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Abstract

The Unit Commitment problem in energy management aims at finding the optimal
productions schedule of a set of generation units while meeting various system-wide
constraints. It has always been a large-scale, non-convex difficult problem, especially
in view of the fact that operational requirements imply that it has to be solved in
an “unreasonably” small time; recently, the ever increasing capacity for renewable
generation has strongly increased the level of uncertainty in the system, making the
(ideal) Unit Commitment model a large-scale, non-convex, uncertain (stochastic, ro-
bust, chance-constrained) program. We provide a survey of the literature on methods
for the Uncertain Unit Commitment problem, in all its variants. We start with a
review of the main contributions on solution methods for the deterministic versions
of the problem, focussing on those based on mathematical programming techniques
that are more relevant for the uncertain versions of the problem. We then present
and categorize the approaches to the latter, also providing entry points to the relevant
literature on optimization under uncertainty.

1



Keywords: Unit Commitment, Uncertainty, Large-Scale Optimization, Survey

1 Introduction

In electrical energy production and distribution systems, an important problem deals with
computing the production schedule of the available generating units in order to meet their
technical and operational constraints and to satisfy some system-wide constraints, e.g., global
equilibrium between energy production and energy demand. The constraints of the units are
very complex; for instance, some units may require up to 24 hours to start. Therefore, such
a schedule must be computed (well) in advance of real time. The resulting family of models
is usually referred to as the Unit Commitment problem (UC), and its practical importance is
clearly proven by the enormous amount of scientific literature devoted to its solution in the
last four decades and more. Besides the very substantial practical and economical impact of
UC, this proliferation of research is motivated by at least two independent factors:

1. on one hand the evolution in optimization methods, that continuously offer novel
methodological approaches and improve the performances of existing ones, thereby
allowing to tackle previously unsolvable problems;

2. on the other hand, the large variety of different versions of UC corresponding to the
disparate characteristics of electrical systems worldwide (free market vs. centralized,
vast range of production units due to hydro/thermal/nuclear sources, . . . ).

Despite all of this research, UC still cannot be considered a “well-solved” problem. This is
partly due to the need of continuously adapting to the ever-changing demands of practical
operational environments, in turn caused by technological and regulatory changes which sig-
nificantly alter the characteristics of the problem to be solved, and partly due to the fact that
UC is a large-scale, non-convex optimization problem that, due to the operational require-
ments, has to be solved in an “unreasonably” small time. Furthermore, as methodological
and technological advances make previous versions of UC more accessible, practitioners have
a chance to challenge the (very significant) simplifications that have traditionally been done,
for purely computational reasons, about the actual behavior of generating units. This leads
to the development of models where much detail is incorporated, which can significantly
stretch the capabilities of solution methods.

A particularly relevant trend in current electrical systems is the ever increasing use of inter-
mittent (renewable) production sources such as wind and solar power. This has significantly
increased the underlying uncertainty in the system, previously almost completely due to vari-
ation of users’ demand (that could however be forecasted quite effectively) and occurrence
of faults (that was effectively taken into account by requiring some amount of spinning re-
serve). Ignoring such a substantial increase in uncertainty levels w.r.t. the common existing
models incurs an unacceptable risk that the computed production schedules be significantly
more costly than anticipated, or even unfeasible. However, incorporating the uncertainty in
the models is very challenging, in particular in view of the already recalled difficulty of the
deterministic versions of UC.
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Fortunately, optimization methods capable of dealing with uncertainty have been a very
active area of research in the last decade, and several of these developments can be applied,
and have been applied, to the UC problem. This paper aims at providing a survey of
approaches for the Uncertain UC problem (UUC). To the best of our knowledge no such
survey exists, while the literature is rapidly growing. This is easily explained, besides by the
practical significance of UUC, by the combination of two factors: on one hand the already
recalled diversity of operational environments that need to be taken into account, and on
the other hand by the fact that the multitude of applicable solution techniques already
available to the UC (here and in the following we mean the deterministic version when UUC
is not explicitly mentioned) is further compounded by the need of deciding how uncertainty
is modeled. Indeed, the literature offers at least three approaches that have substantially
different practical and computational requirements: Stochastic Optimization (SO), Robust
Optimization (RO), and Chance-Constrained Optimization (CCO). This modeling choice
has vast implications on the actual form of UUC, its potential robustness in the face of
uncertainty, the (expected) cost of the computed production schedules and the computational
cost of determining them; all this means that UUC is even less “well-solved” than UC as well
as a thriving area of research, and therefore a survey about it is both timely and appropriate.

Yet, a survey on UUC cannot but start with a review of the main recent contributions on
solution methods for UC that have an impact on those for the uncertain version. This is
necessary as the last broad UC survey [281] dates back some 10 years, and is essentially an
update of [344]; neither of these consider UUC in a separate way as we will do. The more
recent survey [126] provides some complements to [281] but it does not comprehensively
cover methods based on mathematical programming techniques, besides not considering the
uncertain variants. The very recent survey [331] focusses mainly on nature-inspired or evo-
lutionary computing approaches, most often applied to simple 10-units systems that can
nowadays be solved optimally in split seconds with general-purpose techniques; furthermore
these methods do not provide qualified bounds (e.g., optimality gap) that are most often
required when applying SO, RO or CCO techniques to the solution of UUC. This, together
with the significant improvement of solving capabilities of methods based on mathemati-
cal programming techniques (e.g., Lagrangian or Benders’ decomposition methods, MILP
approaches, . . . ), justifies why in the UC-part of our survey we mostly focus on the latter
rather than on heuristic approaches.

The paper is organized as follows. In Section 2 we describe the technical and operational
constraints in (U)UC models, since, as already recalled, there are many different variants of
UC problems. In Section 3 we will provide an overview of methods that deal with the de-
terministic UC, focusing in particular onto methods dealing with large-scale systems and/or
that can be naturally extended to UUC, at least as subproblems. In particular, in §3.1 we
discuss Dynamic Programming approaches, in §3.2 we discuss Integer and Mixed Integer Lin-
ear Programming approaches, while in §3.3 and §3.4 we discuss decomposition approaches
(Lagrangian, Benders and Augmented Lagrangian), and finally in §3.5 we (quickly) dis-
cuss (Meta-)Heuristics. UUC is then the subject of Section 4: in particular, §4.2 presents
Stochastic Optimization (Scenario-Tree) approaches, §4.3 presents Robust Optimization ap-
proaches, and §4.4 presents Chance-Constrained Optimization approaches. We end the paper
with some concluding remarks in §5.
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2 Ingredients of the Unit Commitment problem

It is necessary to start our presentation with a very short description about the actual
decision-makers, who may find themselves in the need of solving the UC problems. This
discussion will clarify which of the several possible views and needs we will cover, and which
not. When the first UC models were formulated, the usual setting was that of a Monopo-
listic Producer (MP). The MP was in charge of the electrical production, transmission and
distribution in one given area, often corresponding to a national state, comprised the regu-
lation of exchanges with neighbouring regions. In the liberalized markets that are nowadays
prevalent, the decision chain is instead decentralized and significantly more complex. In a
typical setting, companies owning generation assets (GENCOs) have to bid their generation
capacity over one or more Power Exchange (PE) markets. A Transmission System Operator
(TSO), in possession of the transmission infrastructure, then has the duty—acting in concert
with the Power Exchange Manager (PEM)—to ensure safe delivery of the energy, which in
turns means different duties such as real time power balancing, voltage profile stability, and
enforcing real-time network capacity constraints. This basic setting, that can be considered
sufficient for our discussion, is only a simplification of the actual systems, that also show
significant differences in different geographic areas. Indeed, transmission (and distribution)
assets may or may not actually be in possession of different companies that have to offer
them under highly regulated fair and non-discriminative conditions (leaving the TSO only
a coordination role), the TSO and the PEM may or may not be the same entity, and so on.
Furthermore, a number of important mechanisms have not been discussed, such as the role
of consumption and energy service companies, which buy energy on the market(s) or through
bilateral contracts with individual GENCOs to serve aggregate consumers (or profit from
reselling). We have also left aside other factors like how many and PEs there are and how
exactly these are structured; we refer to [90,170,270,340] [87, Chapter 1] for a more detailed
description. Because of this complexity, standard optimization models may no longer be suf-
ficient to deal with all the aspects of the problem, since the behavior of different/competing
decision makers need be taken into account; this may require to employ other methodologies,
such as the computation of equilibria or agent-based simulation. We will not deal with any
of these aspects, the interested reader being referred to [147,170,219,270,340,377] for further
discussion.

2.1 A global view of UC

In broad terms, the (deterministic or uncertain) Unit Commitment problem (both UC in
this section unless explicitly stated) requires to minimize the cost, or maximize the benefit,
obtained by the production schedule for the available generating units over a given time
horizon. As such, the fundamental ingredients of UC are its objective function and its
constraints. Of course, another fundamental ingredient is the time horizon itself; UC being
a short-term model this is most often a day or two of operations, and up to a week. In
the following we will denote it by T , which is typically considered to be a discrete set
corresponding to a finite number of time instants t ∈ T , usually hours or half-hours (down
to 15 or 5 minutes); thus, the typical size of T varies from 24 to a few hundred.

4



In mathematical terms, UC has the general structure

min
{

f(x) : x ∈ X1 ∩X2 ,
}

(1)

where x ∈ R
n is the decision making vector. Usually (most) elements of x are indexed

according to both the generating unit i = 1, . . . , m and the time instant t ∈ T they refer to;
thus one can speak of the subvectors xt of all decisions pertaining to time t and/or xi of all
decisions pertaining to unit i. Also, entries of x are typically split among:

1. commitment decision, discrete variables that determine if a particular unit is on or off
at any given time (often denoted by ut

i
);

2. production decision, continuous variables that provide the amount of generated power
by a specific unit at a given time (often denoted by pt

i
).

3. network decision, such as these representing phase angle or voltage magnitudes, de-
scribing the state of the transmission or distribution network.

A UC problem not having commitment decisions is often called Economic Dispatch (ED)
(e.g. [412]) or Optimal Power Flow (OPF) when the network is considered, (e.g. [305]). It
could be argued that commitment decisions can be easily derived from production decisions
(each time a non-zero production output is present the unit has to be on), but for modeling
purposed it is usually necessary to deal with the two different concepts separately, cf. §3.2.
We remark that network decisions may also comprise binary variables that provide the open
or close state of a particular line, as entirely closing a line is one of the few options that the
physic of electrical networks allows for “routing” the electrical current (cf. §2.7). While ED
can be expected to be simpler than UC, and in fact in most cases is a simple convex program
than can nowadays be solved with off-the-shelf techniques (though it was not necessarily so
in the past, cf. e.g. [107] and the references therein), truth is that even when commitment
decisions are fixed the electrical system is highly nonlinear and nonconvex, e.g., due to
hydro units efficiency curves (cf. §2.4) or the transmission network characteristics (cf. §2.6),
so that ED can still be an absolutely nontrivial problem that may require ad-hoc approaches
(e.g. [106, 182, 189, 269, 304, 305]).

Returning to the description of problem (1), as far as constraints are concerned, X1 is the set
modeling all technical/operational constraints of the individual units and X2 the system-wide
constraints ; the first set is by definition structured as a Cartesian product of smaller sets,
i.e., X1 =

∏

m

i=1X
1
i
, with X1

i
⊆ R

ni and
∑

m

i=1 ni = n. Moreover, the objective function
f typically also allows for a decomposition along the sets X1

i
, i.e., f(x) =

∑

m

i=1 fi(xi) and
xi ∈ X1

i
. Each of the sets X1

i
roughly contains the feasible production schedules for one unit,

that can differ very significantly between different units due to the specific aspects related to
their technological and operational characteristics. In most models the set X1 is non-convex.
However, in general units sharing the same fundamental operational principles also share a
large part of their constraints; because of this, these constraints are best described according
to the type of the generating units, i.e.,

1. thermal units (cf. §2.3);
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2. hydro units (cf. §2.4);

3. renewable generation units (cf. §2.3–2.5).

