the FastFlow library [3]. We set the CPU-affinity of
each thread on a corresponding SMT (Simultaneous Multi-Threading) context
of the underlying architecture.

5.2 Bandwidth analysis

As introduced in Section 3.3.3, the optimal parallelism degree Nopt is the one
able to achieve the maximum bandwidth Bω

max expressed as a function of the
input stream rates λx and λy, the window length Tw and the join hit rate p. For
each received tuple from X in a time interval [t0, t1] we compute the join with
all the tuples in the Y -window and vice-versa. By denoting Wx = λx · Tw and
Wy = λy · Tw the average window size of stream X and Y respectively (we use
the same window length Tw for both the streams), the number of joined tuples
in that interval is given by:

Ωt0,t1 =
[
λx (t1 − t0) Wy + λy (t1 − t0) Wx

]
p (3)

= 2λx λy(t1 − t0)Tw p

The steady state maximum bandwidth is evaluated as follows:

Bω
max =

Ωt0,t1

(t1 − t0)
= 2λx λy Tw p (4)

5.2.1 Optimal parallelism degree and Scalability

Fig. 6 shows the optimal parallelism degree of different DP-Join layouts (square,
rectangular and linear) for a problem consisting in two symmetric streams with
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input rate 2100 tuples/sec and a window length of 300 seconds. For the sake
of clarity we show the number of Workers per row and per column used in
the rectangular layout. Square and linear layouts can be straightforwardly de-
duced from the parallelism degree. The square and the rectangular layouts have
slightly greater optimal parallelism degrees (8 and 9 Workers) compared to the
linear one (7 Workers), since they can not be used with any parallelism degree (a
square layout exists only for perfect square parallelism degrees). Furthermore,
the results confirm the accuracy of Expression 4: the measured maximum band-
width and the predicted one differ less than 2%.
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Figure 6: Optimal parallelism degrees of different layouts (DP-Join) and of the Hand-
shake Join parallelization.

Fig. 6 gives us also an insight into the scalability of the parallel versions.
Passing from 2 to 4 Workers in the linear layout the offered bandwidth approx-
imately doubles (from 3100 to 6200 tuples/sec). A more complete scalability
analysis is depicted in Fig. 7a using symmetric streams with a high input rate
(6000 tuples/sec). By definition, the scalability with n×m Workers is:

S(m×n) =
Bω

m×n
Bω

1×1
(5)

For brevity we show the results for a linear layout of Workers (similar results can
be achieved by the square and rectangular layouts). With the used configuration
in terms of input rates and window length we have not sufficient cores to reach
the maximum bandwidth of the problem, i.e. the offered bandwidth is lower
than the maximum one Bω

m×n < Bω
max. Nevertheless, DP-Join is characterized

by a near-optimal scalability. With 15 and 16 Workers we exploit the SMT
capabilities of the CPUs by allocating the Emitter and the Collector threads
together with two Workers. In general this could limit the scalability because
of a reduced performance of these two Workers; in our case the problem is
exacerbated by the FastFlow user-level synchronization mechanisms (based on
aggressive busy-waiting); to avoid this problem, we adopt more SMT-aware
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synchronization techniques (i.e. based on busy-waiting with a slight delay) able
to mitigate the overhead of the two support threads reaching a near-optimal
scalability up to 16 Workers.

To provide a correct comparison with Handshake Join, we execute the two
versions on the Intel multi-processor using the same data-set of input tuples with
identical timestamps. Compared with Handshake Join, DP-Join uses a faster
sequential algorithm: the difference is of 24% using 1 Worker as we can observe
from Fig. 6. This is mainly due to our optimized version of the Kang’s procedure
(see Section 4.4), in which we perform a single scan of one of the two window
segments for each received element (instead of both as in the classic procedure).
Nevertheless, from the scalability viewpoint (Fig. 7a) the two implementations
behave very similarly. The performance loss of Handshake Join using 15 and 16
Workers is due to the presence of the Collector and the Driver threads [22] (the
latter in charge of inserting and expiring tuples) and the use of synchronization
methods not optimized for a SMT architecture.

In sub-section 5.3 we will see that layouts have very important effects on
the latency. In principle, we expect that, with the same parallelism degree, any
m×n layout of DP-Join is characterized by the same offered bandwidth, i.e. for
mn less than the optimal parallelism degree:

Bω
m×n =

mn

Ton
p (6)

where Ton is the average time to evaluate the join predicate on a pair of tuples
from X and Y , i.e. each Worker evaluates the predicate every Ton and produces
a result (joined pair) every Ton/p. This expectation is confirmed by our exper-
imental results. Table 1 shows the offered bandwidth using the same stream
configuration of Fig. 7a (stream rates and window length) and three notable
parallelism degrees equal to 6, 9 and 16 Workers, such that the offered band-
width is smaller than the maximum one. With 6 and 16 Workers we use a 2× 3
and a 2× 8 rectangular layout.

