| | | corso | | | |
Calcolabilitą e complessitą
Codice: | AA025 | Crediti: | 9 | Semestre: | 1 | Sigla: | CC | |
|
Settore disciplinare: | INF/01 - Informatica |
Docente
Pierpaolo Degano
Tel. 0502212757Prerequisiti
Un pò di teoria degli insiemi e delle strutture algebriche; un pò
di logica; la nozione di funzione.
Obiettivi di apprendimento
Comprendere quali sono i problemi risolvibili meccanicamente, in
assenza e in presenza di vincoli sulle risorse di calcolo
Descrizione
Il corso introduce le nozioni fondamentali della teoria della
calcolabilità e della complessità. La prima parte delinea i concetti
e la natura dei problemi che hanno soluzione effettiva. La seconda
parte caratterizza i problemi che sono risolvibili con risorse di
calcolo limitate.
- Macchine di Turing standard e non (deterministiche e non, a più nastri,
I/O)
- Linguaggi calcolabili, MdT universale
- Funzioni ricorsive e linguaggi di programmazione, Totalità e
diagonalizzazione
- Riducibilità, problemi insolubili
- Funzioni di misura di tempo e spazio
- Classi (tempo/spazio) deterministiche e non. P- e NP-completezza
- Altre classi (co-NP, caso, approssimazione, parallelismo)
English Description
We will introduce the basics of computability and complexity theory.
The first part studies the concepts and the nature of effectively
solvable problems. The second part characterizes the problems that
are solvable with limited computing resources.
Programma
- Turing machines (deterministic, non-deterministic, k-tapes, I/O)
- Computable languages, Universal Turing machine
- Recursive functions and programming languages, Total functions and
diagonalization
- Reducability, unsovable problems
- Time and space measures
- Deterministic and non-deterministic complexity classes
(time/space). P- e NP-completeness
- Other classes (co-NP, random, approximation, parallelism)
Bibliografia
Ch.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
R.J. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, 1988.
P. Degano, Notes.
E. Börger, Computability, Complexity, Logic, North-Holland, 1989.
A. Bernasconi, B. Codenotti, Introduzione alla Complessità
Computazionale, Springer, 1998.
T.H. Cormen, C.E. Leiserson, L.R. Rivest, Introduction to Algorithms,
MIT Press, 1990.
M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman & Co., 1979.
H.R. Lewis, Ch.H. Papadimitriou, Elements of the Theory of
Computation, Prentice-Hall, 1981.
N.D. Jones, Computability and Complexity, MIT Press, 1997.
R. Sommerhalden, S.C. van Westrhenen, The Theory of Computability,
Addison-Wesley, 1988.
Modalità di esame
Scritto e orale