While hydro units are arguably a part of renewable generation, in the context of UC it is
fundamental to distinguish between those units that are programmable and those that are
not. That is, hydroelectric generation systems relying on a flow that can not be programmed
are instead to be counted among renewable generation ones together with solar and wind-
powered ones. That is unless these so-called run-of-river (ROR) units are part of a hydro
valley, preceded by a programmable hydro one (cf. §2.4).

The set X2, which usually models at least the offer-demand equilibrium constraints, is
most often, but not always, convex and even polyhedral. This set may also incorporate
other system-wide constraints, such as emission constraints, network transmission constraints
(cf. §2.6) or optimal transmission switching constraints (cf. §2.7).

Solving (1) is difficult when n is large (which usually means that m is large) or X1 is a
complex set; the latter occurs e.g. when substantial modeling detail on the operations of
units is integrated in the model. Finally, (1) contains no reference to uncertainty, but at
least the following sources of uncertainty are present in actual operational environments:

1. uncertainty on inflows for the hydro reservoirs;

2. uncertainty on customer load;

3. uncertainty on renewable generation;

4. uncertainty on unit availability;

5. uncertainty on energy prices.

Various ways to incorporate uncertainty in (1) are discussed in §4.1. Obviously, solving (1)
becomes more difficult when uncertainty is present, even when n is small and X1 relatively
simple. Thus, properly exploiting the structure of the problem (the function f and the sets
X1 and X2) is crucial to obtain efficient schemes for UC, and even more so for UUC. This is
why we now provide some detail on different modeling features for each of these components.

2.2 The objective function

The objective function of UC is one of the main factors reflecting the different types of
decision-makers described in the previous section. In fact, when the production needs be
satisfied (as in the case of the MP, or of a GENCO having had a certain set of bids accepted)
the objective function fundamentally aims at minimizing energy production costs ; this is not
necessarily obvious (cf. the case of hydro units below), but the principle is clear. However, in
the free-market regime the aim is typically rather to maximizing energy production profits.
This again requires estimating the costs, so the same objective as in the MP case largely
carries over, but it also requires estimating the revenues from energy selling, as it is the

6



difference between the two that has to be maximized. In particular, if the GENCO is a
price maker it may theoretically indulge in strategic bidding [100], whereby the GENCO
withdraws power from the market (by bidding it at high cost) in order to push up market
prices, resulting in an overall diminished production from its units but higher profit due to
the combined effect of decreased production cost and increased unitary revenue for the pro-
duced energy. Of course, the success of such a strategy depends on the (unknown) behavior
of the other participants to the market, which thereby introduces significant uncertainty in
the problem. The electrical market is also highly regulated to rule out such behavior of
the market participants; in particular, larger GENCOs, being more easily price makers, are
strictly observed by the regulator and bid all their available capacity on the market. Yet, the
solution of strategic bidding problems is of interest at least to the regulators themselves, who
need to identify the GENCOs who may in principle exercise market power and identify pos-
sible patterns of abuse. Even in the price taker case, i.e., a GENCO with limited assets and
little or no capacity to influence market prices, uncertainty is added by the need of accurately
predicting the selling price of energy for each unit and each t ∈ T [154]. This uncertainty
must then be managed, e.g. with techniques such as those of Robust Optimization [206].

Energy production costs for fuel-burning units are typically modeled (in increasing order
of complexity) as linear, piecewise-linear convex, quadratic convex, or nonconvex functions
separable for each t ∈ T . In fact, while the fuel-consumption-to-generated-power curve can
usually be reasonably well approximated with a piece-wise linear function or a low-order
polynomial one, other technical characteristics of generating systems introduce nonconvex
elements. The simplest form is that of a fixed cost to be paid whenever the unit is producing
at some t ∈ T , irrespectively of the actual amount of generated power. In alternative, or
in addition, start-up costs (and, less frequently, shut-down ones) are incurred when a unit
is brought online after a period of inactivity. In their simplest form start-up costs can be
considered fixed, but most often they significantly depend on the time the unit has been
off before having been restarted, and therefore are not separable for each time instant. The
dependency of the start-up cost on time can be rather complex, as it actually depends on the
choice between the unit being entirely de-powered (cooling) or being kept at an appropriate
temperature, at the cost of burning some amount of fuel during the inactivity period, to make
the start-up cheaper (banking); technically speaking, in the latter case one incurs in a higher
boiler cost to offset part of the turbine cost. The choice between these two alternatives can
often be optimally made by simple formulae once the amount of idle time is known, but this
is typically not true beforehand in UC since the schedule of the unit is precisely the output
of the optimization problem. Fortunately, some of the solution methods allow inclusion of
the start-up cost at a relatively minor increase of the computational complexity (this is the
case of MILP formulations, cf. §3.2, exploiting the fact that the optimal start-up cost is
nondecreasing as the length of the idle period increases, e.g. [71, 267]), or even basically
for free (this is the case of DP approaches, cf. §3.1, e.g., [141]). Other relevant sources of
nonconvexity in the objective function are valve points [394], corresponding to small regions
of the feasible production levels where the actual working of the unit is unstable (e.g., due to
transitioning between two different configurations in a combined-cycle unit or other technical
reasons) and that therefore should be avoided.

Nuclear units are generally considered among the thermal plants, although they significantly
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differ in particular for the objective function. Indeed, fuel cost has a different structure and
depends on many factors, not only technical but also political (e.g., [110]). For convenience,
formulas similar to that of conventional thermal plants are often used. However, these
units incur additional significant modulation costs whenever variations of power output are
required; this cost is therefore again not separable per time instant.

Hydro units are generally assumed to have zero energy production cost, although they may
in principle have crew and manning costs. In the self-scheduling case, where profit has to
be maximized, this would lead to units systematically depleting all the available water due
to the fact that a short-term model such as UC has no “visibility” on what happens after
the end of its time horizon T (the so-called “border effect”). Because of this, often a value
of water coefficient is added to the objective function to represent the expected value of
reserves left in the reservoirs at the end of T . These values, as well as the required reservoir
levels (cf. 2.4), are usually computed by means of specific mid-term optimization models. A
very standard approach is to value the differential between the initial and end volume of a
reservoir against a volume-dependent water value; we refer to [76,373] for details on various
other modeling choices. A particular difficulty appears when we wish to integrate the water
head effect on turbining efficiency (e.g., [131, 310]), since this is typically a nonlinear and
nonconvex relationship.

In general, the case of profit maximization clearly requires knowledge of the selling and
buying price of energy at each t ∈ T . Because UC is solved ahead of actual operations,
possibly precisely with the aim of computing the bids that will contribute to the setting of
these prices (cf. e.g., [54,59,205,314]), this already requires nontrivial forecast models in order
to obtain reasonable estimates of the prices (e.g., [221, 275, 408]). Depending on the time
horizon and specific application, different price models can be considered. These can come
from time series modelling (e.g., [115,254,290]), mathematical finance (e.g., [41,183,261,275,
292]) or can be based on electricity fundamentals (e.g., [120, 375]). For the case where the
producer is a price taker, that is, small enough so that its production can be deemed to have
little or no effect on the realized prices, UC can typically be independently solved for each
individual unit (thus being styled as the self-scheduling problem), and it is therefore much
easier [16], although uncertainty in prices then becomes a critical factor [89,206,265]. Things
are significantly different in case the producer can exercise market power, that is, influence
(increase) the prices by changing (withdrawing) the power it offers to the market; there,
this effect needs to be appropriately modeled which “ties” all the units back again into an
unique UUC [59,88,102,293]. Uncertainty in this case is also very relevant, with the behavior
of competitors being one obvious primary source [6, 9, 298, 385, 389]. The matter is further
complicated by the fact that the structure of the PE is usually complex, with more than
one auction solved in cascade to account for different kinds of generation (energy, reserve,
ancillary services, . . . ) [22,363,384] and by the fact that tight transmission constraints may
create zonal or even nodal prices, thereby allowing producers who may not have market
power in the global context to be able to exercise it in a limited region [222, 291, 293].
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2.3 Thermal units

A thermal power station is a power plant in which the prime mover is steam driven. Tech-
nical/operational constraints can be classified as either static or dynamic: the former hold
on each time step, whereas the latter link different (most often adjacent) time steps. Most
typical static constraints are:

1. Offline: when the unit is offline, the power output is less than or equal to zero (nega-
tive power output refers to the power used by auxiliary installations, e.g., for nuclear
plants).

2. Online: when the unit is online, the power output must be between Minimal Stable
Generation (MSG) and maximal power output.

3. Starting: the unit is ramping up to MSG. The ramping profile depends on the number
of hours a unit has been offline (e.g., [209]); see also in starting curve below. A unit in
this state can in principle still be disconnected for a later start, but at a cost.

4. Stopping: the unit ramps down from MSG to the offline power output. The ramping
profile depends on the number of hours a unit has been online (e.g., [209]); see below
in stopping curve.

5. Generation capacity: the production capacity of each unit. For some units the pro-
duction output has to be selected among a discrete set of values.

6. Spinning reserve: the extra generating capacity that is available by increasing the
power output of generators that are already connected to the power system. For most
generators, this increase in power output is achieved by increasing the torque applied to
the turbine’s rotor. Spinning reserves can be valued separately from actively generated
power as they represent the main mechanism that electrical systems have to cope with
real-time variations in demand levels.

7. Crew constraint: number of operators available to perform the actions in a power plant.

Typical dynamic constraints instead are:

1. Minimum Up/Down Time: a unit has to remain online/offline for at least a specific
amount of time.

2. Operating Ramp Rate (also known as ramp-down and ramp-up rate): the increment
and decrement of the generation of a unit from a time step to another, excluding
start-up and shut-down periods, must be bounded by a constant (possibly different for
ramp-up and ramp-down).

3. Minimum Stable State Duration: a unit that has attained a specific generation level
has to produce at that level for a minimum duration of time.
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4. Maximum Numbers of Starts: the number of starts can be limited over a specific time
horizon (such a constraint is also implicitly imposed by Minimum Up/Down Time ones,
and in fact the two are often alternatives).

5. Modulation and Stability: these constraints are mainly applied to an online nuclear
unit. A unit is in modulation if the output level changes in a time interval, whereas
it is stable if the power level remains identical to that of the previous time step. The
constraints ensure that the unit is “most often stable”, e.g., by requiring that the
number of modulations does not exceed a predefined limit over a given time span (say,
24 hours).

6. Starting (Stopping) Curve (also referred to in literature as start-up/shut-down ramp
rate): in order to start (stop) a unit and move it from the offline (online) state to the
online (offline) state, the unit has to follow a specific starting (stopping) curve, which
links offline power output (zero, or negative for nuclear plants) to MSG (or vice-versa)
over the course of several time steps. Each starting (stopping) curve implies a specific
cost, and the chosen curve depends on the number of hours the plant has been offline
(online). Starting (stopping) may take anything from several minutes (and therefore
be typically irrelevant) up to 24 hours (and therefore be pivotal for the schedule).

2.4 Hydro units

Hydro units are in fact entire hydro valleys, i.e., a set of connected reservoirs, turbines and
pumps that influence each other through flow constraints. Turbines release water from uphill
reservoirs to downhill ones generating energy, pumps do the opposite. Note that the power
output of ROR units downstream to a reservoir (and up to the following reservoir, if any)
must be counted together with that of the turbines at the same reservoir. Usually it is
possible to do this by manipulating the power-to-discharged-water curve of the unit at the
reservoir, and thus ROR units in a hydro valley need not be explicitly modeled. We remark
in passing that the status of ROR unit depend on the time horizon of the problem; units
with small reservoirs can be explicitly modeled in UC because they do have a degree of
modulation over the short term, but they may be considered ROR in longer-term problems
since the modulation is irrelevant over long periods of time.