Par. Degree Square Layout Rect. Layout Linear Layout

6 - 9,301 8,529
9 14,047 - 13,599
16 21,740 21,700 21,659

Table 1: Offered bandwidth (tuples/sec) by different layouts (DP-Join).

Actually, there are small differences between layouts (in particular, the linear
layout provides a slightly lower performance), because of propagation delays
between Workers (neglected in Expression 6).

5.2.2 Sustainable input rate and Multithreading

we propose a different bandwidth analysis, by reproducing the experiment de-
scribed in [22]. For each parallelism degree we measure the maximum input rate
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(per stream, in the symmetric case) sustainable by the parallelizations. Results
are depicted in Fig. 7b using the SMT facility, where we study the linear lay-
out using up to 32 workers. We consider this layout because all the possible
parallelism degrees are allowed by it, providing a complete trend of the paral-
lelization behavior. We consider two different window lengths of 300 seconds
and 900 seconds (the maximum length discussed in [22] and in [12]) .

As expected, using a windows length of 900 seconds we observe the same
behavior: the results are just numerically lower, since longer windows imply
a coarser grain problem. A significant slowdown is present when we start to
allocate multiple Workers on the same cores using more SMT contexts: as we use
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larger parallelism degrees, the performance slowly increases, roughly reaching
the same input rate sustainable by 16 Workers. In conclusion, while useful to
efficiently support the Emitter and the Collector threads, SMT is ineffective to
further increase the performance of our DP-Join.

As seen in Fig. 7a, our parallelization outperforms Handshake Join. In
Fig. 7a and 7b we can note a significant drop in performance using 15 or 16
Workers with Handshake Join, due to the presence of the Emitter and the Driver
process. Differently to our parallelization, Handshake Join exhibits a slight per-
formance improvement by using more Workers per core. The main reason for
this is probably due to the performance drop using 15 and 16 Workers. If the
parallelization had been efficient with those parallelism degrees, probably the
slight advantage of using more Workers per core would have been completely
vanished.

5.3 Latency analysis

A proper selection of the best layout of DP-Join, although it does not influence
the offered bandwidth, is of great importance to minimize the average latency.
The concept of latency for a stream join computation has been stated in Defi-
nition 4.2.

We consider a simple yet useful approximation of the average latency of a
generic m × n layout of Workers, that allows us to qualitatively understand
the effects on the latency. At each reception of a tuple x from X, the Emitter
schedules the new tuple to a row of Workers. Each Worker applies in parallel
the join evaluation on its Y -window segment. By assuming that joining pairs
of tuples are uniformly distributed, the average latency is given by:

Lx
m×n '

Wy/n∑
i=1

i Ton p

pWy/n
' Wy Ton

2n
(7)

where Lx
m×n denotes the average latency of tuples received from X. Similarly

we can compute Ly
m×n where the X-window segment is of size Wx/m. The

average latency is:
Lm×n = px L

x
m×n + py L

y
m×n (8)

In the case of symmetric streams we can assume the same probability px =
py = 0.5. The previous expression can be rewritten in the following way:

Lm×n =
λTon Tw(m+ n) p

4mn
(9)

By comparing layouts using the same total number of Workers (mn), we observe
that the layout with the lowest latency is the one that minimize m+ n, i.e. the
square one. This observation states an intuitive fact of our parallelization: in
the case of symmetric streams, to minimize the average latency it is important
to equally lower both the terms of Expression 8.
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5.3.1 Symmetric streams

To provide a real validation of this behavior, we perform an experiment using
symmetric streams of rate 2500 tuple/sec and a window length of 300 seconds.
The latency evaluation is meaningful when the system is not a bottleneck, i.e.
when Bω

m×n = Bω
max. Fig. 8a shows the average latency of different layouts

(with the same parallelism degree) during the execution. We can easily observe
that the steady-state phase starts after 300 seconds, i.e. when the two windows
reach their maximum size in terms of elements. The square layout provides the
best latency (0.95 ms on average). The average latency is 60% better with the
linear layout (2.42 ms), while the rectangular one provides a latency between
the other two layouts.
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Figure 8: Latency analysis: (a) average latency over the execution; (b) average latency
with different layouts and parallelism degrees in the case of symmetric streams.

Fig. 8b presents a more complete evaluation using different parallelism de-
grees. We consider streams of 1000 tuple/sec and we take into account only the
layouts able to reach the maximum bandwidth. For each parallelism degree we
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show the average latency with the possible layouts. As confirmed by our analy-
sis, the square layout is the one minimizing latency. The best result is achieved
using a 4 × 4 layout (the latency is slightly better than the 2 × 8 rectangular
one). We can observe that the average latency is monotonically decreasing with
the parallelism degree except with 16 Workers. In that case two Workers are
executed on the same core of the Emitter and the Collector threads resulting in
worse results in terms of latency.