As for thermal units, we distinguish constraints as being either static or dynamic; the typical
ones of the first kind are:

1. Reservoir Level: the level of water in each reservoir has to remain between a lower
and upper bound. Frequently these bounds are used to reflect strategic decisions
corresponding to optimal long-term use of water (cf. §2.2), and not necessarily reflect
physical bounds. An alternative is to use a nonlinear cost of water that reflects the
higher risk incurred in substantially depleting the reservoir level, as water in hydro
reservoirs represents basically the only known way of efficiently storing energy on a
large scale and therefore provides a crucial source of flexibility in the system; yet,
bounds on the level would ultimately be imposed anyway by physical constraints.
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2. Bounds: turbines and pumps can operate only within certain bounds on the flowing
water; in particular, some turbines might have a minimal production level akin to the
MSG of thermal units.

The most common dynamic constraints are:

1. Flow Equations: these equations involve the physical balance of the water level in each
reservoir and connect the various reservoirs together. The reservoir levels get updated
according to natural inflows, what is turbined downhill, what is spilled downhill (i.e.,
let go from the reservoir to the next without activating the turbines), and what is
pumped from downhill to uphill. Spilling might not be allowed for all reservoirs, nor
all have pumping equipment.

2. Flow delay: the water flowing (uphill or downhill) from each unit to the next reservoir
will reach it after a given delay, that can possibly be of several hours (and occasionally
even more [31]).

3. Ramp Rate: adjacent turbining levels have to remain sufficiently close to each other.

4. Smooth Turbining: over a a given time span (e.g., one hour), turbining output should
not be in a V -shape, i.e., first increase and immediately afterwards decrease (or vice-
versa). This constraint is typically imposed to avoid excessive strain on the compo-
nents, similarly to several constraints on thermal units such as Minimum up/down
Time, Maximum Numbers of Starts, Modulation and Stability.

5. Turbining/Pumping Incompatibility: some turbines are reversible and therefore pump-
ing and turbining can’t be done simultaneously. Moreover, switching from turbining to
pumping requires a certain delay (e.g., 30 minutes). Some of these constraints actually
only refer to a single time instant and therefore they can be considered as static.

6. Forbidden Zones: in complex hydro units, effects like mechanical vibrations and cav-
itation strongly discourage using certain intervals of turbined water, as these would
result in low efficiency and/or high output variation (similarly to valve points in ther-
mal units, cf. §2.2). Therefore, constraints that impose that the turbined water lies
outside of these forbidden zones might have to be imposed [129].

2.5 Renewable generation units

Renewable generation in UC mostly refers to wind farms, solar generation, stand alone ROR
hydro units, and geothermal production. The fundamental characteristic of all these sources,
as far as UC is concerned, is the fact that they cannot be easily modulated: the produced
energy, and even if energy is produced at all (in some wind farms energy is actually con-
sumed to keep the blades in security when wind blows to strongly), is decided by external
factors. Some of these sources, most notably solar and wind, are also characterized by their
intermittency; that is, it is very difficult to provide accurate forecasts for renewable genera-
tion, even for short time horizons (say, day-ahead forecasts). Furthermore, in several cases
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renewable generation operates in a special regulatory regime implying that they cannot even
be modulated by disconnecting them from the grid; this has (not frequently, but increasingly
often) led to paradoxical situations where the spot price of energy is actually negative, i.e.,
one is paid to consume the energy that renewable sources have the right to produce (and
sell at fixed prices) no matter what the demand actually is. All this has lead to significant
changes in the operational landscape of energy production systems, that can be summarized
by the following factors:

1. The total renewable production can’t be predicted accurately in advance.

2. Renewable generation has high variance.

3. The correlation between renewable generation and the load can be negative, which
is particularly troublesome when load is already globally low, since significant strain
is added to conventional generation assets which may have to quickly ramp down
production levels, only to ramp them up (again rapidly) not much later. This goes
squarely against most of the standard operational constraints in classical UC (cf. §2.3
and §2.4).

In other words, in UC terms renewable generation significantly complicates the problem not
so much because it makes its size or structure more difficult, but because it dramatically
increases the level of uncertainty of net load (the load after the contribution of renewables
is subtracted), forcing existing generation units to serve primarily (or at least much more
often than they were designed to) as backup production in case of fluctuations rather than
as primary production systems. This increases the need of flexible (hydro-)thermal units
ready to guarantee load satisfaction at a short notice, which however typically have a larger
operational cost. We refer to [61, 243, 251, 335, 349] for further discussion of the integration
of renewable generation in UC.

2.6 System-wide constraints

The most common form of system-wide constraints are the load constraints guaranteeing that
global energy demand is exactly satisfied for each t ∈ T . This kind of constraint is not present
in the self-scheduling version of UC where each unit reacts independently to price signals, but
global load satisfaction has to be taken into account sooner or later even in liberalized market
regimes. For instance, in several countries, after the main energy market is cleared, GENCOs
can swap demand between different units in order to better adjust the production schedules
corresponding to the accepted bids to the operational constraints of their committed units,
that are not completely represented in the auctions [312]. Alternatively, or in addition,
an adjustment market is ran where energy can be bought/sold to attain the same result
[282,334]. In both these cases the production schedules of all concerned units need be taken
into account, basically leading back to global demand constraints. Also, in UC-based bidding
systems the global impact of all the generation capacity of a GENCO on the energy prices
need to be explicitly modeled, and this again leads to constraints linking the production
levels of all units (at least, these of the given GENCO) that are very similar to standard
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demand constraints. Conversely, even demand constraints do not necessarily require the
demand to be fully satisfied; often, slacks are added so that small amounts of deviation can
be tolerated, albeit at a large cost (e.g., [117, 407]).

Another important issue to be mentioned is that the demand constraints need in general
to take into account the shape and characteristics of the transmission network. These are
typically modeled in three different levels of approximation:

• The single bus model : basically the network aspects are entirely disregarded and the
demand is considered satisfied as soon as the total production is (approximately) equal
to the total consumption, for each time instant, irrespectively of where these happen on
the network. This corresponds to simple linear constraints and it is the most common
choice in UC formulations.

• The DC model where the network structure is taken into account, comprising the
capacity of the transmission links, but a simplified version of Kirchhoff laws is used so
that the corresponding constraints are still linear, albeit more complex than in the bus
model [136,190,213]. In [5] the concept of umbrella constraints is introduced to define
a subset of the network DC constraints that are active in order to significantly reduce
the size of these constraints.

• The AC model where the full version of Kirchhoff laws is used, leading to highly
nonlinear and nonconvex constraints, so that even the corresponding ED becomes dif-
ficult [245,246,255,350,351]. A recent interesting avenue of research concerns the fact
that the non-convex AC constraints can be written as quadratic relations [189,304,305],
which paves the way for convex relaxations using semidefinite programming (SDP) ap-
proaches [106]. In particular, in the recent [184] a quadratic relaxation approach is pro-
posed which builds upon the narrow bounds observed on decision variables (e.g. phase
angle differences, voltage magnitudes) involved in power systems providing a formula-
tion of the AC power flows equations that can be better incorporated into UC models
with discrete variables, notably the ones of cf. §2.7. A recount of these recent devel-
opments can be found in [50].

Although market-based electrical systems have in some sense made network constraints less
apparent to energy producers, they are nonetheless still very relevant nowadays; not only in
the remaining vertically integrated electrical systems, but also for the TSO that handles net-
work security and efficiency. This requires taking into account a fully detailed network model,
even considering security issues such as N − 1 fault resilience, together with a reasonably
detailed model of GENCOs’ units (comprising e.g. infra-hour power ramps, start-up costs,
and start-up/shut-down ramp rate), when solving the Balancing Market (BM) problem. The
latter is basically a residual demand, bidding-based UC. From a different perspective, net-
work constraints might also be important for GENCOs that are able exercise market power
in case zonal or nodal pricing is induced by the network structure [303].

Finally, both for vertically integrated system and in the TSO perspective, other relevant
system-wide constraints are spinning reserve ones: the committed units must be able to
provide some fraction (at least 3% according to [360]) of the total load in order to cope with
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unexpected surge of demand or failures of generating units and/or transmission equipment.
Other global constraints linking all units, or some subsets of them, exist: for instance, all (or
specific subsets of) fossil-fuel burning units may have a maximum cap on the generation of
pollutants (CO2, SOx, NOx, particles, . . . ) within the time horizon [146, 156, 187, 204, 387].
Alternatively, a cluster of geographically near units (a plant) burning the same fuel (typically
gas) may be served by a unique reservoir, and can therefore share a constraint regarding
the maximum amount of fuel that can be withdrawn from the reservoir within the time
horizon [13,14,83,146,362]. Finally, there may be constraints on the minimum time between
two consecutive start-ups in the same plant [117], e.g., due to crew constraints. If a plant
comprises a small enough number of units it could alternatively be considered as a single
“large” unit, so that these constraints become technical ones of this aggregated generator;
clearly, the problem corresponding to such a meta-unit then becomes considerably more
difficult to solve.

2.7 Optimal Transmission Switching

In UC, usually the transmission network has been regarded as a “passive” element, whose
role was just to allow energy to flow from generating units to demand points. This is also
justified by the fact that, as already recalled, electrical networks, unlike most other networks
(logistic, telecommunications, gas, water, . . . ) are “not routable”: the current can only
be influenced by changing nodal power injection, which is however partly fixed (at least as
demand is concerned). Indeed, in traditional UC models there were no “network variables”,
and the behavior of the transmission system was only modeled by constraints. However, as
the previous paragraph has recalled, the transmission network is by far not a trivial element
in the system, and separate network variables are required. This has been recently further
extended to the case where the system behavior can be optimized by dynamically changing
the topology of the network. This is a somewhat counterintuitive consequence of Kirchhoff
laws: opening (interrupting) a line, maybe even a congested one, causes a global re-routing
of electrical energy and may reduce the overall cost e.g. by allowing to increase the power
output of some cheaper (say, renewable) units [133]. This effect can be especially relevant in
those parts of the network with a high fraction of renewables whose production is sometimes
cut off because of network constraints.

This has generated a new class of problems, called Optimal Transmission Switching (OTS)
or System Topology Optimization (STO), whereby each line of the network has an associated
binary decision (for each t ∈ T ) corresponding to the possibility of opening it. Clearly, this
makes the problem difficult to solve even with a very simple model of nodal injections and
a simple network model such as the DC one (cf. §2.6); even more so with the AC model
and a complete description of the generating units. This extends the class of UC models to
the so-called UCOTS ones [65, 93, 133, 171–174, 197, 202, 226, 227, 236, 273, 274, 279, 295, 379].
Of course, almost everything that can be said about UC is a fortiori valid for UCOTS, and
hence in the following we will not distinguish between the two unless strictly necessary.
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3 Methods for the deterministic Unit Commitment

We now proceed with a survey of solution methods for (the deterministic) UC. Our choice
to first focus on the case where the several forms of uncertainty arising in UC (cf. §2.1) are
neglected is justified by the following facts:

• UC already being a rather difficult problem in practice, most work has been carried
out in the deterministic setting;

• uncertainty can be taken into account through various “engineering rules”: for instance,
spinning reserves allow to account for uncertainty on load, tweaking reservoir volumes
might allow to account for uncertainty on inflows, and so on;

• methods for solving the deterministic UC are bound to provide essential knowledge
when dealing with UUC.

As discussed in Section 2, UC is not one specific problem but rather a large family of problems
exhibiting common features. Since the set of constraints dealt with in the UC literature varies
from one source to another, we define what we will call a basic Unit Commitment problem
(bUC) which roughly covers the most common problem type; through the use of tables
we will then highlight which sources consider additional constraints. A bUC is a model
containing the following constraints:

1. offer-demand equilibrium;

2. minimum up or down time;

3. spinning reserve;

4. generation capacities.

The UC literature review [344], of which [281] is essentially an update adding heuristic
approaches, generally classify UC methodology in roughly eight classes. We will essentially
keep this distinction, but regroup all heuristic approaches in “Meta-Heuristics”, thus leading
us to a classification in:

1. Dynamic Programming;

2. MILP approaches;

3. Decomposition approaches;

4. (Meta-)Heuristics approaches.

We will also add some of the early UC approaches in the Heuristic class such as priority
listing; however we will not delve much on that class of approaches, since the recent surveys
[126, 331] mainly focus on these, while providing little (or no) details on approaches based
on mathematical programming techniques, that are instead crucial for us in view of the
extension to the UUC case.
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3.1 Dynamic Programming

Dynamic Programming (DP, see e.g. [30,44,45]) is one of the classical approaches for UC. As
discussed below, it is nowadays mostly used for solving subproblems of UC, often in relation
with Lagrangian-based decomposition methods (cf. 3.3); however, attempts have been made
to solve the problem as a whole. There have been several suggestions to overcome the
curse of dimensionality that DP is known to suffer from; we can name combinations of DP
and Priority Listing (DP-PL) [186, 355], Sequential Combination (DP-SC) [284], Truncated
Combination (DP-TC) [283], Sequential/Truncated Combination (DP-STC) (the integration
of the two aforesaid methods) [284], variable window truncated DP [276], approximated DP
[101] or even some heuristics such as the use of neural network [276] or artificial intelligence
techniques [382]. The multi-pass DP approach [123,405] consists of applying DP iteratively,
wherein in each iteration the discretization of the state space, time space and controls are
refined around the previously obtained coarse solution; usually, this is applied to ED, i.e.,
once commitment decisions have been fixed. In [284] three of the aforesaid methods, DP-
PL, DP-SC, and DP-STC are compared against a priority list method on a system with
96 thermal units, showing that the DP-related approaches are preferable to the latter in
terms of time and performance. The recent [353] performs a similar study on a bUC with
10 thermal units, but only DP approaches are investigated.

Despite its limited success as a technique for solving UC, DP is important because of its role
in dealing with sub-problems in decomposition schemes like Lagrangian relaxation. These
typically relax the constraints linking different unit together, so that one is left with single-
Unit Commitment (1UC) problems, i.e., self-scheduling ones where the unit only reacts to
price signals. In the “basic” case of time-independent startup costs 1UC can be solved
in linear time on the size of T ; when dealing with time-dependent startup costs this cost
becomes quadratic [27,413]. However, this requires that the optimal production decisions pi

t

can be independently set for each time instant if the corresponding commitment decision ui

t

is fixed, which is true in bUC but not if ramp rate constraints are present. It is possible to
discretize power variables and keep using DP [29], but the approach is far less efficient and the
determined solution is not guaranteed to be feasible. An efficient DP approach for the case
of ramp rate constraints and time-dependent startup costs has been developed in [125] under
the assumption that the power production cost is piecewise linear, and extended in [141] for
general convex cost functions; under mild conditions (satisfied e.g., in the standard quadratic
case), this procedure has cubic cost in the size of T . DP has also been used to address hydro
valley subproblems in [354] where a three stage procedure is used: first an expert system is
used to select desirable solutions, then a DP approach is used on a plant by plant basis, and
a final network optimization step resolves the links between the reservoirs. In [328] expert
systems and DP are also coupled in order to solve UC. We also mention the uses of expert
systems in [244].

Most often DP approaches are applied to bUC, but other constraints have been considered
such as multi-area, fuel constraint, ramp rates, emission constraints, and hydro-thermal
systems. We refer to Table 1 for a complete list.
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Table 1: Sources using Dynamic Programming
Basic UC Additional UC constraints

Must Fixed Crew Ramp Operating Maint- Hydro Fuel Emission
Run/Off Generation Constr. Rate Reserve nance -Thermal Const.

[283] [284] [276] [283] [277] [283] [283] [141] [142] [354] [244] [142] [354] [4] [187]
[277] [141] [142] [125] [244]
[125] [354] [328] [382]
[244] [353] [29]

3.2 Integer and Mixed Integer Linear Programming

Early use: exhaustive enumeration. As its name implies, this approach focusses on
a complete enumeration of the solution space in order to select the solution with the least
cost. bUC is addressed in [169, 200], while in [169] the cost function considers penalties for
loss of load and over production. In [200] a set of 12 thermal units on a two hour basis
is scheduled. In [169] a problem with two groups, each of which has 5 thermal units is
analyzed. This traditional approach lacks scalability to large-scale systems; however, some
enumeration may find its way into hybrid approaches such as decomposition methods under
specific circumstances, like in [131] where enumeration is used in some of the subproblems
in a decomposed hydro valley system.

Modern use. With the rise of very efficient MILP solvers, MILP formulations of UC have
become common. Of course, their efficiency heavily depends on the amount of modeling
detail that is integrated in the problem. Early applications of MILP can be found in [84,
149,253], and in [84] it is stated that the model could be extended to allow for probabilistic
reserve constraints. Hydro-thermal UC is considered in [112, 294, 343] where constraints
regarding hydro units such as flow equations, storage level of reservoirs, pump storage and
min and max of outflow of each reservoir are incorporated in the model.

Some specific constraints such as the number of starts in a day or particular cost functions
with integrated banking costs can be found in [208, 368]. In [208] the authors combine
Lagrangian relaxation (e.g., [252]) with a B&B procedure in order to derive valid bounds
to improve the branching procedure. The upper bound is derived by setting up a dynamic
priority list in order to derive feasible solutions of the UC and hence provide upper bounds;
it is claimed that a 250 unit UC can be solved up to 1% of optimality in less than half
an hour, a significant feat for the time. A similar approach is investigated in [289], where
a heuristic approach using, among things, temporal aggregation is used to produce a good
quality integer feasible solution to warm-start a B&B procedure.

While MILP is a powerful modeling tool, its main drawback is that it may scale poorly when
the number of units increases or when additional modeling detail is integrated. To overcome
this problem it has been combined with methods such as DP [55], logic programming [188]
and Quadratic Programming (QP) [339]. In [339] a hydro-thermal UC with various con-
straints is solved; a customized B&B procedure is developed wherein binary variables are
branched upon according to their difference from bounds. The approach does not require any
decomposition method, and it is reported to reduce solution time significantly in comparison
to other methods. The paper builds upon [145], where a six-step solution is proposed to
solve large-scale UC; the algorithm is reported to be capable of solving security-constrained
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problems with 169, 676 and 2709 thermal units in 27s, 82s and 8 minutes, respectively. This
so-called Fast-Security Constraint Unit Commitment problem (F-SCUC) method is based on
an ad-hoc way of fixing binary variables and gradually unlock them if needed; Benders-type
cuts are employed to this end. However, in [142] it is reported that MILP models where the
objective function is piecewise-linearly approximated are much more effective than the direct
use of (MI)QP models, at least for one specific choice and version of the general-purpose
MIQP solver. In [144] it is suggested how to combine MIP and Lagrangian methods: prob-
lems with up to 200 thermal units and 100 hydro units can be solved in a few minutes if the
desired accuracy is set appropriately.

Systems with a significant fraction of hydro generation require a specific mention due to a
notable characteristic: the relationship between the power that can be generated and the
level of the downstream reservoir (head-to-generated-power function), that can be highly
nonlinear [72], and in particular nonconvex. This can be tackled by either trying to find
convex formulations for significant special cases [406], developing ad-hoc approximations
that make the problem easier to solve [73], or using the modeling features of MILP to
represent this (and other nonconvex) feature(s) of the generating units [79, 297]. However,
developing a good approximation of the true behavior of the function is rather complex
because it depends on both the head value of the reservoir and the water flow. MILP models
for accurately representing this dependency have been presented in [192], and more advanced
ones in [57] using ideas from [95]; while they are shown to significantly improve the quality
of the generated schedules, this feature makes UC markedly more complex to solve.

Recent trends. Recently, MIP (and in particular MILP) models have attracted a re-
newed attention due to a number of factors, most notably the fact that MILP solvers have
significantly increased their performances and started to efficiently integrate selected nonlin-
ear features (in particular convex quadratic objective functions and their generalization, i.e.,
Second-Order Cone Constraints) so that more and more UC formulations can be solved by
MILP models with reasonable accuracy in running times compatible with actual operational
use [71]. This is especially interesting because MIP models are much easier to modify than
custom-made solution algorithms, which—in principle—allows to quickly adapt the model
to the changing needs of the decision-makers; however, it has to be remarked that each
modification to the model incurs a serious risk of making the problems unbearably more
difficult to solve. Two somewhat opposite trends have recently shown up. On one side,
tighter formulations are developed that allow to more efficiently solve a given UC problem
because the continuous relaxation of the model provides better lower bounds. On the other
hand, more accurate models are developed which better reflect the real-world behavior of
the generating units and all the operational flexibility they possess (cf. e.g. [185, 230, 238]),
thereby helping to produce better operational decisions in practice.

On the first stream, the research has focussed on finding better representations of signifi-
cant fragments of UC formulations. For instance, [247, 271] develop better representations
of the polyhedra describing minimum up- and down-time constraints and ramping con-
straints, whereas [143,191,395] focus on better piecewise-linear reformulations of the nonlin-
ear (quadratic) power cost function of thermal units. Both approaches (that can be easily
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combined) have been shown to increase the efficiency of the MILP solver for a fixed level of
modeling detail.

The second stream rather aims at improving the accuracy of the models in representing
the real-world operating constraints of units, that are often rather crudely approximated in
standard UC formulations. For hydro units this for instance concerns technical constraints
[79] and the already discussed water-to-produced-energy function, with its dependency from
the water head of the downstream reservoir [57,131,297]. For thermal units, improvements in
the model comprise e.g. the correct evaluation of the power contribution of the start-up and
shut-down power trajectories (when a unit is producing but no modulation is possible) [17],
which may make the model significantly more difficult unless appropriate techniques are
used [248], or a clearer distinction between the produced energy and the power trajectory of
the units [148, 249].

In the OTS context (cf. § 2.7), special care must be given when modeling the Kirchhoff
laws, as this leads to logic constraints that, in MILP models, are typically transformed into
“Big-M” (hence, weak) linear constraints. Moreover, severe symmetry issues [272] must be
faced [236,274], as these can significantly degrade the performances of the B&B approach. All
these difficulties, not shared by UC with DC or AC network constraints, require a nontrivial
extension of the “classic” MILP UC models. Many approaches use off-the-shelf B&B solvers,
while possibly reducing the search space of the OTS binary variables [227, 273, 295] and
using tight formulations for the thermal units constraints. All the references use classic
quadratic cost functions; one exception can be found in [236], where a direct MILP approach
is combined with a perspective cuts approximation [143] and a special perturbation of the
cost function that successfully breaks (part of the) symmetries. Together with heuristic
branching priorities that give precedence to the thermal UC status variables, this is shown
to be much better than using a classic quadratic function, with or without perturbations,
for solving the IEEE 118 test case.