Our DP-Join approach represents a clear improvement w.r.t the actual state-
of-the-art. In [22] Handshake Join has not been analyzed in terms of latency.
To do that, we have slightly modified their source code in order to collect such
measurements. The latency comparison is summarized in Fig. 8a and 8b by
showing the results of Handshake Join and different layouts of DP-Join, which
provides an average latency at least four orders of magnitude smaller. To the
sake of clarity, we show the Handshake Join latency using a different (loga-
rithmic) scale represented in the right part of the plots. The reason for this
great difference is related to the rationale behind this parallelization. A tuple
x assigned to a Worker leaves its partition only when it becomes the oldest
one in that segment and Workers exchange tuples (between neighbors) only to
balance their workload (the size of their window segments). Each tuple stays in
a segment for Tw/N on average, with N the number of Workers. This means
that the speed at which tuples are exchanged depends entirely on the stream
rate instead of the Worker performance. On the contrary, in our approach, at
each reception of a new tuple all the comparisons are performed simultaneously
(neglecting the propagation times for Worker communications).

5.3.2 Asymmetric streams

To conclude, we show a last experiment using asymmetric streams character-
ized by significantly different input rates (Fig. 9). The first one, X, with 1000
tuple/sec and Y with 3000 tuple/sec. In this case our analytical studying is
no longer valid since the two windows have different sizes at steady-state; in-
tuitively, a proper rectangular layout is the best solution to minimize latency
on both windows. This intuition is confirmed by the results shown in Fig. 9:
the rectangular layout is now the one giving the best latency (0.26 ms with
3× 5 Workers compared with 0.30 ms which is the best result obtained by the
4 × 4 square layout). Finally, it is worth noting the behavior of the linear lay-
out, where the latency increases as we use higher parallelism degrees. This fact
can be justified by the propagation delay of received tuples along the pipeline.
This aspect, not captured by the previous qualitative analysis, deserves to be
investigated more deeply in our future work.

Finally, Fig. 9 highlights that the average latency of Handshake Join is sev-
eral orders of magnitude higher than our DP-Join parallelization also in the case
of asymmetric streams.
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of asymmetric streams.

6 Conclusion

The recent interest in DaSP enables a new class of problems that can not
be straightforwardly parallelized using the traditional high-performance solu-
tions. In this paper we introduce the basis of a novel methodology to assist the
programmer during the design and implementation phase of a parallel DaSP
computation. We propose a general approach that, by extending the common
concepts of data parallelism and stream parallelism, proposes a unified view
of continuous query computations, like in DSMSs, and computations defined
on in-memory structures but executed on streams. We identify data distri-
bution/collection and windows management techniques as the most important
issues to achieve scalable solutions providing satisfactory results in terms of
throughput and latency. For this reason, we propose scalable distributions and
window management strategies based on distributed/decentralized models and
implementations.

To demonstrate its effectiveness, we have applied our approach to a criti-
cal benchmark, i.e. the window-based join problem. The first notable result is
that current state-of-the-art implementations, i.e. CellJoin [12] and Handshake
Join [22], are captured by our methodology; nevertheless other interesting par-
allelizations are possible. In fact, we introduce a novel parallel implementation
that effectively overcomes the performance problems of previous works, offering
higher throughput and lower latency at comparable parallelism degrees. We
also introduce a further degree of freedom, i.e. different layouts depending on
the windows partitioning/replication methods.

Another contribution is the experimental study of two important, yet previ-
ously uncovered, aspects: the average latency of the stream join and its behavior
w.r.t asymmetric stream rates. We show that the two aspects are interrelated:
the best result in term of latency is obtained by using different layouts, depend-
ing on the symmetricity or not of stream rates.
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Several improvements can be made on our implementation, both in the algo-
rithmic sense (e.g. using more than two streams, sequential code optimizations,
use of SIMD instructions) and from the experimental standpoint (paralleliza-
tion on shared and distributed memory architectures). Finally, starting from
the results of Section 5, the definition of a performance model will constitute
an important advancement in determining the optimal parallelism degree and
layout able to achieve the desired levels of throughput and latency.

While sufficiently mature to be applied on real applications, the proposed
approach to parallel DaSP applications needs further development. In particu-
lar, we aim at studying other stream problems to further prove the generality
of the approach, and a detailed and formal study on the concept of windowing
and its general applicability to different algorithms.

Finally, considering the high-variability of input rates and workload intensity
in DaSP applications, the approach is worth to be studied in terms of dynamic
adaptiveness, i.e. providing run-time supports and adaptation strategies [18]
able to dynamically change the parallel structure in terms of distributions, win-
dowing methods and layouts.
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