Table 2: Sources using MILP approaches
Basic UC Additional UC constraints

Must Trans Modul- Starts Hot/Cold Ramp Hydro- Water- Thermal- Fuel Emission
Run/Off .-OTS -ation Starts Rate Thermal head Stress

[112,149,253] [112] [133,294] [112] [368] [208] [188,339] [339,343] [297,406] [223] [230] [230]
[55,113,368] [143] [230,236] [71,144] [112,294] [57,79]
[168,294,343] [144] [173,174] [230,271] [144,264] [131]
[84,188,208] [197,295] [143,247] [143]
[238, 339] [274,279] [17,191]

[227,273] [148,248]
[202,226] [148,249]
[171,172]
[65]

3.3 Lagrangian and Benders Decomposition

UC possesses several forms of structure that can be algorithmically exploited; the most obvi-
ous one is that (complex) units are usually coupled through demand and reserve requirements
(the set X2 in (1)). Since these constraints are usually in limited number and “simple”, La-
grangian Decomposition (or Relaxation, LR) [139, 164, 215] is an attractive approach and
has been widely used. It is based on relaxing these coupling constraints by moving them in
the objective function, weighted by appropriate Lagrangian multipliers, so that the relaxed
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problem then naturally decomposes into independent subproblems for each individual unit
(1UC); for an arbitrary set of Lagrangian multipliers, the solution of all the 1UCs provides
a lower bound on the optimal value of (1). Moreover the mapping (called the dual function,
or Lagrangian function) assigning this optimal value to a given set of Lagrangian multipliers
is concave; maximizing it, i.e., finding the best possible lower bound, is therefore a convex
optimization problem for which efficient algorithms exists.

Two technical points are crucial when developing a LR approach:

• how the maximization of the Lagrangian function, i.e., the solution of the Lagrangian
Dual (LD), is performed;

• since (1) is in general nonconvex the approach cannot be expected to provide an optimal
(or even feasible) solution, so methods to recover one have to be developed.

Regarding the first point, one can rely on the available well-developed theory concerning
minimization of convex nondifferentiable functions. Standard approaches of this kind are
subgradient methods [97, 260, 299] and the cutting plane method (CP) [199], also known as
the Dantzig-Wolfe decomposition method [98]. Early examples of the use of subgradient
methods in UC are [27, 42, 134, 241, 252, 413], possibly with modifications such as successive
approximation techniques [83] or variable metric approaches [14]. An early example of the
use of CP is [2]. The two approaches are rather different: subgradient methods use very
simple rules to compute the next dual iterate, whereas CP uses (possibly costly) Linear
Programming (LP) problems for the same task, although hybrid versions can be devised [362].
This is necessary in practice because both approaches have convergence issues, for different
reasons: subgradient methods lack an effective stopping criterion, whereas CP tends to
be unstable and converge slowly. This is why variants of CP have been devised, e.g., using
Interior Point ideas to provide some stabilizing effect [116]; for an application to UC see [237].
In [326] the KKT conditions of the Lagrange function are used in order to update the
Lagrange multipliers and improve on subgradient approaches. In [313] CP is stabilized
by a trust region. The latter turns out to be a special case of the most effective family
of approaches capable of dealing with this kind of problems, that is, (generalized [138])
Bundle methods [214, 390]. These can be seen as a “mix” between subgradient and CP [21]
which inherits the best properties of both [62]. Several variants of Bundle approaches exist,
see e.g. [18, 216, 217]; a recent development that is particularly useful for UC is that of
methods that allow the inexact solution of the Lagrangian relaxation [103, 104, 201]. This
feature is of particular interest if operational considerations impose strong restrictions on
the solution times for the subproblems. For early application of Bundle methods to UC see
e.g., [58, 59, 127, 157, 218, 235, 409].

Regarding the second point, one important property of LDs of non-convex programs is
that, while they cannot be guaranteed to solve the original problem, they indeed solve a
“convexified version” of it [139, 215]. In practice, this typically corresponds to a solution
x̃ = (p̃, ũ) to (1) that is feasible for all constraints except the integrality ones; that is, rather
than feasible commitment decisions ui

t
∈ {0, 1} one obtains pseudo-schedules ũi

t
∈ [0, 1],

which can for instance be heuristically interpreted as the probability that unit i be on at
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instant t, such that they satisfy the constraints with the production decisions p̃. Such
a solution can be obtained basically for free by (appropriately instrumented versions of)
subgradient methods [12, 26] and all other algorithms, most notably Bundle ones [127].
The pseudo-schedule x̃ can be used to devise primal recovery approaches to attain feasible
solutions of (1), either by appropriately modifying the objective function [96, 117] or by a
heuristic search phase that exploits both x̃ and the integer solutions produced by the LR;
see e.g. [28, 142, 327].

Along with early papers which address the bUC [42, 134, 241, 252], we can mention papers
which address large-scale UC [42, 241]. The authors of [241] are among the first who tried
to use LR to obtain a solution, and not just to obtain lower bounds for B&B procedures,
solving a problem of 172 units. In [208] the duality gap problem is tackled by approximating
the dual problem with a twice-differentiable mapping which is then maximized by using
a constrained Newton’s method, after which a heuristic is used to recover a nearly optimal
primal solution, solving a 200 units UC in about 10 to 12 minutes. In a subsequent work [343]
a three-stage approach is proposed to deal with a—for the time—large-scale hydro-thermal
system (100 thermal units and 6 hydro ones); the first stage is based on LR, with the thermal
1UCs solved using DP while the hydro subproblems are solved by using a penalty multipliers
method [203] and a specially tailored Newton’s method. A “unit decommitment” method
is suggested in [220, 366] where all units are considered online over all T and then, using
the results of the LR, units are decommitted one at a time; this method aims at providing
feasible primal solutions first, whereas most Lagrangian decomposition approaches would aim
at optimality first. Further references using LR are [128,162,329,330], which consider specific
dedicated approaches in order to tackle the subproblems, elementary ways of updating the
dual and heuristics to recover a primal feasible solution. In [160] the units cost functions
are modified in order to reduce the oscillating behavior of subgradient approaches. In [157]
the authors compare a primal MIP based approach with a LR-based approach. Bundle
methods are used in order to solve the LD and two Lagrangian heuristics are investigated
for primal recovery: the first one searches for time steps where demand constraints are most
violated and employs a strategy proposed in [413] for changing the commitment variables,
while the second one exploits nearly optimal Lagrange multipliers for fixing commitment
decisions. In order to recover primal feasibility, both heuristics are followed by solving an ED,
wherein the commitment variables are fixed; this LR-based method is shown to be capable
of handling larger and more complex instances. In [359] the Lagrangian heuristic consists
of formulating an Integer Program that mixes solutions provided by the dual iterations,
selecting the production schedule of a specific unit among the primal solutions generated by
the LD phase in such a way as to minimize overall cost and satisfy (the dualized) demand
constraints; the IP is then reformulated in order to allow for an efficient solution. A similar
idea is exploited in [231], where the IP is solved by using Genetic Algorithms. In [127] the
dual multipliers defining the pseudo-schedule are interpreted as probabilities for randomly
selecting commitment decisions after a LD phase; four derived Lagrangian heuristics are
investigated. In [31] a two step procedure is proposed, consisting of a LD phase followed by
an Augmented Lagrangian (AL) phase for primal recovery. The AL term is linearized in an
ad-hoc way and its penalty slowly sent to infinity. Bundle methods, CP and sub-gradient
methods are compared for solving the LD phase; it is shown that bundle methods outperform
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alternative approaches. Finally, in [58] Lagrangian approaches are compared with Tabu
Search heuristics, and an improved primal phase is proposed in [59]. The approach is later
extended to the free-market regime [60] and to the handling of ramping constraints [142]
via the use of the specialized DP procedure of [141]; an hybrid version also using MILP
techniques is presented in [144].

LR can be used to deal with ramp rate constraints, fuel related constraints and emission
constraints [14,83,362,402,413] by simply relaxing them (in Lagrangian fashion). Similarly,
LR can be employed to further decompose subproblems, in particular hydro ones; these ideas
are explored in [130, 131, 163, 262, 357, 358]. More specifically, the authors of [163] consider
the LD related to the bounds on the reservoir levels in the hydro subproblem; this effectively
decomposes the problem in smaller MILPs which can then be readily dealt with, through
the use of DP in this specific case. The LD is optimized using a subgradient approach,
and heuristics are used to recover a primal feasible solution. A similar approach is used
in [262], where hydro units have discrete commitment decisions much like thermal ones;
these constraints are then relaxed in a Lagrangian way, resulting in continuous network flow
subproblems and a pure integer problem. In [131], Lagrangian decomposition [165] is used to
deal with forbidden zones in complex hydro units. The idea is to use LR to decompose hydro
valley subproblems further into two parts: the first part deals with the flow constraints and
basically leads to a simple LP, while the second part deals with the water-head effect and
other combinatorial constraints and requires a specific NLP approach (an SQP-based method
and partial exhaustive enumeration). Two dual formulations are considered which differ from
each other in that in the second one the NLP problem is further decomposed through the
use of auxiliary variables. The model is extended to consider network constraints in [357],
and different relaxation schemes are explored in [358] and [130]; in particular, the latter
compares Lagrangian relaxation and Lagrangian decomposition.

In [402] a hydro-thermal system with 70 thermal and 7 hydro units is addressed; ramp rate
constraints are also dualized, and the DP approach of [161] is used to optimize the thermal
units, while a merit order allocation is employed for the hydro subproblem. In [413] a three
stage approach is proposed based on first solving the LR, then finding a feasible solution
for reserve requirements and finally solving an ED. In [264] a hydro-thermal system with
a fairly realistic model for hydro generation is considered that comprises forbidden zones
(cf. §2.4) and the water head effect. The offer-demand equilibrium constraints and reser-
voir balance equations are dualized, and the LD is maximized with a subgradient approach;
then a heuristic step fixing the discrete hydro variables is used to recover a primal feasible
hydro solution. In [2] some transmission constraints are considered. In [223] an alternative
to ramping rate constraints in the model for thermal units, a so-called stress effect, is pro-
posed. Coupling offer-demand equilibrium and reserve requirement constraints are dualized;
the corresponding LD is maximized using a subgradient approach, where the thermal sub-
problems are solved using Simulated Annealing techniques. In [146] a ramp rate, fuel and
emission constrained UC is solved.

A different decomposition approach is the classic one due to Benders [40] [56, Chapter 11.1],
which rather focuses on complicating variables that, once fixed, allow to separate the problem
into independent (and, hopefully, easy) ones. Application of Benders’ decomposition to
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Table 3: Sources using Lagrangian Relaxation
Basic UC Additional UC constraints

Must Fuel Ramp Suppl. Hydro- Emission Transmission
Run/Off Constr. Rate Reserve -Thermal

[2, 14, 83, 241, 252] [402, 413] [14, 362] [83, 146, 402] [2, 83] [14, 358, 402] [146, 156, 204] [2, 357]
[134, 264, 362, 402, 413] [144] [83, 146] [142, 144] [60, 142, 144]
[58, 125, 127, 237, 343] [59, 60] [59, 264, 343]

[42, 146, 223] [13, 223] [13, 130, 131]

UC is fairly recent; in [91, 399] techniques for improving the Benders’ cuts production are
described. In [401] a conceptual and numerical comparison is made, in the context of the
security constrained UC, between LR and MILP approaches (cf §3.2) for the UC master
problem, while for the subproblems, involving the network constraints, the authors compare
Benders’ cuts and linear sensitivity factor (LSF) approaches.

3.4 Augmented Lagrangian Relaxation

One major downside of LR approaches is the difficulty in recovering a primal feasible solu-
tion. The use of the Augmented Lagrangian (AL) method, whereby a quadratic penalization
of the relaxed constraints is added to the objective function alongside the linear penaliza-
tion typical of standard LR, is known to be a potential solution to this issue. Yet, because
(1) is nonconvex it should be expected that in general the AL approach leads to a local
optimizer [155, 233]. Furthermore, the AL relaxation is no longer separable into an inde-
pendent subproblem for each unit, and therefore it is significantly more difficult to solve
(in practice, as difficult as UC itself). This calls for some further approach to simplify the
relaxation; in [28, 403] the use of the auxiliary problem principle [85, 86] is suggested. The
classic theory of the auxiliary problem principe requires restrictive assumptions such as con-
vexity and regularity, which do not hold in practice; some recent advances have been made
in the non-convex setting [19, 311, 367]. In [32] an alternative decomposition scheme based
on block coordinate descent (e.g., [43, 321]) is proposed and it is found to be more efficient.
The recent [242] includes in the UC formulation a DC network model and bilateral contracts
defining the nodal injections; the AL of the coupling constraints is formed and then linearized
in an ad-hoc way, while bundle methods are employed for updating the dual multipliers.

Environmental constraints [387] and network transmission constraints [32, 387] have also
been dealt with the AL approach; the variable duplication approach is a common way to
deal with additional constraints [151].

Table 4: Sources using Augmented Lagrangian Approaches
Basic UC Additional UC constraints

Modulation Startup/shutdown Transmission Ramp Environ. Hydro-
curves Rate Const. -Thermal

[23, 28, 32, 387] [28] [28] [23, 32, 387] [23, 28] [387] [23, 28]
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3.5 (Meta-)Heuristics

3.5.1 Operator rule based: Priority Listing

This method defines a list of units which should logically be scheduled prior to other units,
with merit order scheduling being a special case. Priority listing was first employed on
bUC in [24], where units are listed according to their performance and the cost they yield
(comprising maintenance costs). Must-on/must-off and crew constraint have been added
in [210], and a limit on the number of starts is included in [211] through the use of a
commitment utilization factor, which is claimed to provide a better list.

While the former two papers and [7] address bUC, there has been an endeavour to integrate
other factors such as multi-area constraints [212] and hydro-thermal systems [194] for large-
scale UC. In the latter paper a two-step heuristic procedure is used to solve a UC with 100
units; the first step uses rules from real-world schedules (possibly enhanced by the use of UC
software) to set up a priority list consisting of feasible production schedules, while the second
step optimizes locally around the current solution. A very similar approach is investigated
in [7].

Table 5: Sources using Priority Listing
Basic UC Additional UC constraints

No.Units Crew Must Multi- Hydro- No. Starts
Started Const. run/Off Area Thermal / Shutdowns

[7, 24, 194, 210–212] [194] [210] [210, 212] [212] [194] [211]

3.5.2 Guided Random Exploration

Since solving the UC (1) to optimality is quite difficult, many heuristic approaches such
as Taboo search, Simulated Annealing, Augmented Lagrange Hopfield Networks, Nature
Inspired (e.g., particle swarms, frog leaping etc...) and Genetic Algorithms have also been
employed. We refer to [126,331] for a discussion of those approaches, and in this paper we by
no means attempt to give a full overview of this subfield. This is because heuristic approaches
like these are typically difficult to adapt to the Uncertain UC case, which is the main focus of
this survey, unless they are at least partly based on mathematical programming techniques;
we therefore concentrate mostly on “hybrid” approaches that use the latter at least to a
certain degree. For instance, in [231] genes are feasible schedules produced by a LR-based
scheme: the genetic algorithm then mixes the solutions up to form new feasible schedules in
order to hopefully produce a solution that better meets the demand constraints. In [414] the
authors solve a 100 thermal unit system by using Simulated Annealing and report that their
approach outperforms a B&B procedure, but fails to outperform a LR approach (although in
the later [58] Taboo search has been reported to be more competitive with LR). In [118,196]
Evolutionary Programming is applied to adjust the solution provided by a LR approach.
In [234] a neural network approach is coupled to LR in order to optimize a system with up
to 60 units: the thermal subproblems are optimized using a neuron-based DP algorithm.

In general, these approaches are not considered particularly competitive for UC; for in-
stance, [361] states that Simulated Annealing and Evolutionary Programming attempts have
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been unsuccessful. Also, usually these approaches deal with bUC: only a few sources con-
sider ramp rate, crew, maintenance or multi-area constraints, and hydro-thermal systems
are very rarely dealt with. The likely reason is that purely combinatorial heuristics are best
apt at problems that exhibit a predominant and relatively “simple” combinatorial structure
to which the various elements of the heuristic (neighborhood(s) structure in Simulated An-
nealing, Taboo list and aspiration criteria in Taboo search, mutation and crossover operators
in genetic algorithms, . . . ) can be specifically tailored. UC is both a fundamentally mixed
combinatorial and continuous program, and one with several different combinatorial struc-
tures, especially when “complex” constraints have to be dealt with; therefore, on the outset
is is best approached with mathematical programming techniques.

Table 6 provides a (very partial) overview of these approaches:

Table 6: Sources using (Meta-)Heuristic Approaches
Approach Basic UC Additional UC constraints

Ramp Crew Mainte- Multi-Area Hydro- Derating
Rate Constr. nance Const. Thermal

Simul. Annealing [10, 352, 414] [352] [10, 239, 414] [414]
[239]

Tabu Search [239, 250, 378] [239] [240] [239]
[58, 225]
[240, 308]

Neural Network [333, 337, 381] [1, 337] [256] [381]
[1, 338, 382] [111, 382]

[111, 224, 256]
[234]

Genetic Algorithm [356, 391, 392] [345, 391] [82, 309]
[82, 370, 404] [307]
[307, 309, 345]
[118, 196, 404]

[99, 231]

Nature Inspired [77, 78, 150] [77, 78, 150] [78]

4 Methods for the Uncertain Unit Commitment

The complex nature of UC, due to its numerous technical constraints, forces the schedule
to be determined quite ahead of time and consequently be given to the TSO one day in
advance. This allows for uncertainty to have an important impact on the system; also,
intra-daily optimization processes and communication between the TSO and the GENCOs
allow for recourse decisions. Thus, dealing with uncertainty has always been necessary in
UC; we now discuss the approaches that have been proposed in the literature. To the best
of our knowledge, this has never been done before specifically for the UC. The chapter [380]
provides a general overview of the ways in which uncertainty arises in Energy Management,
but it is mainly focussed on mid- and long-term problems, UC being only briefly addressed.
Analogously, [87] offers a general survey on uncertainty issues in Energy Optimization, with-
out a specific focus on UC. The chapter [319] offers a general overview of properties of
stochastic optimization problems and briefly provides some links to stochastic UC problems.
The essential references used in these sources will be discussed below.
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4.1 Dealing with Uncertainty in UC

In most traditional approaches, load uncertainty is dealt with by computing the schedule
corresponding to the worst scenario, i.e., typically that of peak demand in each period. This
choice systematically overestimates demand and incurs the risk that significant ramp-down
of the production is needed when the actual demand proves to be substantially smaller than
the forecasted one, which can cause feasibility issues due to technical constraints like ramp-
down ones (cf. §2.3). Another common approach has been to use spinning reserve constraints
(cf. §2.6) [11, 51, 137, 158, 396]; the advantage is that this protects against some degree of
uncertainty while keeping the deterministic formulation. In general, in order to deal with
uncertainty the deterministic constraints can be “tweaked” heuristically (say, underestimat-
ing the amount of water in a hydro reservoir or imposing stricter ramp rate constraints than
these justified by technical aspects) to ensure that the solution can survive a certain degree
of variability in the data; obviously this may result in a loss of optimality or control over
feasibility, and, possibly even worse, one looses control over where the approximations have
been made.

In order to overcome these weaknesses, methods where uncertainty is directly modeled have
been investigated. These comprise Stochastic Optimization (scenario tree), Robust Opti-
mization, and Chance-Constrained Optimization.

Scenario tree based approaches (from now on denoted as SO, i.e., Stochastic Optimization)
have been the subject of intense research in the last two decades; see e.g. [300, Chapter
13] [53, 198, 229, 324, 325] among the many other general references. Their use in the UC
context has been considered e.g., in [70,278,360,393,398]. The key advantage of using scenario
trees is that uncertainty is assumed to be known in each node of the tree; since moreover
uncertainty is now discretized on the tree, essentially this amounts to solving a deterministic
UC of very large scale. According to [47], SO methods have two major drawbacks. First,
obtaining an accurate probability distribution can be difficult, i.e., setting up an accurate
tree is hard. Second, these solutions provide only probabilistic guarantees. The first difficulty
could be partially tackled by the approaches considered in [119, 122, 175–177]. The second
difficulty can be tackled by using a hybrid approach that also considers spinning reserve
requirements on the scenario tree [320, 396], which can be used to account for events not
modeled in the tree. We mention that similar techniques can also be applied to longer-term
problems, such as the management of an hydro reservoirs, that although not strictly pertinent
to this paper are clearly strongly related; for a recent instance, a specialized stochastic dual
DP algorithm is proposed in [167].

In order to be less demanding on the representation of uncertainty, Robust Optimization
(RO) uses the notion of uncertainty set, which basically reunites the adverse events against
which we wish to protect ourselves. For a comprehensive introduction to robust optimization
we refer to [34,46]; other important references are [36–38,48,49,152,153]. For instance, in [47]
RO is applied to UC with a 2 stage approach where commitment decisions are assumed to
be first stage decisions that can’t be changed afterwards; this is a convenient simplification
but it does not fully represent reality, where (a few) changes to the commitment of units are
in general possible. Accounting for recourse decisions, however, significantly increases the
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complexity of the problem, which justifies why restricting integer decisions to the first stage
is the most common approach.

RO approaches might lead to a substantially higher costs of the proposed schedule (a too
high “price of robustness” [49]) w.r.t. SO ones when distributions of the uncertainty are
sufficiently well characterized. This is mainly because RO protects against each event in
the specified uncertainty set regardless of its probability, and therefore may have to ac-
count for extremely unlikely events, although several RO approaches have parameters (e.g.,
“budget of uncertainty”) that can be used to adjust the degree of protection offered by the
model [48, 80, 258]; yet, in general tuning these parameters is far from trivial. To reduce
the price of robustness associated with classical ellipsoidal and Γ-robustness uncertainty sets
proposed in [36, 49, 153], subsequent studies have investigated alternative soft and light ro-
bustness models [33, 132]. More recently, Multiband Robustness [63, 64], has been proposed
as a generalization of Γ-robustness that can support an improved and stratified representa-
tion of uncertainty and a reduction in conservatism, while maintaining the computational
tractability and accessibility of Γ-robustness.

Chance-Constrained Optimization then comes up as a good alternative to select the trade-
off between cost and robustness based on a notion (probability of the selected solution
to be feasible) that is easy for the decision-maker to understand and manage. We refer
to [108, 300, 301] for a modern introduction to probabilistic programming. In [373] the
potentials for energy management applications, such as UC, are evaluated. However, a
drawback of CCO is that probabilistic constraints can be nonconvex and hard to evaluate,
thus making these approaches potentially computationally demanding.

There actually is an important link between RO and CCO. Indeed, an intuitively appealing
idea is to select an uncertainty set in such a way as to enforce a probabilistic constraint,
so that the solutions coming from the RO approach are comparable with those coming
from the CCO one. More generally, one may aim at replacing the probabilistic constraint
with a convex, albeit possibly more restrictive, one. There are various ways of doing this
(e.g., [39,258]), often referred to as “safe-tractable approximation approaches” (a somewhat
unfortunate terminology implicitly assuming that all CCO problems are intractable, which
is not the case). Frequently such convex outer approximations of the CCO-feasible set
are derived by using individual probabilistic constraints, i.e., constraints that require that
each individual inequality in the constraints system holds with high enough probability
(e.g. [80]). Besides using a (not necessarily very tight) approximation, this approach gives
little control over the joint violation of the constraints, although it does have the advantage
that convexity make the corresponding problems easier to solve. We refer to [372, 374] for
examples showing that individual probabilistic constraints may lead to an arbitrary number
of violated constraints; various other alternatives of building uncertainty sets are covered
in [25]. The scenario approximation approach (e.g., [67, 257, 259]) can be seen as a special
case of RO with a discrete uncertainty set that arose by drawing random samples from the
underlying distribution.

We will now present more details on algorithms for Uncertain UC models using these three
approaches.
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4.2 Stochastic Optimization (Scenario-Tree) approaches

Uncertainty is frequently represented as a tree. In general, generating scenarios for each
individual uncertainty factor may be relatively straightforward, but combining these to form
a tree structure is not easy; see e.g., [119, 175, 176] for a systematic approach to generate
manageable trees. Classical approaches (e.g., [360]) to form a tree are those that start out
with a set of scenarios and progressively regroup similar scenarios to form the nodes, in each
of which a representing scenario is selected.

A crucial decision in all SO models is which variables represent “here and now decisions”
(first stage), to be taken before the uncertainty is revealed, and which represent “recourse
actions” (second or later stages) that can change when the uncertain parameters are revealed.
In general, Integer Programming with Recourse formulations aim at minimizing the total
cost of the here and now decisions and the expected cost of the possible recourse actions.
These problems are typically very challenging from both the computational and theoretical
point of view, especially if recourse actions are integer-valued. A general approach to deal
with this formulation was introduced by [207]; in [228] a progressive hedging algorithm
and Taboo search are used to address multi-stage problems with mixed 0-1 variables. The
approaches can become somewhat computationally less demanding if recourse variables are
instead continuous, which is often the case in UC. In fact, here commitment variable are
typically first-stage decisions, to be taken well in advance, while the actual energy production
(usually continuous) is indeed managed in real time when the uncertain data (load, prices,
. . . ) is revealed.

Even so, the resulting mathematical program is a very-large-scale one, which means that
decomposition approaches are especially attractive. However, direct use of MI(N)LP solvers
is also possible, in particular in the case of the self-scheduling of a single unit subject to
uncertain prices, for in this case the number of variables of the deterministic problem is
much lower.

For the general UC, however, the deterministic equivalent of the stochastic program is usually
so large as to be hopeless to solve by direct use of MILP solvers, and decomposition is
required. A SO program with scenario-tree structure can be decomposed in at least two
ways. Perhaps the most natural one is to relax the so-called non-anticipativity constraints
and solve as many deterministic UC problems as there are scenarios; this is called the
Scenario Decomposition approach [360] and includes well-known variants such as progressive
hedging [315]. The alternative is to dualize the offer demand equilibrium constraints in
each node to form a LD [70] and solve as many stochastic programming problems as there
are units; this can be referred to as Space Decomposition, Unit Decomposition or Stochastic
Decomposition, because one is basically optimizing a stochastic function, which in this case
just happens to have an underlying discrete distribution (we will use Unit Decomposition,
UD, to have a different shorthand from the Scenario Decomposition, SD). This discretization
can be carried out after having formed the LD in an appropriate Banach space setting (L1-
type spaces); see for instance [268]. We refer to [322] for a thorough discussion on various
alternatives.

A different applicable approach is Benders’ decomposition, cf. §4.2.4, which exploit the L-
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shaped structure of the problem whereby the second-stage (recourse) variables corresponding
to each scenario are unrelated, and therefore the corresponding subproblems can be solved
independently, once the first-stage variables are fixed [376]. This corresponds to seeing the
second (or later) stage(s) as an aggregated expected cost function depending on first (or
earlier) stage variables. Under appropriate hypotheses (e.g., no integer decisions in later
stages) this expected cost function can be shown to be convex, and cutting planes based
approximations can then be used to compute the solution of the first (i.e., master) problem
(e.g., [105]).

We now separately discuss all the above approaches.

4.2.1 Mixed Integer Linear Programming

In [369] the use of UC tools in a deregulated market is discussed. In particular, under
the assumptions that prices are stochastic and there is no market power or transmission
constraints, a GENCO can solve a self-scheduling UC for each of its units independently,
which however should be a SO model due to uncertainty on prices. A MILP formulation
for (a basic) UC is proposed, along with three DP approaches to solve it, and used to
produce a cost-based method to generate stochastic distribution of energy prices, based on
the assumption that in a competitive market the price should be equal to the marginal cost
of the most costly committed unit.

In [296] a two-stage model is considered where the first stage decisions consists of commitment
decisions and an offer curve, while in the second stage the dispatch is computed. Single unit
or identical unit systems are considered, although the model with several units can not cope
with minimum up/down times. The focus is essentially on obtaining the offer-curve. A DP
principle is presented, but no numerical experiments are provided. A very similar model is
considered in [364], wherein commitment decisions and offer curves are first-stage decisions
and dispatch later stage decisions; the key focus is on the market mechanisms.

In [135] hydro scheduling is looked at in a market-based setting. The problem integrates
commitment decisions on the turbined output, which have minimal release rates; expected
gain from selling energy on the market is maximized, whereas volume-dependent water values
are used in order to represent the cost of water as measured by the difference between the
initial and final volume in the reservoir.

In [280] a two-stage formulation is proposed where the first stage variables consist of bilateral
contracts; once these contracts are selected, the market price is observed and a bUC is solved
in order to meet the resulting load. The objective function consists of Markovitz mean-
variance model related to expected profits. A specialized B&B method is used in order to
solve the corresponding MILP problem; the numerical experiences cover a GENCO with 3
thermal units and up to 15 scenarios.

In [75] a weekly UC model is studied wherein profit of a GENCO depends on bids made
on the market. The GENCO is assumed to have a non-linear non-convex effect on market
prices, modeled through the use of piece-wise linear functions and binary variables. The
corresponding model is solved using a MILP solver, Lagrangian decomposition and two
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variants of Benders’ decomposition (taken from [74]). The computed production schedule is
a first stage decision, whereas all other stages and nodes in the scenario tree refer to different
realizations of market settling. The Benders-based decomposition approaches are found to
be the most interesting, despite the substantial implementation effort.

In [92] a two-stage model is considered where commitment decisions and bid prices are
first-stage decisions while total generation and energy matched in the day-ahead market
are second-stage decisions (continuous variables). Uncertainty is mainly relative to the spot
price, that enters in the generators objective function. The formulated MIQP has a quadratic
second-stage cost function, which is linearized by means of perspective cuts; the resulting
problem with 10 scenarios and 9 thermal units is solved with CPLEX.

4.2.2 Scenario Decomposition

In [360] progressive hedging is used to solve a large-scale bUC with 100 thermal units and
6 hydro ones. A SD scheme is presented in [68, 69] for solving a two-stage bUC problem
(with only a few thermal units), wherein integer variables are restricted to the first stage.
The non-anticipativity constraints are dualized by using Lagrangian multipliers, and the
overall scheme is inserted into a B&B procedure in order to ensure that an optimal solution
is obtained. In [285] a scenario decomposition is used, with the focus being on reserve
requirements in a system with high wind penetration. In [287] the uncertain renewable
production is coupled with the demand response in a market environment. In [286] scenario
decomposition is again used to solve a UUC where the uncertainty is caused by wind power
generation, taking into account the network constraints.

4.2.3 Unit (Stochastic) Decomposition

The standard UD approach is proposed in [70] for a bUC with 50 thermal units; the demand
constraints are relaxed, resulting in stochastic sub-problems which are then solved by DP.

In [318] a multi-stage hydro-thermal UC problem is considered with random customer load.
The load is observed after having chosen the commitment decisions, but the actual generation
levels (including continuous hydro generation) are determined once that the load is known;
the demand constraint is dualized in a general probabilistic space setting, then the probability
measure is discretized. No numerical results are presented.

A multi-stage stochastic programming is proposed in [267] to deal with a hydro-thermal UC
with 25 thermal units and 7 hydro units. Load uncertainty is addressed through the use of
UD and DP for solving the stochastic sub-problems; Lagrangian heuristics are then used to
recover a primal solution. Similar UD approaches are considered in [109, 159, 266].

In [361] three uncertainty factors are integrated in the problem: load, fuel and electricity
prices. The fuel requirement problem basically becomes the second stage of the problem,
the first of which would be a bUC formulation. A Benders’ decomposition approach is used
to plug the second-stage cost function into the first stage, and a LR approach is used for the
first stage. This method is tested on a UUC with 33 thermal units and about 729 demand

30



scenarios.

In [20] a weekly (10 days up to a month) stochastic UC problem is considered. A UD
approach is employed, where the LD is solved by a disaggregate bundle method; a set of
weights is associated with each node that effectively preconditions the LD, which is reported
to be crucial for performances. Problems having up to 2000 nodes are solved with the
generating units of EDF.

A weekly two-stage UUC is also addressed in [336]. Both stages have all time steps, and
essentially each is a bUC problem; load, price and cost uncertainty are revealed between the
two stages. The problem is decomposed using a LR-based approach that yields a stochastic
programming problem for each unit. Lagrangian heuristics based on [157,413] are employed
to recover a primal feasible solution. The authors also present an MILP for market price
settling and bidding in a competitive environment, suggesting to incorporate both features
into a single model by moving bid/offer decisions and first day commitment decisions in
a first stage, while all other variables are moved to the second stage. In [263] the authors
consider a model, with focus on market mechanisms, wherein commitment decisions and offer
curves are first-stage decisions and dispatch are later stage decisions. The authors apply a
global LR-based UD for solving the thus formulated problem.

In [268] stochastic Lagrange multipliers are used in order to decompose uncertain demand
constraints that have to hold almost surely; the dual function is the expectation of this
stochastic Lagrange function. Uncertainty is then discretized into a finite set of random
drawings in order to approximate the expectation, and bundle approaches are used to solve
the dual. In this two-stage procedure, integer variables remain present in the second stage.

In [348] the UD approach to the stochastic bUC with uncertain demand is revisited in terms
of Dantzig-Wolfe decomposition (the equivalence between this and a LR approach solved by
CP being well-known). This results in a column generation approach where the Lagrangian
subproblem, solved by DP on the scenario tree, generates schedules for each unit that are
added to the restricted master problem.

4.2.4 Benders(-Like) Decomposition

The L-shaped method can be used to decompose UC problems with several stages. In its
basic version a single cut is added to the first stage problem, whereas in advanced versions
multiple cuts (e.g., one for each subproblem) can be added. This may increase convergence
speed at the cost of an increased master problem cost; we refer to the discussion in [52,53] on
this topic. The recent on-demand accuracy bundle methods [103] can be thought to provide
a tradeoff between the multi-cut and mono-cut versions [124].

In [400] another approach is proposed for finding such a trade-off. In this method, which
is applied to a stochastic UC with load and generation uncertainty, scenarios are divided
into (homogeneous) groups and cuts are derived for each group, as proposed in [365]. Con-
sequently, the dimension of the master problem is smaller in comparison with the classical
multi-cut algorithm, while less information is lost compared to the single cut version; the
authors claim that heterogeneously grouping the scenarios may result in even better CPU
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time. Results are presented for a large-scale thermal UC with ramp rates and spinning
reserves.

In [15] short-term cascaded reservoir management is considered (as opposed to the more
traditional approach where reservoir management is considered to be a mid-term problem)
wherein the gain function is explicitly given and depends on the water level and turbined
quantity. Uncertainty is modeled as a Markov chain having 6 states per time step, which is
expanded onto a scenario tree in order to allow for an LP formulation of the problem. This
approach is compared with DP, nested Benders’ decomposition (closely related to SDDP)
and a Decomposed DP approach, which essentially efficiently samples the state space. Nested
Benders’ decomposition is found to be computationally the most efficient approach.

Benders’ decomposition is compared with MILP approaches in [75] (cf. §4.2.1) and proves
to be in general preferable.

Benders’ decomposition is used to address UC problems under wind uncertainty in [383].
The authors use sub-hourly time steps (10, 15 or 30 minutes) to account for rapid variations
in renewable generation; they also modify the standard approach by adding some of the
second stage constraints to the master problem.

In [411] a two-stage UC formulation is considered. Similarly to most approaches load is
revealed in between the first and second stage and power output is determined in the second
stage, but the latter also contains integer commitment decisions related to quick-start units.
The quadratic costs functions are linearized to obtain a MILP formulation. Then, because the
second stage contains integer variables, the approach of [346]—essentially a Reformulation-
Linearization-Techniques with Lift-and-Project cuts—is employed to construct an approxi-
mation of the convex hull of the second-stage problem, so that a multi-cut Benders approach
can be used to approximate the second stage recourse cost function. A problem with 5 units,
up to 2000 scenarios and 16 time steps is solved.

In [288] both LR and Benders’ decomposition are used in a parallel high performance com-
puting environment for solving a network constrained stochastic UC where uncertainty comes
from different sources.

4.3 Robust Optimization approaches

An early work using RO techniques is [332], where a market clearing problem is considered
under some UC-like constraints. The main idea is to use an adaptive RO approach which
partitions the uncertainty set and allows decisions to be specific to each subset; constraints
are then weighed in the master problem. The results are compared with traditional RO and
a worst-case fully anticipative approach.

In [388] a RO approach is considered where the uncertainty set on the load is a simple
interval, so that methods from interval LP (e.g., [81]) can employed together with Benders’
decomposition to solve the model. The main focus of the work is on network security.
In [397] a similar interval uncertainty approach is compared with a scenario-based approach;
the results show that the former is very sensitive to the choice of the interval but is quickly
solved, whereas the latter yields more accurate solutions but it is more costly to solve.
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In [410] a 36 unit bUC with ramp rate constraints is considered which includes wind energy
supply and demand behavior of the customers based on electricity prices. In this two-stage
model, wind power enters under the guise of an uncertain budget constraint and the first
stage is a day-ahead UC problem, while the second stage is performed once the wind supply
is known. The problem is solved by applying Benders’ decomposing to the linearized problem
along with a CP algorithm. It is claimed that this model significantly reduces the total cost
and can fully exploit the available supply of wind energy. The same approach is employed
in [193] to solve a 30 unit UC with ramp rates and transmission constraints where demand
and supply are considered to be uncertain.

In [47] the model proposed in [193, 410] is extended to incorporate spinning reserve con-
straints, transmission limits and ramping constraints in order to gauge the impact of robust-
ness of the solutions on the efficiency and operational stability of the system. A two-stage
adaptive RO model is used where the uncertainty set concerns the nodal net injection at each
time period. In the first stage an optimal commitment decision is reached by using Benders’
decomposition algorithm, while in the second stage the associated worst case dispatch cost
is calculated. Results from empirical studies with 312 generators have been compared to
those of deterministic models with reserve adjustments under three aspects: the average
dispatch and total cost, the cost volatility, and the sensitivity of the costs to different prob-
ability distributions. The sensitivity of the results to changes in the uncertainty set is not
investigated.

In [3] a RO approach to the management of electricity power generation is presented using
concepts borrowed from classic risk management, i.e., Value-At-Risk. In [166] a RO with
the Affinely Adjustable Robust Counterpart (AARC) approach [35] is proposed to the longer
term electricity production management; AARC is a restricted and more tractable version of
the Adjustable Robust Counterpart (ARC) where decision variables are allowed to depend on
past values of uncertain parameters, but only in an affine way. Finally, in [306] an adjustable
robust OPF is suggested.

4.4 Chance Constrained Optimization approaches

It is in the nature of UC that one cannot actually guarantee that the demand constraints will
never be violated; rather, one has to provide solutions which are “reasonably feasible” under
all except the most unlikely scenarios. This is therefore an ideal setting for CCO, where
the desired safety level can be specified under the form of a probability. Two approaches
are possible: either the safety level is set for each constraint (e.g., time step) individually,
giving an Individual CCO program, or for the system as a whole, resulting in a Joint CCO
program. While the ICCO is obviously less robust than the JCCO (see the discussion
in [374]), the latter is in general significantly more difficult to solve, especially if one wishes
to do this exactly (i.e., without artificially discretizing the underlying random vectors or
approximating the probabilistic constraint). This explains why CCO (either Individual or
Joint) models are the least employed in the literature on UC. However, it should be noted
that these approaches have indeed been used in related problems such as power expansion
and transmission ones [8,342,347], which need be formulated on a much longer time horizon
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than commonly considered in UC, and therefore crucially require taking uncertainty into
account [347].

Individual CCO was applied for the first time in [278] to solve a 100-units bUC where the
uncertainty of load has to be met with a high probability. The problem is then decomposed
by using LR, and the subproblems are solved by DP. The results show that solving the CCO
UC produces better (less costly) solutions than a deterministic UC with spinning reserves
requirement.

In [114] a ICCO UC model is formulated where different sources of randomness are consid-
ered; in particular, demand fluctuation, thermal units outage, uncertainty of wind generation
and the schedule of flexible generating units. The individual chance constraints are converted
into a deterministic model using the central limit theorem to recover a Gaussian model of un-
certainty for outages; then, standard MILP approaches are used to solve the problem. Again,
the results are compared with these of a deterministic UC formulation, and the authors claim
that the proposed model could be extended to basically any stochastic factor.

A stylized UC model for hydro thermal systems under joint probabilistic constraints has been
considered first in [415]; the main focus there lies on dealing simultaneously with probabilis-
tic constraints and binary variables, a significant technical feat. The suggested approach
relies on the fact that some inequalities in the random system are more likely to be binding
than others; this provides an ad-hoc way of reducing the difficulty for the JCCO (the exper-
iments of [374] provide a rationale behind this approach). The reduced joint probabilistic
constraint is then outer approximated by individual probabilistic constraints selecting ap-
propriate weights. Finally, by using Hoeffding’s inequality an outer and inner approximation
of these latter individual probabilistic constraint can be obtained; the resulting binary conic
programming problem can be solved with a standard solver.

In [386] a two-stage JCCO UC is considered with a joint probabilistic constraint for the use
of wind power. The probabilistic constraint is not dealt with directly, but is discretized using
a sample average approximation approach (e.g., [232]).

Joint probabilistic constraints in UC are dealt with exactly for the first time in [371]. Two
sources of uncertainty are considered: randomness on load and on inflows for hydro reservoirs.
In order to solve the JCCO UC problem, various decomposition approaches are investigated,
among which LR and various forms of AL approaches.

In [94] a DC Optimal Power Flow using an individual CCO approach is proposed considering
the uncertainty of renewable generation. Under appropriate assumptions on the underlying
distribution of uncertainty, and by moving the bilateral individual probabilistic constraints to
two unilateral constraints, the resulting problem can be shown to be equivalent to a second
order conically constrained problem; the conic constraints are then linearized by using a
cutting planes approach. A real life instance over the 2746 bus Polish network is presented.
It is interesting to note that such a network application with joint probabilistic constraints
would give rise to differentiability issues, essential for the application of first-order methods;
we refer to [180] for a thorough discussion of differentiability and an application to a stylized
network problem.

Finally, it is worthwhile to note that stability theory for CCO is developed in [317]; for recent
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references on such stability results we refer to [178, 179, 181, 316] and references therein. In
particular, the authors explicitly consider stability results for probabilistically constrained
power dispatch models, showing that the models are stable for several underlying distribu-
tions of the load, such as discrete or multi-variate Gaussian. However, no computational
results are presented.

5 Concluding Remarks

The Unit Commitment problem could be considered an archetypal example of what makes
optimization techniques both relevant and challenging.

Clearly, UC regards the optimal use of a highly valuable resource, energy, whose importance
has possibly never been more strongly felt than in the present times; on one hand, energy
is a primary driver of, and a necessary requirement for, economic growth and improvement
of peoples’ living conditions, but on the other hand fair and sustainable energy production
and distribution raises enormous technical, economical, organizational, and even moral chal-
lenges. While optimization techniques (and in particular their strict subset regarding the
UC problem) alone cannot clearly solve all these issues, they can indeed give a significant
contribution to the improvement of the efficiency of the energy system, with a substantial
positive economical and environmental impact.

On the other hand, UC arguably exhibits almost all possible characteristics that make an op-
timization problem extremely challenging. For a start it is not even a well-defined problem,
but rather a large family of related ones that are as much varied as the electrical systems
worldwide. In almost all cases the problem would ideally be large- to very-large-scale, non-
linear, nonconvex and combinatorial; thus, researchers continuously have to struggle between
the contrasting needs of on one hand providing more and more accurate models of the highly
complex electrical systems, in order to allow better practical decisions, and on the other hand
providing answers in the “unreasonably short” timeframe required by the actual operating
environment. Furthermore, and perhaps more importantly for the present work, the op-
eration of the electrical system requires a very articulate decision chain that spans from
the decades (strategic decisions about the investments in new generation and transmission
equipment, and even about funding of research capable of producing better ones) to the
split-second range for on-line tracking of actual demand. This in turn means that uncer-
tainty on the actual future status of the electrical system, and therefore on the consequences
of the decisions that have to be taken, is inherently present at all levels of the decision chain.
This justifies the interest for techniques capable of dealing with uncertainty in many energy
optimization problems, and in particular in UC; whence the significance of this survey.

While UC cannot be presently considered a well-solved problem, and much less so UUC
(which has arguably been tackled only relatively recently), research on such an extremely
challenging problem is poised to have positive side-effects not only for the optimal manage-
ment of the energy system, but also because the tools and techniques that will be devel-
oped will surely find application to different fields. This has already happened in the past:
methodological and algorithmic developments such as those of [96, 127, 140, 302] have been
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directly motivated by the study of UC, but can be—and have indeed been—applied to a
much broader set of problems. We are confident that the study of UUC will lead, together
with practical improvements on the efficiency and safety of electrical systems, to an analo-
gous development of new ideas and techniques that will be beneficial for many other fields.
Therefore, as a small stepping stone for researchers interested in broadening their knowledge
in UUC, we hope that this survey may prove useful.
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[119] J. Dupačová, N. Gröwe-Kuska, and W. Römisch. Scenario reduction in stochastic program-
ming : An approach using probability metrics. Mathematical Programming, 95(3):493–511,
March 2003.

[120] K. Ea. The electricity spot markets prices modeling: Proposal for a new mathematical
formulation taking into account the market player strategy. In International Conference on
the European Energy Market (EEM), 2012.

[121] I. Dritsas (Eds). Stochastic Optimization - Seeing the Optimal for the Uncertain. INTECH,
2011.

[122] A. Eichhorn, H. Heitsch, and W. Römisch. Stochastic optimization of electricity portfolios:
Scenario tree modeling and risk management. In S. Rebennack, P.M. Pardalos, M.V.F.
Pereira, and N. Iliadis, editors, Handbook of Power Systems II, pages 405–432. Springer-
Verlag, 2010.

[123] I. Erkmen and B. Karatas. Short-term hydrothermal coordination by using multi-pass dy-
namic programming with successive approximation. In 7th Mediterranean Electrotechnical
Conference 1994, volume 3, page 925928, 1994.
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[180] R. Henrion and A. Möller. A gradient formula for linear chance constraints under gaussian
distribution. Mathematics of Operations Research, 37:475–488, 2012.
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